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Abstract: A simple, data-driven and computationally efficient procedure for
testing independence of high-dimensional random vectors is proposed. The
procedure is based on interpretation of testing goodness-of-fit as the clas-
sification problem, a special sequential partition procedure, elements of se-
quential testing, resampling and randomization. Monte Carlo simulations are
carried out to assess the performance of the procedure.
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1 Introduction
Let X := (X(1), . . . , X(N)) be a sample of the size N of i.i.d. observations of a random
vector X having distribution function (d.f.) F on Rd. We are interested in testing some
properties of F . Let FH and FA be two disjoint classes of d-dimensional distributions.
Consider a nonparametric hypothesis testing problem:

H : F ∈ FH versus A : F ∈ FA. (1)

Testing the independence of two components X1 ∈ Rd1 and X2 ∈ Rd2 , d1 + d2 = d, of
X = (X ′

1, X
′
2)
′ corresponds to

FH = {G : G(x) = G1(x1) ·G2(x2), x = (x′1, x
′
2)
′, x1 ∈ Rd1 , x2 ∈ Rd2}, (2)

where G1 and G2 denote the marginal distributions of G corresponding to the components
X1 and X2, respectively.

Our goal is to propose a relatively simple, data-driven and computationally efficient
procedure for testing problem (1), with key example (2), in case the dimension d of X
is large. The procedure is based on Vapnik and Chervonenkis (1981) idea of bounding a
discrepancy between empirical and true distribution by that of two independent empirical
distributions (Vapnik and Chervonenkis, 1981) and a well-known interpretation of testing
goodness-of-fit as the classification problem (see, e.g. Hastie, Tibshirani, and Friedman,
2001, pp. 447-449), a special sequential data partition procedure, randomization and
resampling (bootstrap), elements of sequential testing. Monte Carlo simulations are used
to assess the performance of the procedure.

Thus far, there is no generally accepted methodology for the multivariate nonpara-
metric hypothesis testing. Traditional approaches to multivariate nonparametric hypoth-
esis testing are based on empirical characteristic function Baringhaus and Henze (1988),
nonparametric distribution density estimators and smoothing Bowman and Foster (1993),
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Huang (1997), and classical univariate nonparametric statistics calculated for data pro-
jected onto the directions found via the projection pursuit L. Zhu, Fang, and Bhatti (1997),
Szekely and Rizzo (2005).

More advanced technique is based on Vapnik-Chervonenkis theory, the uniform func-
tional central limit theorem and inequalities for large deviation probabilities Vapnik (1998),
Bousquet, Boucheron, and Lugosi (2004). Recently, especially in applications, the Bayes
approach and Markov chain Monte Carlo methods are widely used (see, e.g. Verdinelli
and Wasserman, 1998 and references therein). Multidimensional copulas are a conve-
nient way to represent the statistical dependence between components of random vectors.
Therefore asymptotic behavior and power of independence testing criteria based on em-
pirical copula processes are extensively studied (see, e.g. Genest and Remillard, 2004).
However, these results are not directly applicable in our setting since the components X1

and X2 themselves have a large dimensionality.
To identify dependence-independence structure of high-dimensional data the indepen-

dent component analysis (ICA), a recent extension of principal component analysis and
projection, is employed. We refer to the monograph by Hyvärinen, Karhunen, and Oja
(2001). An efficient method for testing of (conditional) independence is essential here.
Related references to our approach are Szekely and Rizzo (2006), Polonik (1999), L.-
X. Zhu and Neuhaus (2000).

In Section 2 the procedure of nonparametric hypothesis testing is introduced. The
Monte Carlo simulation results and concluding remarks are presented in the last section.

2 Statistical Test

2.1 Test Statistic

Let F := FH

⋃FA. Suppose that the mapping Ψ : F → FH is such that FH = {G ∈
F : Ψ(G) = G}. Given F ∈ F , denote FH = Ψ(F ). For the independence hypothesis
FH = F1 · F2.

Consider a mixture model

F(p) := (1− p)FH + pF, p ∈ (0, 1),

of two populations ΩH and Ω with d.f. FH and F , respectively. Fix p and let Y = Y(p) ∼
F(p) denote a random vector (r.v.) with the mixture distribution F(p). Let π(Y ) denote the
posterior probability of the population Ω given Y , i.e.

π(Y ) := P
[
Ω|Y ]

=
pf(Y )

pf(Y ) + (1− p)fH(Y )
.

Here f and fH denote distribution densities (with respect to a σ-finite measure µ) of F
and FH , respectively.

Let us introduce a loss function `(F, F0) := E(π(Y )− p)2. It is clear that

`(F, FH) = 0 if and only if F = FH ,
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since the posterior probability π(Y ) is equal to the prior probability p if and only if F =
FH .

