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Abstract: A polynomial structural measurement error model is considered.
A goodness-of-fit test is constructed based on the quasi-likelihood estimator,
which is asymptotically optimal in a large class of estimators. The power of
the test is discussed. The test for the linear model with unknown nuisance
parameters is studied in more detail. Similar test can be applied to much
more general situation, where the estimator is constructed based on a score
function.
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1 Introduction
Zhu, Song, and Cui (2003), Cheng and Kukush (2004), and Polekha (2006) constructed
lack-of-fit tests for a polynomial errors-in-variables model (EIVM). That was a score type
test using a weight function.

In this paper we propose a totally different idea. Our test is rather general, it is based
on an estimator generated by an unbiased score function and involves its partial deriva-
tives. The test is applied to a polynomial EIVM. We show how to disturb the initial model
in order to construct a local alternative, which makes it possible to measure the power of
the test. The test in a linear model is studied in more detail.

The paper is organized as follows. Section 2 presents the test in the most generality,
where the model of i.i.d. observations is not specified. Section 3 contains a local alter-
native in rather general nonlinear EIVM. In Section 4 we introduce the quasi-score-like
function for the polynomial EIVM, where all the nuisance parameters are unknown. In
Sections 5 and 6 we derive the test statistics for the linear and polynomial EIVM, and
Section 7 concludes. The main proofs are given in the Appendix.

2 General Test
Suppose that a family of d-dimensional distributions {Pt| t ∈ Θ} is given. Here Θ is a
convex compact set in Rd. By the i.i.d. observations z1, . . . , zn we want to construct a
goodness-of-fit test for the hypothesis

H0 : L(zi) ∈ {Pt| t ∈ Θ}.

Now, we suppose that H0 holds, with a true value θ. Let q(z, t) be a Borel measurable
score function valued in Rd. The estimator θ̂ of θ is defined as a measurable solution to
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the equation

Sn(t) = 0, Sn(t) :=
1

n

n∑
i=1

q(zi, t), t ∈ Θ. (1)

We need the following assumptions.
(i) θ is an interior point of Θ.

(ii) For each z ∈ Rd, the vector function q(z, ·) ∈ C3(U(Θ)), where U(Θ) is a neigh-
borhood of Θ.

(iii) Eθ ‖q(z, θ)‖2 < ∞, and for each t ∈ Θ, Et sups∈Θ ‖Dj
sq(z, s)‖ < ∞, j = 1, 2, 3.

(iv) The vector function S∞(t, s) := Es q(z, t) ∈ C2(Θ2), and S∞(t, s) = 0 iff t = s.
(v) The matrix V := ∂S∞(θ, θ)/∂t> is nonsingular.

Assumption (iii) implies that for each t ∈ Theta, Sn(t) → S∞(t, θ), as n → ∞
Pθ-a.s. The sequence {Sn(·) : n ≥ 1} is equicontinious Pθ-a.s. due to the boundedness
of EDtq(z, ·). Therefore Pθ-a.s.

Sn(·) → S∞(·, θ), as n →∞,

uniformly on Θ. Moreover, S∞(t, t) = 0 and V is nonsingular. Due to Kukush and
Schneeweiss (2000), the equation (1) eventually has a solution, i.e., ∃Ω0, P (Ω0) = 1,
∀ω ∈ Ω0 ∃N(ω) ∀n ≥ N(ω): equation (1) has a solution.

Now, we give a more rigorous definition of the estimator θ̂. If (1) has no solution
then we set θ̂ = θf , where θf is a fixed vector from Θ; otherwise we choose an arbitrary
solution in such a way that θ̂ be a measurable function of ω. This is possible due to
Pfanzagl (1969). Therefore, the equality

Sn(θ̂) = 0 (2)

holds eventually. Next, S∞(t, θ) = 0 iff t = θ, therefore the estimator θ̂ is strongly
consistent, see Kukush and Schneeweiss (2000) for more detail.

