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Abstract: A Markov chain based algorithms for exact and approximate com-
putation of Pearson statistics distribution for multinomial scheme are de-
scribed. Results of computational experiments reveal some new properties
of the difference between this distribution and corresponding chi-square dis-
tribution.
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1 Introduction

The Pearson statistics for multinomial scheme and its modifications is used by different
goodness-of-fit criteria. As a rule the selection of critical values for Pearson statistics is
based on the convergence of its distribution to the χ2 distribution with appropriate degrees
of freedom as sample size tends to infinity. In practice sample sizes are bounded, and the
question on the accuracy of such approximation (especially for distribution tails) arises
naturally. Results of investigation of this problem was reported, in particular, in Holzman
and Good (1986) where more than 250 examples of equiprobable multinomial scheme
with N ∈ [2, 160] outcomes and sample sizes T ∈ [10, 80] were considered. To com-
pute the distribution function of Pearson statistics Holzman and Good (1986) have used
generating functions and Good, Gover, and Mitchell (1970) – Fast Fourier Transform.
Computational method for decomposable statistics distribution (also based on generat-
ing functions) was proposed in Selivanov (2006). We propose to compute the Pearson
statistics distribution by means of the Markov chain method suggested in Zubkov (1996,
2002); this method may be applied to distributions of decomposable statistics for multi-
nomial and some other schemes also.

2 Method

Let ν1, . . . , νN be frequencies of N outcomes with probabilities p1, . . . , pN in a multino-
mial sample of size T . Random variables of the form ζ =

∑N
j=1 fj(νj), where f1(x), . . . ,

fN(x) are given functions, are called decomposable statistics. In the case fj(x) =
(x− Tpj)

2/Tpj , j = 1, . . . , N , we obtain the Pearson statistics

X2
N,T =

N∑
j=1

(νj − Tpj)
2

Tpj

. (1)
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If the hypothetical probabilities pj = mj/nj , j = 1, . . . , N , are rational then the
formula for the Pearson statistics may be rewritten as

X2
N,T =

1

TM̂N̂

N∑
j=1

M̂

mj

N̂

nj

(njνj −mjT )2, (2)

where M̂ = LCM(m1, . . . , mN), N̂ = LCM(n1, . . . , nN).
If all hypothetical probabilities are equal (p1 = · · · = pN = 1/N) then the formula

for the Pearson statistics may be represented in another form as

X2
N,T =

N∑
j=1

(νj − T/N)2

T/N
=

N

T

(
N∑

j=1

(
νj −

〈
T

N

〉)2

−N

(〈
T

N

〉
− T

N

)2
)

, (3)

where 〈x〉 = [x + 1/2] denotes the nearest integer to x. Formulas (2) and (3) reduce the
computation of the Pearson statistics distribution to the one of integer-valued decompos-
able statistics. Exact distributions of integer-valued random variables may be stored as
tables in a computer memory.

Further, the conditional distribution of the frequency νt on the set
{∑t−1

j=1 νj = u
}

coincides with the binomial distribution Bin(T − u, pt/Pt), Pt
def
= pt + · · · + pN ; so

the sequence κ0 = 0, κt
def
=

∑t
j=1 νj , t = 1, . . . , N , may be considered as a time-

inhomogeneous Markov chain with state space {0, 1, . . . , T} and transition probabilities

pt(v|u) = P{κt = v|κt−1 = u} = Cv−u
T−u

(
pt

Pt

)v−u (
1− pt

Pt

)T−v

, 0 ≤ u ≤ v ≤ T.

(4)
So the sequences

ζ∗0 = (0, 0), ζ∗t =

(
t∑

j=1

νj,

t∑
j=1

(
νj −

〈
T

N

〉)2
)

, t = 1, . . . , N, (5)

ζ0 = (0, 0), ζt =

(
t∑

j=1

νj,

t∑
j=1

M̂

mj

N̂

nj

(njνj −mjT )2

)
, t = 1, . . . , N, (6)

(being additive functions of {κt}) are finite nonhomogeneous Markov chains ζt
def
= (ζt,1, ζt,2)

and ζ∗t
def
= (ζ∗t,1, ζ

∗
t,2) with transition probabilities

P

{
ζ∗t =

(
v, s +

(
v − u−

〈
T

N

〉)2
)∣∣∣∣∣ ζ∗t−1 = (u, s)

}

= P

{
ζt =

(
v, s +

M̂

mt

N̂

nt

(nt(v − u)−mtT )2

)∣∣∣∣∣ ζt−1 = (u, s)

}
= pt(v|u) (7)

for 0 ≤ u ≤ v ≤ T and 0 in other cases. It is obvious that ζ∗N = (T, ζ∗N,2) a.s., and the
distribution of (N/T )

(
ζ∗N,2 −N (〈(T/N)〉 − (T/N))2) coincides with that of X2

N,T from
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(3); analogously, ζN = (T, ζN,2) a.s., and the distribution of 1/(TM̂N̂)ζN,2 coincides with
that of X2

N,T from (2). It follows that we may find the distribution of X2
N,T by means of a

recursive computation of the distributions of ζ∗k (or ζk), k = 1, . . . , N .
Note that probabilities p1, . . . , pN in the definition (4) of the chain κt transition prob-

abilities need not be equal to the hypothetical probabilities in the formula for Pearson
statistics. In other words, this approach may be applied to the computation of Pearson
statistics distribution under alternative hypotheses also.