Let X(H) := (X(H)(1), . . . , X(H)(M)) be a sample of size M of i.i.d. random vectors
from ΩH independent of X. The joint sample is denoted by

Y := X || X(H) = (X(1), . . . , X(N), X(H)(1), . . . , X(H)(M))

and Z(t) = 1{t ≤ N}, t = 1, . . . , N + M , is the corresponding sequence of indicators
of the population Ω. Let P := {Pk, k = 0, 1, . . . , K}, P0 := {Rd}, Pk−1 ⊂ Pk, k =
1, . . . , K, be a sequence of partitions of Rd, possibly dependent on Y, and let {Ak, k =
0, 1, . . . , K} be the corresponding sequence of σ-algebras generated by these partitions.
Remark 1. A computationally efficient choice of P is the sequential dyadic coordi-
natewise partition minimizing at each step the mean square error with some restrictions
(bounds from below) on the number of the sample Y elements in the partition sets. An
alternative might be a partition into sets with the approximately equal number of the
sample Y elements.

In view of the definition of the loss function `(F, F0) a natural choice of the test
statistics would be χ2-type statistics

Tk := Ê(Zk − p)2, p :=
N

N + M
, (3)

where Ê stands for the expectation with respect to the empirical distribution F̂ of Y and

Zk := Ê[Z|Ak]

for some k ∈ {1, . . . , K}. The integer k can be treated as a “smoothing” parameter. It
characterizes how small is the partition. We also consider a weighted version of (3)

Tk := Ê
(
(Zk − p)2Wk

)
, (4)

where Wk is someAk-measurable weight function. The choice Wk = |S ⋂
Y|/(p(1−p))

on the partition set S ∈ Pk, yields the L2 distance between the observed and the expected
frequencies for the true hypothesis H .

Since the optimal value of k is unknown, we prefer the following definition of the test
statistic

T := max
k0≤k≤K

(Tk − ak)/bk, (5)

where k0 ≥ 1, ak and bk are centering and scaling parameters, respectively, to be specified.
Remark 2. Since the critical region of the criterion is of the form Cα := {T > cα}, where
cα is the critical value corresponding to the significance level α, it is natural to express Cα

as the sequential testing procedure:
Step 1: Set k = k0 − 1.
Step 2: k + 1 → k; if k > K, then STOP, otherwise calculate Tk.
Step 3: If Tk > ak + cαbk, reject H0 and STOP, otherwise go to Step 2.
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2.2 The Null Distribution of the Test Statistic

Let τ : I → I be a random permutation of I := {1, . . . , N + M} with equal prob-
abilities and Yτ denote the corresponding permutation of Y. For any statistic ξ, let
ξτ indicate that this statistic is calculated for the randomized sample Yτ . In particular,
Xτ = (Y τ (1), . . . , Y τ (N)).

Under the hypothesis H , Yτ = Y in distribution. Therefore one can deal with the
conditional distribution of the randomized test statistic T τ

k given the sample Y in order to
assess the properties of the initial test statistic Tk.

Fix the sample Y. For the partition Pk = {Sk,1, . . . , Sk,Jk
}, let

n(k) = (n1(k), . . . , nJk
(k)) = (|Sk,j

⋂
Y|, j = 1, . . . , Jk),

ν(k) = (ν1(k), . . . , νJk
(k)) = (|Sk,j

⋂
X|, j = 1, . . . , Jk), k = 1, . . . , K.

be the Jk-dimensional vectors of the observed in Pk frequencies of the elements of Y
and X, respectively. Then Zτ

k = ντ
j (k)/nj(k) on the partition set Sk,j . Since the discrete

random vector ντ (k) has the multivariate hypergeometric distribution with the parameters
N + M , n(k), and N , the conditional distribution of T τ , given Y and the partition P ,
depends on Y only through the ”sizes” of the partition sets, n(k), k = 1, . . . , K. This
provides a basis for determining ak and bk in (5), the analysis of asymptotic distribution
of the statistic T , and exponential inequalities for probabilities of large deviations of T .
In this study, however, we prefer to perform a simulation experiment.

3 Testing the Independence: A Simulation Experiment

To generate a sample from FH = F1 · F2 we apply bootstrap method and resample from
the distribution F̂H := Ψ(F̂ ) = F̂1 · F̂2 where F̂i denotes the empirical distribution of Fi,
i = 1, 2.

Let X be the repeated independent observations of X having standard multivariate
Student distribution with m degrees of freedom. Although the components of X are
uncorrelated they are dependent. Since X converges in distribution to a standard normal
random vector as m →∞, the dependence of the components vanishes for large m.