To construct a goodness-of-fit test, introduce the test vector

fn :=
√

nvec

(
∂Sn

∂t>
(θ̂)− ∂S∞

∂t>
(θ̂, θ̂)

)
.

Denote

A = [Id2 A2] , A2 = − ∂

∂t>
vec

(
∂

∂t>
S∞

)
(θ, θ) · V −1, (3)

where Ik stands for the unit matrix of size k, and in (3) k = d2.

Theorem 1. Under assumptions (i) to (v),

fn
d→ N (0, B), B = AΣA>,

where the matrix Σ is variance-covariance matrix of the vector

vec

(
∂

∂t>
q(z, θ)

)

q(z, θ)


 . (4)



A. Kukush and A. Malenko 73

Thus that a statistic
Tn := ‖B−1/2fn‖2

is asymptotically χ2-distributed with d2 degrees of freedom which equals the size of B.
If B is degenerate then we transform Tn as follows. Let 1 ≤ r ≤ rankB, and suppose

that we can choose exactly r components of the vector fn and form the r-dimensional
subvector f

(r)
n in such a way that B(r) be nonsingular matrix. Here B(r) is the asymptotic

covariance matrix of f
(r)
n . Then

T (r)
n = ‖B(r)−1/2

f (r)
n ‖2 d→ χ2

r.

Based on this convergence, a goodness-of-fit test is constructed.

3 Local Alternative in General Errors-in-Variables Model
Suppose that ξ and y are random variables and we know the first and second moments of
y given ξ up to unknown vector parameter β:

m∗(ξ, β) = E[y|ξ], v∗(ξ, β) = V[y|ξ]. (5)

The model (5) is called mean-variance model for the couple (ξ, y), see Carroll, Ruppert,
Stefanski, and Crainicianu (2006). The ξ is latent variable. Instead of ξ we observe a
surrogate random variable x, which is related to ξ by measurement equation

x = ξ + δ, (6)

where δ ∼ N (0, σ2
δ ) is independent of y and ξ. The variance σ2

δ is known and positive.
The latent variable ξ has a probability density ρ(ξ, α), which is known up to a vector

parameter α. We observe z = (x, y)> and want to estimate θ = (α>, β>)> ∈ Rd. This
is errors-in-variables model, see Kukush, Malenko, and Schneeweiss (2006) for more
details.

Here and hereafter we consider a quadratic-in-y unbiased score function only, which
is valued in Rd:

q(x, y, t) = a(x, t) + b(x, t)y + c(x, t)y2, x ∈ R, y ∈ R, t ∈ Θ.

Let H0 be the hypothesis that the observations (yi, xi), i = 1, . . . , n are i.i.d. copies of
this model. Suppose that the local alternative to H0 is

H1n : ỹi = yi + p(ξi)n
−1/2, i = 1, . . . , n. (7)

Here in (7) ỹi is the observed response variable, and (yi, xi, ξi) are i.i.d. copies of the
above mentioned model (5) and (6). We need the following relations to hold Pθ-a.s. as
n →∞:

1

n

n∑
i=1

(
sup
t∈Θ

‖Dj
t b(xi, t)‖ · |p(ξi)|+ sup

t∈Θ
‖Dj

t c(xi, t)‖ · |yip(ξi)|
)

= o(
√

n), (8)
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1

n

n∑
i=1

sup
t∈Θ

‖Dj
t c(xi, t)‖ · |p2(ξi)| = o(n); j = 0, 1. (9)

Denote

S̃n(t) =
1

n

n∑
i=1

q(xi, ỹi, t),

and let θ̃ be a measurable solution to the equation S̃n(t) = 0. Consider

f̃n :=
√

nvec

(
∂S̃n

∂t>
(θ̃)− ∂S∞

∂t>
(θ̃, θ̃)

)
.

Here consistently with (iv), S∞(t, s) = Es q(x, y, t), t, s ∈ Θ.

