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Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed
that, under general assumptions, any two scatter matrices with the so called
independent components property can be used to estimate the unmixing ma-
trix for the independent component analysis (ICA). The method is a general-
ization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular
covariance matrix and a scatter matrix based on fourth moments. Different
choices of the two scatter matrices are compared in a simulation study. Based
on the study, we recommend always the use of two robust scatter matrices.
For possible asymmetric independent components, symmetrized versions of
the scatter matrix estimates should be used.
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1 Introduction
Let x1, x2, . . . , xn be a random sample from a p-variate distribution, and write

X =
(
x1 x2 . . . xn

)

for the p× n data matrix. We assume that X is generated by

X = AZ,

where Z = (z1z2 . . . zn) and z1, . . . , zn are independent and identically distributed latent
random vectors having independent components and A is a full-rank p × p mixing ma-
trix. This model is called the independent component (IC) model. The model is not well
defined in the sense that the model may also be written as

X = A∗Z∗

where
A∗ = AP ′D−1 and Z∗ = DPZ

for any diagonal matrix D (with nonzero diagonal elements) and for any permutation
matrix P . (A permutation matrix P is obtained from identity matrix Ip by permuting its
rows.) If Z has independent components, then also the components of Z∗ = DPZ are
independent. The problem in the so called independent component analysis (ICA) is to
find an unmixing matrix B such that Bxi has independent components. Based on the
discussion above, the solution is then not unique: If B is an unmixing matrix, then so is
DPB.

Most ICA algorithms then proceed as follows. (For a recent review of different ap-
proaches, see Hyvärinen, Karhunen, and Oja, 2001.)
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1. To simplify the problem it is first commonly assumed that the xi are whitened so
that E(xi) = 0 and cov(xi) = Ip. Then

X = UZ∗

with an orthogonal matrix U and Z∗ with (columns having) independent compo-
nents such that E(z∗i ) = 0 and cov(z∗i ) = Ip

2. For the whitened data X , find a p× r matrix U with orthonormal columns (r ≤ p)
which maximizes (or minimizes) a chosen criterion function, say g(U ′X). Mea-
sures of marginal nongaussianity (negentropy, kurtosis measures) g(u′X) and like-
lihood functions with different choices of marginal distributions are often used.

In the FastICA algorithm (Hyvärinen and Oja, 1997) for example in each iteration step
(for stage 2) the columns of U are updated one by one and then orthogonalized. The
criterion of the FastICA algorithm maximizes the negentropy which is approximated by

g(u′X) = [ave{h(u′xi)} − E[h(z)]]
2 (1)

with z ∼ N(0, 1) and with several possible choices for the function h(·).
A different solution to the ICA problem, called FOBI, was given by Cardoso (1989):

After whitening the data as above (stage 1), an orthogonal matrix U is found as the matrix
of eigenvectors of a kurtosis matrix (matrix of fourth moments; this will be discussed
later). The data transformation consists of a joint diagonalization of the regular covariance
matrix and of the scatter matrix based on fourth moments. FOBI was generalized in Oja et
al. (2006) (real data) and Ollila et al. (2007) (complex data) where any two scatter matrices
which have the so called independent components property can be used. An interesting
question then naturally arises: How should one choose these two scatter matrices in a
good or optimal way?

The paper is organized as follows. First, in Section 2 scatter matrices and their use
in the estimation of an unmixing matrix is reviewed. In Section 3 we describe the results
from simulation studies where new ICA estimates with several choices of scatter matrices
are compared to classical FastICA and FOBI estimates. Also an image analysis example
is given. The paper ends with some conclusions in Section 4.

2 Two Scatter Matrices and ICA
Let x be a p-variate random vector with cdf Fx. A functional T (F ) is a p-variate location
vector if it is affine equivariant in the sense that T (FAx+b) = AT (Fx) + b for all x, all
full-rank p× p matrices A and all p-variate vectors b. Using the same notation, a matrix-
valued p× p functional S(F ) is called a scatter matrix if it is positive definite, symmetric
and affine equivariant in such way that S(FAx+b) = AS(Fx)A

′ for all x, A and b. The
regular mean vector E(x) and covariance matrix Cov(x) serve as first examples. There
are numerous alternative techniques to construct location and scatter functionals, e.g. M-
functionals, S-functionals, etc. See e.g. Maronna, Martin, and Yohai (2006).

