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Abstract: This paper is concerned with the nonparametric estimation of a
density function when the data are incomplete due to interval censoring. The
Nadaraya-Watson kernel density estimator is modified to allow description
of such interval data. An interactive R application is developed to explore
different estimates.
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1 Incomplete Data Structure
“All distributions of experimental data are discrete”

(Hall, 1982)

Interval censored data are defined to be the result of observing continuous variables
only up to the intervals containing the true values. Such data arise in a number of natural
ways. Generally speaking, in the real world all continuous variables are observed and
recorded in finite precision. Sometimes this depends on the precision of the measurement
instruments an the recorded data are given as points from a equispace grid. For any
particular recorded value we realize that the true value belongs to some known interval
around this point. Since discretization to a fine grid do not move true data very far,
we usually apply algorithms without any embarrassment for the result. Unfortunately,
this is not always true. Such a typical situation is describing the distribution of earning
data (Schweitzer and Severance-Lossin, 1996). Due to some reasons collected data are
grouped in intervals with different lengths and moreover several collections might be
merged for analysis.

The common feature of the problems we mention is that true data values are not known
exactly, but can be identified with a set of possible values. We refer these data as “incom-
plete” and when the observed sets are intervals we say that they are interval censored. The
problem we are interesting here is nonparametric density estimation based on a sample of
interval censored data.

To formulate the problem strictly, let X be a random variable with probability density
function f in a sample space X , which is assumed to be an interval on the real line.
Further, let {Ci} be a partition of the sample space, i.e. a collection of disjoint measurable
sets verifying

⋃
Ci = X . The partition is assumed independent of X . Suppose, that

instead of observing X exactly one received the datum Y = h(X), which is identified
with the subset Si ∈ X into which X fallen. The random variable Y is defined on sample
space Y ⊂ X and conditionally on X = x has a probability density hX(y|X = x).

Hence, if f is known, the marginal density of Yi is

g(y|f) =

∫

X
hX(y|x)f(x)dx.
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The observed data (Y1, . . . , Yn) are independent realizations of Y conditionally on unob-
servable complete realizations of X . The goal is to estimate the density f .

The above general framework covers a wide variety of incomplete observing situa-
tions. It is studied in the literature mainly in the context of nonparametric estimation
of the distribution function of X . Some references include Laird (1978), Liu and Zhu
(2007), Goutis (1997).

We relate this problem to the problem of smoothing over a discrete distribution. Our
goal is to achieve more precise approximation for small probabilities, at the same time,
find good visual representation of the true density.

Existing literature on smoothing over discrete distributions concentrate mainly on
asymptotic properties of the proposed estimators, even when considering sparse tables.
The Nadaraya-Watson kernel density estimator is modified by Simonoff (1996) for esti-
mating ordered categorical data. Moreover, local polynomial estimators are proposed for
smoothing discrete distributions.

Results on the asymptotic behavior of the mean sum of squares of the errors are stud-
ied in Simonoff (1983, 1995), or Aerts, Augustyns, and Janssen (1997). The asymptotics
of the local polynomials smoothers were studied by Aerts et al. (1997), establishing suf-
ficient conditions this sparse consistency.

A natural extension of these estimators allows interval data. In Section 2 we give an
appropriate definition of empirical density function for interval censored data. In Sec-
tion 2.1 we derive the maximum likelihood density estimate using uniformity condition.
In Section 3 the Nadaraya-Watson density estimator is given. Finally, in Section 5 we
present a real data example and demonstrate an R-program for interactive control of the
smoothing parameter.

2 Empirical Density Function for Interval Censored Data
In the study of the empirical density function (e.d.f.) the first difficulty is to find its best
definition. Revesz (1972) and Revesz (1974) gives a number of possible definitions of the
e.d.f. based on a complete sample from the underlying distribution. We will follow this
construction to define e.d.f. based on a censored sample.

For interval censored random variable X the subsets {Si} are intervals specified by
some known points τ1, τ2, . . . of the real line which is independent of X . Define

R = inf {τj : τj ≥ X} , L = sup {τj : τj ≤ X} .