Theorem 2. Under assumptions (i) to (v), (8), and (9),

f̃n = fn + f̄ + op(1)
d→ N (f̄ , B), (10)

where

f̄ = vecEθ
∂2q

∂y∂t>
(x, y, θ)p(ξ)− ∂

∂t>
vec

∂S∞
∂t>

(θ, θ) · V −1 Eθ
∂q

∂y
(x, y, θ)p(ξ),

and matrix B is given in Theorem 1 with matrix A given in (3).

As a consequence of Theorem 2 we have that under H1n the statistic

T̃ (r)
n = ‖B(r)−1/2

f̃ (r)
n ‖2 d→ χ2

r(C), with C = ‖B(r)−1/2
f̄ (r)‖.

Here χ2
r(C) is the noncentral χ2

r distribution with noncentrality C, i.e.

χ2
r(C) ∼ (ζ1 + C)2 +

r∑
i=2

ζ2
i , ζi ∼ N (0, 1), ζi are independent.

The larger C the larger the power of the test.

4 Score Function in Polynomial Model
Consider the polynomial EIVM

{
yi = β0 + β1ξi + · · ·+ βkξ

k
i + εi,

xi = ξi + δi,
i = 1, . . . , n. (11)

Here ξ ∼ N (µ, σ2
ξ ), ε ∼ N (0, ϕ), δ ∼ N (0, σ2

δ ), all the variances are positive, and
ξi, εi, δi, i = 1, . . . , n are mutually independent. The parameter β := (β0, . . . , βk)

> is
unknown vector parameter. The nuisance parameters µ, and σ2 := σ2

ξ + σ2
δ , and ϕ are

unknown, while σ2
δ is assumed to be known. The total vector of unknown parameters is θ.



A. Kukush and A. Malenko 75

Denote m(x, t) = Et[y|x], v(x, t) = Et[(y −m(x, t))2|x]. To estimate θ we use the
quasi-score-like function q(x, t) with components

q(β)(x, y, t) = (y −m(x, t))mβ(x, t)v−1(x, t),
q(µ,σ)(x, y, t) = (x− µ; (x− µ)2 − σ2)>,
q(ϕ)(x, y, t) = (y −m(x, t))2 − v(x, t).

This function yields an optimal estimator for a large class of unbiased scores, see Kukush
et al. (2006) and (Kukush and Malenko, 2008).

For assumptions (8) and (9) to hold it is enough to have Eθ p2(ξ) < ∞.

5 Test in Linear Model

As a particular case consider the linear model, k = 1. Let θ = (β>, µ, σ, ϕ)>. We have
the following result: rankB = 4, for all possible values of the parameters. We are able
to choose a 4-dimensional vector f

(r)
n , r = 4, such that for all possible values of θ, the

corresponding matrix B(r) is nonsingular. For example, these are the first, second, third
and seventh components of fn. The choice is not unique.

We suppose that function p(ξ) is differentiable and

|p(ξ)| ≤ c1e
c2|ξ|

for some positive c1 and c2. Then Eθ p2(ξ) < ∞ and assumptions (8) and (9) hold.
Introduce the reliability ratio K = 1 − σ2

δσ
−2, and τ 2 = Kσ2

δ . Then under the local
alternative H1n the deviation vector f̄ from Theorem 2 is equal

f̄ =
Eθ p′(ξ)

v2
×

×vec




2τ2β1 2µτ2β1 (1−K)(v−2ϕ) 0 0
2µτ2β1 2τ2(µ2+σ2

ξ +τ2)β1 µ(1−K)(v−2ϕ) 2τ2(v−2ϕ)/σ 0
−(1−K)(v−2ϕ) µ(1−K)(v−2ϕ) −2ϕ(1−K)2β1 0 0

0 2τ2(v−2ϕ)/σ 0 −8ϕ(1−K)2β1) 0
0 −2τ2v2 0 −4(1−K)2σv2β1 0




.