The centering and scaling parameters for the statistics Tk are calculated using approx-
imations by the normal distribution. In what follows it is assumed that M = N and
Jk ≡ k + 1. Thus, the standardized versions T̂k and T̂

(2)
k of χ2-type statistic (3) and L2

distance defined by (4) with the weight function Wk = |S ⋂
Y|, respectively, are given

by

T̂k :=
Tk − k√

2k
, Tk =

k∑
j=0

(nj(k)− 2νj(k))2

nj(k)
, (6)

and

T̂
(2)
k :=

T
(2)
k − 2N

2
√

N
, T

(2)
k =

k∑
j=0

(nj(k)− 2νj(k))2. (7)
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In the sequel, the test statistic T (5) based on (6) is considered. As compared with (7)
it places greater weights on the partition sets with smaller number of the sample elements.
Our experience suggests that k0 = 10 and K = (M + N)/5 is an appropriate choice for
the maximization interval [k0, K] of Tk. The critical value cα for the test is to be chosen
in such a way that a portion of samples for which the valid null hypothesis is rejected
does not exceed a given significance level α, say α = 0.05. Monte Carlo method is
used to find cα. Preliminary results of Monte Carlo simulations show that for a wide
range of dimensions, sample sizes and null distributions the behavior of the test statistics
for samples from the null distribution (control data) is quite similar (see Figure 1 and
Figure 2). In particular, we have also applied the procedure to testing goodness-of-fit for
a mixture of multivariate Gaussian distributions. The choice c0.05 = 2.7 is admissible for
most cases.

Figure 1: Maximum, minimum and two-side 0.9 confidence limits of Tk for a sample
from the Cauchy distribution (m = 1) and for the corresponding control data; d = 20,
d1 = d2 = 10, N = 1000.

Figure 2: Maximum, minimum and two-side 0.9 confidence limits of Tk for a sample
from the Student distribution with d.f. m = 3 and for the corresponding control data;
d = 10, d1 = 1, d2 = 9, N = 1000.

The computer simulations are performed for d ≤ 20, 200 ≤ N ≤ M ≤ 1000, and
m = 1, . . . , 7, 25, 100,∞. The dimensions d1 and d2 of the independent components X1

and X2, respectively, are chosen in two ways. In the first case d1 = d2 = d/2, and in the
second case d1 = 1, d2 = d − 1. The typical number of simulations R = 1000. Below
only results for the d = 2, 10 and N = M = 1000 are presented.

In the sequel, the test procedure based on T (5) is referred to as JRS test for brevity.
The performance of the procedure is compared with the classical criterion of Blum,
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Kiefer, and Rozenblatt (1961) (BKR test) based on Cramér-Von Mises-type test statis-
tics for testing independence:

ω2
BKR = N

∫

Rd1

∫

Rd2

(
F̂ (u, v)− F̂1(u)F̂2(v)

)2
dF̂ (u, v). (8)

Here F̂i is the empirical distribution function of the component Xi based on the sample
X (i = 1, 2).

The power of the JRS test is compared with that of the BKR test. To evaluate the power
functions of the independence tests Monte Carlo simulations with R = 1000 realizations
have been performed. The results are presented in Figures 3 and 4 and Table 1 for the
significance levels α = 0.02, 0.05, 0.1 and dimensions d = 2 and d = 10 with d1 =
d2 = d/2. The power of the JRS test slightly decreases for growing dimension d, and for
d = 10 it is close to the power of the BKR test for d = 2. The power of the BKR test for
d = 10 is very low.

The computational complexity of the BKR (respectively, JRS) test is O(d · N2) (re-
spectively, O

(
d2 · (N + M) log(N + M)

)
).

Figure 3: Power functions of the BKR test for the dimensions d = 2 (’BKR02d’) and
d = 10 (’BKR10d’) and the corresponding power functions for the JRS test (’JRS02d’
and ’JRS10d’); the significance level α = 0.02.

4 Concluding Remarks

Preliminary results of Monte Carlo simulations show that the procedure proposed is
promising. It outperforms the classical BKR test even for low-dimensional data. The
dependence of the critical value cα on the dimensionality d and the partition procedure is
weak and can be reduced by imposing appropriate additional requirements on it.
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Figure 4: Power functions of the BKR test for the dimensions d = 2 (’BKR02d’) and
d = 10 (’BKR10d’) and the corresponding power functions for the JRS test (’JRS02d’
and ’JRS10d’); the significance level α = 0.05 (left) and α = 0.1 (right).

Table 1: The power of the tests BKR and JRS.
Dimensions d1 = d2 = d/2 Degrees of freedom (m)

Dimension d = 2 2 3 4 5 6 7
BKR, α = 0.1 98.2 56.5 31.2 22.2 18.4 15.9
JRS, α = 0.1 87.8 59.5 40.3 26.0 23.0 17.6

BKR, α = 0.05 90.0 32.3 15.7 9.3 9.4 7.4
JRS, α = 0.05 83.0 44.6 25.8 17.8 12.3 8.7
BKR, α = 0.02 58.8 11.2 4.7 4.9 4.7 3.6
JRS, α = 0.02 67.8 31.6 15.6 11.7 4.3 5.0

Dimension d = 10 2 3 4 5 6 7
BKR, α = 0.1 11.6 12.4 9.9 9.8 8.9 9.8
JRS, α = 0.1 79.8 50.1 30.5 15.8 13.6 10.2

BKR, α = 0.05 7.4 5.9 4.9 4.9 4.3 4.8
JRS, α = 0.05 68.6 35.3 23.8 8.4 8.3 4.9
BKR, α = 0.02 3.3 2.5 2.1 2.0 2.5 1.7
JRS, α = 0.02 56.4 21.4 11.5 4.2 3.9 2.3
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