A scatter matrix S(F ) is said to have the independent components (IC-) property if
S(Fz) is a diagonal matrix for all z having independent components. The covariance
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matrix naturally has the IC-property. Other classical scatter functionals (M-functionals,
S-functionals, etc.) developed for elliptical distributions do not generally possess the IC-
property. However, if z has independent and symmetrically distributed components, then
S(Fz) is a diagonal matrix for all scatter functionals S. It is therefore possible to develop
a symmetrized version of a scatter matrix S(F ), say Ssym(F ), which has the IC-property;
just define

Ssym(Fx) = S(Fx1−x2),

where x1 and x2 are two independent copies of X . See Oja et al. (2006), Ollila et al.
(2007) and Sirkiä, Taskinen, and Oja (2007).

An alternative approach to the ICA using two scatter matrices with IC-property (Oja
et al., 2006, Ollila et al., 2007) has the following two steps:

1. The xi are whitened using S1 (instead of the covariance matrix) so that S1(Fxi
) =

Ip. Then
X = UZ∗

with an orthogonal matrix U and with Z∗ with (columns having) independent com-
ponents such that S1(z

∗
i ) = Ip.

2. For the whitened data X , find an orthogonal matrix U as the matrix of eigenvectors
of S2(Fxi

).

The resulting data transformation X → B̂X then jointly diagonalizes S1 and S2

(S1(B̂X) = Ip and S2(B̂X) = D) and the unmixing matrix B̂ solves

S−1
2 S1B

′ = B′D−1.

The matrix B̂ is the matrix of eigenvectors and the diagonal matrix D̂ is the matrix of
eigenvalues of S−1

2 S1. Note the similarity between our ICA procedure and the principal
component analysis (PCA): The direction u of the first eigenvector of S−1

2 S1 maximizes
the criterion function (u′S1u)/(u′S2u) which is a measure of kurtosis (ratio of two scale
measures) rather than a measure of dispersion (as in PCA) in the direction u, etc. The
independent components are then ordered according to this specific kurtosis measure.
The solution is unique if the eigenvalues of S−1

2 S1 are distinct.
Different choices of S1 and S2 naturally yield different estimates B̂. First, the re-

sulting independent components B̂X are rescaled by S1 and they are given in an order
determined by S2. Also the statistical properties of the estimates B̂ (convergence, limit-
ing distributions, efficiency, robustness) naturally depend on the choices of S1 and S2.

3 Performance Study

3.1 The Estimates B̂ to be Compared
We now study the behavior of the new estimates B̂ with different (robust and non-robust)
choices for S1 and S2. The classical FastICA procedures which use

h1(u
′xi) = log(cosh(u′xi)) or h2(u

′xi) = − exp(−u′xi)
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in equation (1) serve as a reference. These algorithms will be denoted as FastICA1 and as
FastICA2, respectively. According to Hyvärinen and Oja (2000), these choices are more
robust than the traditional negentropy estimate with criterion

g(u′X) =
1

12

[
ave

{
(u′xi)

3
}]2

+
1

48

[
ave

{
(u′xi)

4
}− 3

]2
.

The FOBI estimate by Cardoso (1989) assumes that the centering is done using the
mean vector, and

S1(Fx)=cov(x) and S2(Fx)=
1

p + 2
E

[
||S−1/2

1 (x− E(x))||2(x−E(x))(x−E(x))′
]
.

Then S2 is a scatter matrix based on the fourth moments, both S1 and S2 possess the
IC-property, and the independent components are ordered with respect to their classical
kurtosis measure. The FOBI estimate is member in the new class of estimates but highly
non-robust due to the choices of S1 and S2.