The conditional density of X given the interval Y = [L,R] is then

f(x|Y ) =
f(x)∫

Y
f(u)du

, x ∈ Y. (1)

For each Xi the corresponding interval Yi may be defined on a different partition of X .
The conditional density is itself unknown.

Let Y1, . . . , Yn be a sample of observed intervals, where Yi = [Li, Ri]. We assume
that each Xi has an equal impact in the sample so the corresponding interval Yi = [Li, Ri]
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should have. A common approach is to assume the conditional distribution over the inter-
val Yi to be uniform, i.e. we suppose that Xi occurs at any point of the observed interval
[Li, Ri] equally likely and the total mass in the observed interval is 1/n.

Further, let [a, b] be an interval of the real line and denote by Mn(a, b) the restricted
mass of all elements of the sample Y1, . . . , Yn into this interval. More precisely, the re-
striction function is defined as follow:
Notation: For a non-zero interval (c, d) the restriction function over an interval (a, b) is
denoted by J(a,b)(c, d) and equals

J(a,b)(c, d) =





min(d, b)−max(c, a)

b− a
if (a, b)

⋂
(c, d) 6= 0

0, otherwise.

For two intercept intervals, the restriction function gives the ratio of the length of the
common part of the intervals to the length of the second one (here (a, b)). Then Mn(a, b)
is the sum of all parts of the observed intervals.

Therefore, the probability
∫ b

a
f(t)dt can be estimated by the relative mass 1

n
Mn(a, b)

while the value f(x), a < x ≤ b), can be estimated by 1
b−a

∫ b

a
f(t)dt. Therefore, an e.d.f.

in the interval [a, b] can be defined by

f̂(x) =
Mn(a, b)

n(b− a)
, a < x ≤ b.

This is the natural way to define the empirical density function. Using f̂(x) as an estimator
of f(x) one makes two errors: the first error is in the fact that f(x) is estimated by
its integral mean 1

b−a

∫ b

a
f(t)dt; the second is made when the probability

∫ b

a
f(t)dt is

estimated by the relative mass 1
n
Mn(a, b). The first error is small if the interval [a, b] is

short, while the second one is small if the interval contains enough mass of elements, i.e.
if the interval [a, b] is not too short.

The nonparametric maximum likelihood estimate for a density with censored data can
constructed using this approach.

2.1 Maximum Likelihood Density Estimate from Censored Data
Let Y1, . . . , Yn be a sample of observed intervals, where Yi = [Li, Ri]. Then the mass
of the observed intervals Y1, . . . , Yn over an interval (a, b) can be expressed by function
J(a,b) as a sum of the restricted mass of all Y ’s.

To construct the maximum likelihood density estimate, let C be the set of disjoint
intervals (cells) defined by the endpoints of all observed intervals Y1, . . . , Yn, and let c1 <
c2 < · · · < cr be the ordered elements of C.

For any observed interval (c, d) the restriction function over an interval (a, b) ∈ C is

J(a,b)(c, d) =





b− a

d− c
, if c ≤ a < b ≤ d

0, otherwise.

That is, any observation covers fully some intervals from the partition C.
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Define the mass m(ci, ci+1) of any cell Ci = (cj, ci+1) by

m(ci, ci+1) =
n∑

i=1

J(ci,ci+1)(Yi). (2)

Denoting pi = 1
n
mi we obtain the vector p = (p1, . . . , pr) that represents the observed

probability mass of the sample Y1, . . . , Yn over the support of f and obviously,
∑

pi = 1.
Thus, the nonparametric maximum likelihood estimate of f(x) is a piecewise function

with constant values in each subinterval. It equals to the sum of restricted mass of all
observed intervals Yj (j = 1, . . . , n) on [ci, ci+1].

The quantity pi is an estimate of the i-th cell true probability

pi =
1

ci+1 − ci

∫ ci+1

ci

f(t)dt,

which represents the probability that a random variable with density f takes a value within
the interval (ci, ci+1). It is easy to see that for fixed categories specified by endpoints C,
the vector (p1, . . . , pr) has a multinomial distribution with E(pi) = pi.