In the case of arbitrary probabilities p1, . . . , pN we may use the same ideas to compute
approximate distribution function of X2

N,T by means of discretization. To this end it
suffice to introduce functions hε(x) = [1/2 + x/ε] (where ε > 0, [y] denotes integer part
of y) and consider the discrete Markov chain

ζε
0 = (0, 0), ζε

t =

(
t∑

j=1

νj,

t∑
j=1

hε
(νj − Tpj)

2

Tpj

)
, t = 1, . . . , N,

with transition probabilities

P

{
ζε
t =

(
v, s + hε

(v − u− Tpt)
2

Tpt

)∣∣∣∣ ζε
t−1 = (u, s)

}
= p(v|u),

where p(v|u) may be defined by probabilities not necessarily coinciding with p1, . . . , pN .
Let, as earlier, ζε

N = (T, ζε
N,2). From the obvious estimate |εhε(x) − x| ≤ ε/2 we have

crude bounds

P {εζε
N ≤ x−Nε/2} ≤ P

{
X2

N,T ≤ x
} ≤ P {εζε

N ≤ x + Nε/2} .

Reducing the value of ε we may find arbitrary good estimates for P
{
X2

N,T ≤ x
}

. The
volume of memory used is inversely proportional to ε.

This method was realized by several C++ programs. In particular, for equiprobable
schemes the Pearson statistics distributions with the number of outcomes up to hundreds
and with the number of trials up to thousands was computed. Computations on PC takes
from seconds if number of outcomes and trials are less that 50 to minutes if these numbers
are of the order of several hundreds. Time and memory requirements of a program real-
izing algorithm for rational probabilities depend heavily on their arithmetical structure.
Time and memory requirements of a program for approximate computation are analo-
gous to that of a program for equiprobable case.

3 Experimental Results
Computational experiments reveal some interesting features of the difference between
exact Pearson statistics distributions and corresponding chi-square distributions.

The equiprobable case with N = 10, T = 10 is used in Figure 1 to explain the
structure of all subsequent pictures. There are a piecewise-constant distribution function
of exact Pearson statistics, a continuous distribution function of χ2 distribution with 9
degrees of freedom, a discontinuous saw-like difference between two preceding functions
and piecewise linear continuous function connecting mean values of the difference at
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discontinuity points (“average difference”) in the left part of Figure 1. In the following
we consider plots of differences and average differences only (as in the right part of this
figure).
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Figure 1: N = 10, T = 10, p = p1 = · · · = p10 = 0.1

In Figure 2 we plot differences and average differences for equiprobable case with
N = 10 outcomes and T = 100, T = 1000 trials. Note that the shapes of plots are
almost independent on T . The ranges of graphs are approximately inversely proportional
to T . The shapes of average differences have a form of fading wave; the sign of average
difference becomes negative on the right tail of distribution (after x ≈ 25), but eventually
it becomes positive again (due to the boundedness of the Pearson statistics distribution).
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Figure 2: Equiprobable cases, N = 10, T = 100 (left) and T = 1000 (right)

Plots of the differences for equiprobable cases with constant values of ratios T/N =
10 and T/N = 2 are shown in Figures 3 and 4, respectively. We can see that the shapes of
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the differences slightly depend on N , that the shape of the average differences are more
stable and that the ranges of the graphs are approximately inversely proportional to the
square root of the number of outcomes. So large number of outcomes may compensate
an insufficient number of trials even when the quotient T/N is as small as 2 (Figure 4).
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Figure 3: Equiprobable cases, T = 10N , N = 10 (left), N = 100 (right)
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Figure 4: Equiprobable cases, T = 2N , N = 10 (left), N = 100 (right)

As long as the distribution on the set of outcomes becomes more non-uniform the
shape of plots of differences approaches the shape of plots of average differences, namely,
the shape of fading wave with two minima and one maximum (see Figures 5, 6). Values
of these extremes are comparable with the extremum values of average differences for
corresponding equiprobable cases.

The reason of shrinking the differences to the average differences when the distribu-
tion of the outcomes goes away from a uniform one may be explained (on the heuristic
level) as follows.
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Figure 5: N = 10, T = 100, p = (0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.15) (left),
p = (0.05, 0.05, 0.05, 0.05, 0.05, 0.05, 0.1, 0.15, 0.2, 0.25) (right)
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Figure 6: N = 10, T = 100, p = (0.04, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.14, 0.14, 0.14)
(left), p = (0.02, 0.04, 0.06, 0.08, 0.1, 0.1, 0.12, 0.14, 0.16, 0.18) (right)

According to (1) the support of the Pearson statistics distribution is contained in the set
of nonnegative numbers having representation

∑N
j=1 k2

j /Tpj − T , where k1, . . . , kN are
nonnegative integer numbers. If the probabilities p1 = c1/d1, . . . , pN = cN/dN > 0 are
rational numbers and M = LCM(c1, . . . , cN) then this set is contained in the arithmetical
progression {k/TM, k = 0, 1, . . . }. The distribution function FN,T (x) = P{X2

N,T < x}
is approximated by the distribution function of a χ2 distribution with N − 1 degrees of
freedom, so the smaller the value TM the greater the weights of atoms of distribution
X2

N,T , i.e. jumps of piecewise-constant distribution function FN,T (x) (in particular, the
largest atoms appear in the equiprobable case). Therefore, the accuracy of approximation
FN,T (x) by distribution function of χ2 statistics with N − 1 degrees of freedom cannot be
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good for small values of TM .
We hope to find quantitative theoretical explanation of effects described.
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