In our simulation study we consider scatter matrices which are (unsymmetrized and
symmetrized) M-functionals. Simultaneous M-functionals for location and scatter cor-
responding to chosen weight functions w1(r) and w2(r) are functionals which satisfy
implicit equations

T (Fx) = [E[w1(r)]]
−1E[w1(r)x] and S(Fx) = E[w2(r)xx′],

where r is the Mahalanobis distance between x and T (Fx), i.e.

r2 = (x− T (Fx))
′S(Fx)

−1(x− T (Fx)).

In this paper we consider Huber’s M-estimator (Maronna et al., 2006) with

w1(r) =

{
1 r ≤ c

c/r r > c
and w2(r) =

{
1/σ2 r ≤ c

c2/σ2r2 r > c.

The tuning constant c is chosen to satisfy q = Pr(χ2
p ≤ c2) and the scaling factor σ2

so that E[χ2
pw2(χ

2
p)] = p. Tyler’s shape matrix (Tyler, 1987) is often called the most

robust M-estimator. Tyler’s shape matrix and simultaneous spatial median estimate, see
(Hettmansperger and Randles, 2002), have the weight functions

w1(r) =
1

r
and w2(r) =

p

r2
.

Symmetrized versions of Huber’s estimate and Tyler’s estimate then possess the IC-
property. The symmetrized version of Tyler’s shape matrix is also know as Dümbgen’s
shape matrix (Dümbgen, 1998).
In this simulation study we compare

• FastICA1 and FastICA2 estimates

• E1: FOBI estimate

• E2: Estimate based on the covariance matrix and Tyler’s shape matrix

• E3: Estimate based on Tyler’s shape matrix and the covariance matrix
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• E4: Estimate based on Tyler’s shape matrix and Dümbgen’s shape matrix

• E5: Estimate based on Tyler’s shape matrix and Huber’s M-estimator (q = 0.9)

• E6: Estimate based on Dümbgen’s shape matrix and symmetrized Huber’s M-
estimator (q = 0.9).

All computations are done in R 2.4.0 (R Development Core Team, 2006); the package
fastICA (Marchini, Heaton, and Ripley, 2006) was used for the FastICA solutions and the
package ICS (Nordhausen, Oja, and Tyler, 2006) for the new method.

3.2 Simulation Designs
In this simulation study the independent components are all symmetrically distributed.
Therefore all choices of S1 and S2 are acceptable. The designs were as follows:

• Design I: The p = 4 independent components were generated from (i) a normal
distribution, (ii) a uniform distribution, (iii) a t3 distribution, and (iv) a Laplace
distribution, respectively (all distributions with unit variance.) The sample sizes
ranged from n = 50 to n = 2000. For each sample size, we had 300 repetitions.
For all samples, the elements of a mixing matrix A were generated from a N(0, 1)
distribution.

• Design II: As Design I but with outliers. The max(1, 0.01n) observations xi with
the largest L2 norms were multiplied by siui where si is +1 or−1 with probabilities
1/2 and ui has a Uniform(1, 5) distribution. This was supposed to partially destroy
the dependence structure.

3.3 Performance Index
Let A be the “true” mixing matrix in a simulation and B̂ an estimate of an unmixing
matrix. For any true unmixing matrix B, BA = PD with a diagonal matrix D and a
permutation matrix P . Write G = (gij) = B̂A. The performance index (Amari, Cichocki,
and Yang, 1996)

PI(G) =
1

2p(p− 1)

[
p∑

i=1

(
p∑

j=1

|gij|
maxh |gih| − 1

)
+

p∑
j=1

(
p∑

i=1

|gij|
maxh |ghj| − 1

)]

is then often used in comparisons. Now clearly PI(PG) = PI(G) but PI(DG) =
PI(G) is not necessarily true. Therefore, for a fair comparison, we standardize and re-
order the rows of B = (b1 . . . bp)

′ (B → PDB) such that

• ||bi|| = 1, i = 1, . . . , p

• max(bi1, . . . , bip) = max(|bi1|, . . . , |bip|), i = 1, . . . , p

• max(bi1, . . . , bip) ≥ max(bj1, . . . , bjp), 1 ≤ i ≤ j ≤ p.