The estimate pi is an accurate estimate of the true probability pi if the probability mass
in interval (ci, ci+1) is large. However, the number of cells might be large compared with
the number of observation, the vector p could not be a good estimator for true density f .
The sparse asymptotics require the size of cells to become zero as the sample size tends to
infinity. Nevertheless, this requirement is not relevant to the multinomial distribution, it is
useful for modelling of observations in large number of cells. Under sparse asymptotics
the cell probabilities pi are not consistent in the sense that if n →∞ and sup(ci+1−ci) →
0,

sup
1≤i≤r

∣∣∣∣
pi

pi

− 1

∣∣∣∣9 0

(assuming f is bounded below, so infi pi > 0).
The sparse asymptotic property is more natural for vector p obtained from censored

data since they may represent probability mass observed in a sequence of binnings. The
simplest relation is a sequence of different roundings (see Hall, 1982 for instance).

Since it is reasonably to assume that the mass changes smoothly as x increases, the
mass falling in one particular cell provides information about the probability of falling in
its neighbors. Therefore, smoothing makes sense since we assume that the probability
function is continuous. The improvement using smoothing is most evident when the
distribution is sparse in the sense that mass of Y falling each cell are small.

2.2 Kernel Density Estimates
In density estimation with complete data, one observes a sample X1, . . . , Xn from a dis-
tribution on the real line admitting a density f . The kernel estimator of f , introduced by
Rosenblatt (1956), is defined by

f̂(x) =
1

n

n∑
i=1

Kh(x−Xi), (3)
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where X1, . . . , Xn are the data, Kh(x) = 1
h
K

(
x
h

)
is a kernel function and h = h(n) is a

sequence of constants tending to zero as n →∞. Kernel function is defined to satisfy the
conditions

∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du = σ2

K > 0.

We shall consider both the kernel density estimation and the censored data problems.
Local polynomial smoothers for categorical data is suggested by Simonoff (1995) and

further studied by Aerts et al. (1997), Baek (1998), etc. For equispace design cj = j/K
with K be the number of cells, the local polynomial estimator p̂i is defined as the constant
term of the minimizer β̂0 of

r∑
j=1

[
p− β0 − · · · − βt

(
i

K
− j

K

)]2

Kh

(
i

K
− j

K

)
.

Asymptotic behavior of this estimate is derived by Aerts et al. (1997). The advantage of
p̂i over pi is that it is consistent under sparse asymptotics.

3 Modified Nadaraya-Watson Density Estimator
We shall consider the density estimation and the nonlinear regression problems related to
density estimation with censored data. We have already mention that for complete data,
the kernel estimator of f is defined by (3). In nonparametric regression with complete
data, one observes n pairs (X1, Z1), . . . , (Xn, Zn) obeying the model

Zi = m(Xi) + εi,

where the regression function m(x) is conditional expectation m(x) = E(Z|X = x), and
the random errors εi satisfy E(εi|X = x) = 0 and var(εi|X = x) = σ2 not necessarily
constant.

There are many different methods for estimating m(x). Here we focus on a estimator
known as Nadaraya-Watson kernel estimator (Nadaraya, 1964). The Nadaraya-Watson
kernel estimator for m(x) is defined by

m̂(x) =
1
n

∑n
i=1 Kh (x−Xi) Zi

f̂(x)
,

where f̂(x), K and h are as before. Note that this estimator is the local polynomial
estimate with t = 0 ∑

j

(Zj − β0)
2Kh(x−Xj).

When the data are interval censored, so that Xi ∈ Yi, i = 1, . . . , n, and only Yi =
[Li, Ri] is observed we define

p̂i =

∑r
j=1 Kh(ci − cj)pj∑r
j=1 Kh(ci − cj)

. (4)
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Therefore p̂i is the Nadaraya-Watson kernel regression estimator on the points (cj, pj),
j = 1, . . . , r, and p̂i is the solution of the natural weighted least squares problem, being
the minimizer β̂0 of

∑
j

(pj − β0)
2Kh(ci − cj).

Thus p̂i corresponds to locally approximating pi with a constant weighting values pj cor-
responding to intervals closer to (ci, ci+1) more heavily.

One of the main problems in density estimation is to find a good connection between
the length of the intervals and the size n. This aspect of density estimation is first dis-
cussed by Rosenblatt (1956). Since all estimators of the density function under regular
assumptions are bias, mean square error is a standard measure that comprising the bias
and variance of the estimator.