For the comparison, also A−1 is standardized in a similar way.
The performance index PI(G) can take values in [0, 1]; the smaller is PI(B̂A) the

better is the estimate B̂.
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Figure 1: Results of the simulations. The top row shows the results for Design I and
the bottom row for Design II . The left column shows the mean of PI(B̂A) for 300
repetitions and the right column boxplots of PI(G) when n = 1000. The estimates based
on two scatter matrices besides FOBI are E2: covariance matrix & Tyler’s shape matrix,
E3: Tyler’s shape matrix & covariance matrix, E4: Tyler’s shape matrix & Dümbgen’s
shape matrix, E5: Tyler’s shape matrix & Huber’s M-estimator and E6: Dümbgen’s
shape matrix & Symmetrized Huber’s M-estimator.

3.4 Simulation Results

The results of the simulations are summarized in Figure 1 and show, that in the non-
contaminated case (Design I) the two versions of the fastICA algorithm dominate all
estimates based on two scatter matrices. Surprisingly, in this case, the FOBI estimate
seems to be the worst choice among all, whereas the best is estimate E6 which is based
on two symmetrized scatter matrices. The differences are minor, however. The results
change considerably when adding outliers (Design II). The procedures E4, E5 and E6
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based on two robust scatter matrices are least affected by the outliers. Estimate E6 using
robust symmetrized estimates presumably has a lowest breakdown point among the robust
estimates which may explain its slightly worse behavior here. The order in which the two
scatter matrices are used has no effect on the results; E2 and E3 have naturally the same
performance in the simulations.

3.5 An Example

To demonstrate the effect of outliers in a real example we will attempt to unmix three
mixed images. The original images which show a cat, a forest track and a sheep, are all
in a greyscale having each 130× 130 pixels and are part of the the R-package ICS. In the
analysis of image data, the pixels are thought to be individuals (n = 130× 130), and each
individual has three measurements corresponding to the three pictures (p = 3). The three
pictures are first mixed with a random 3× 3 matrix using the vector representation of the
pictures. Contamination is added to the first mixed image by blackening 60 pixels in the
right upper corner, which corresponds to less than 1 percent of outliers. The algorithms
E5 and FastICA2 are then applied to recover the original images. To retransform the
independent components to a reasonable greyscale, for all independent components, val-
ues smaller than the 2.5% quantile are replaced by the quantile and the same was done for
values larger than the the 97.5% quantile. The result is shown in Figure 2.

As can be seen, some images are negatives of the original images. This is due to the
arbitrary sign of the independent components. Nevertheless, it can be observed, that E5
performs better than FastICA2 even when the amount of contamination is so small. The
algorithm E5 recovers the two images with the sheep and the cat well and only in the
image of the forest track the head of the cat is slightly present. In the images recovered
by FastICA2 however none could be called well separated. The picture with the cat
has still the windows that belong to the picture with the sheep and in the picture of the
sheep and of the forest track the head of the cat is still visible. The good performance
of E5 is noteworthy here especially when considering that the images probably do not
have underlying symmetric distributions. Using two robust scatter matrices having the
IC-property like symmetrized scatter matrices might therefore even improve the result.
However the dimension of this example with 16900 observations and three variates is
currently too large to apply symmetrized scatter matrices since the resulting large number
of pairwise differences is a too huge computational task and hence not feasible.

4 Conclusion

Based on the simulation results, we recommend the use of two robust scatter matrices
in all cases. For possible asymmetric independent components, symmetrized versions
of the scatter matrix estimates should be used. Symmetrized scatter matrices are how-
ever based on U-statistics and computationally expensive; n = 1, 000 observations for
example means almost 500, 000 pairwise differences. However, as the image example
shows, ICA problems have easily several thousand observations and therefore this is not
feasible yet. To relieve the computational burden, the original estimate may then be re-
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Figure 2: ICA for three pictures. The first row shows the original pictures, the second row
the mixed pictures including some contamination. The third row used two robust scatter
matrices (E5) to recover the pictures and the fourth row the FastICA2 algorithm.
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placed by an estimate which is based on an incomplete U-statistic. Further investigation
is needed to examine the situations where the components are not symmetric. For asym-
metric independent components, FastICA algorithms for example are known to have a
poorer performance.
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