4 Variable Bandwidth and Interactive Choice

The performance of f̂(x) depends critically on the choice of h that controls the smooth-
ness of the estimates. There are various methods proposed for automatic selecting an
optimal h for uncensored data. Often the optimal value of h minimizes the mean square
error or some equivalent functional. Note, that any automatic choice of the smoothing
parameter should be view as a benchmark, and need to adjusted based on subjective im-
pression.

In this this study we apply variable bandwidth hi in (4) depending on the length of
cells (ci, ci+1). Adjusting parameter λ stretch all hi and gives numerous estimators. The
choice of the kernel is known not to have great effect on the practical performance of the
estimator. We use Normal kernel everywhere in our examples.

The R implementation of proposed estimators is in interactive graphic environment.
Changing options are done in an easy way, getting a rich graphical response. This is R
program which uses the tcltk package to provide simple functions for building of a control
panel for the graphics.

We remind that in the literature, authors were mainly concerned with the asymptotic
behavior when both the number of cells of the distribution and the number of observations
were converging to infinity, maintaining some sort of relation implying that the number of
cells in the support would not become to small with respect to the size of the sample. In
this paper we are mainly interested in the behavior when the sample is fixed and trying to
find estimators that have good performance. We have no objective quantification of what
good means, so we propose user to explore many different estimator to find appropriate
description of the data.

The numerical results included were obtained from KT-DigiCult-Bg project collec-
tion of metadata on mediaeval manuscripts studied for another purpose by Stoimenova,
Mateev, and Dobreva (2006).
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5 Application to Chronologcal Data
Temporal data is often subject to dilatation and translation effects. The most of manuscripts,
chronicles and other historical documents that we have today, related to ancient and me-
dieval times, were not dated exactly but dated as a likely periods. The two values “Not-
before” and “Notafter” are common in catalogue descriptions and specifies the interval
[L,R] for possible origin of the item and can be also extracted from other types of de-
scription (see Stoimenova et al., 2006).

In this section the methods considered in this paper are applied to a sequence of 807
intervals of “Notbefore” and “Notafter” dates of origin of mediaeval manuscripts . Figure
1 represents the data as line segments with length equal to the observed interval length
R−L and height approximately proportional to log(1/R−L). The exact dated documents
are less that 25% of the data and are depicted at the top level on the Figure 1.

Figure 1: Raw interval data for medieval manuscripts.

A very natural desire is in the informal investigation of the distribution of manuscripts
over time. Here density estimates can give valuable indication of such features as skew-
ness and multimodality in the data. Multimodality of an estimate is of interest in describ-
ing chronology data, since they specify possible historical upward and downward trend
periods of society development.

Figure 2: Maximum likelihood density estimate and Nadaraya-Watson estimate.
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The left histogram in Figure 2 is the maximum likelihood density estimate calculated
using (2) and pi = 1

n
mi. The set C of endpoints consists of 258 points. The right histogram

is a Nadaraya-Watson estimate calculated using (4). Here the variable bandwidths hi are
calculated by (Ri − Li)λ

2/24 with λ = 2.

Figure 3: Exploring different bandwidths.

Figure 3 illustrates the real-time evolution of the modified Nadaraya-Watson density
estimator. The computation begins with a given adjusting parameter λ (the stretch of the
bandwidths). Then the user can change it by a slider and explore different shapes of the
distribution. Here λ varies in [2, 40]. A snapshot of the estimators obtained by using the
interactive program is shown. The values of λ used was 2, 18, and 32. The top left picture
shows the control panel.

It is clear that using all endpoints C for visual representation of the estimator does
not give an easy interpretative estimator. Second interactive adjusting parameter choose
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a subset from C and the modified Nadaraya-Watson estimator is calculated using corre-
sponding intervals in (4).

Figure 4 illustrates different shapes of the distribution for different subsets of C. Slider
values varies in [2, 40]. A snapshot of the estimators obtained by using the interactive
program is shown. The number of intervals used was 42, 28, 18, and 9.

Figure 4: Exploring different endpoints subsets.
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