Let Eθ p′(ξ) 6= 0. For r = 4 we select a subvector f
(r)
n in such a way that the correspond-

ing B(r) is nonsingular, and then the corresponding deviation vector f̄ (r) will not vanish.
We will have

T (r)
n = ‖B(r)−1/2

f (r)
n ‖2 d→ χ2

r(‖B(r)−1/2
f̄ (r)‖).

We mention that the proposed test is very sensitive: even for a linear disturbance
function p(ξ), the noncentrality parameter in the limit distribution of the T

(r)
n will not be

equal zero.
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6 Test in Polynomial Model
In the polynomial model of order k ≥ 2, it is not easy to compute rankB, because the
matrix Σ is always degenerate. Therefore we propose a modified test vector

fh,n :=
√

n

(
∂Sn

∂t>
(θ̂)− ∂S∞

∂t>
(θ̂, θ̂)

)
h,

where h is fixed nonzero vector from Rd. Then

fh,n
d→ N (0, Bh), Bh = AhΣhA

>
h ,

where

Ah = [Id Ah,2], Ah,2 = −∂2(h>S∞)

∂t∂t>
(θ, θ) · V −1,

and Σh is variance-covariance matrix for the vector [∂h>q(θ)/∂t>; q>]>.
For known nuisance parameters (i.e. when θ = β) under the condition that the true

βk 6= 0, for any h ∈ Rk+1 such that hk 6= 0 we have that Σh is nonsingular. This implies
that Bh is nonsingular as well and

Th,n := ‖B−1/2
h fh,n‖2 d→ χ2

k+1, as n →∞.

Under the local alternative H1n given in (7), the modified test vector has an expansion
similar to (10),

f̃h,n = fh,n + f̄h + op(1), as n →∞,

where the modified deviation equals

f̄h = Eθ p(ξ)
∂2(h>q)

∂y∂t>
(x, y, θ) + Ah,2 · Eθ p(ξ)

∂q

∂y
(x, y, θ).

Therefore, under H1n we have

T̃h,n := ‖B−1/2
h f̃h,n‖2 d→ χ2

k+1(‖B−1/2
h f̄h‖).

The larger ‖B−1/2
h f̄h‖ the larger the power of the test.

7 Conclusion
We constructed a very general goodness-of-fit test, which works for any unspecified
model of observations, where the estimator is generated by an unbiased score function.
In errors-in-variables setup, we proposed a local alternative for the test. In a forthcoming
paper we will compare the power of this test and other tests known in the literature.
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Appendix

Proof of Theorem 1
1◦. First prove the asymptotic normality of θ̂.

Denote ∆θ = θ̂ − θ. From (2) and the consistency of θ̂ we have that eventually

Sn(θ) +
∂Sn

∂t>
(θ)∆θ + rn = 0, (12)

where

‖rn‖ ≤ 1

2
sup
t∈Θ

∥∥∥∥
∂2Sn

∂t>∂t
(t)

∥∥∥∥ · ‖∆θ‖2.

But due to (iii), Eθ sup
t∈Θ

‖D2
t q(z, t)‖ < ∞. Then Pθ-a.s.

sup
t∈Θ

∥∥∥∥
∂2Sn

∂t>∂t
(t)

∥∥∥∥ ≤
1

n

n∑
i=1

sup
t∈Θ

∥∥∥∥
∂2q

∂t>∂t
(z, t)

∥∥∥∥ → Eθ sup
t∈Θ

∥∥∥∥
∂2q

∂t>∂t
(z, t)

∥∥∥∥ < ∞,

as n →∞, and Pθ-a.s.

sup
n≥1

sup
t∈Θ

∥∥∥∥
∂2Sn

∂t>∂t
(t)

∥∥∥∥ < ∞,
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implying
‖rn‖ = O(‖∆θ‖2).

From (12) we have
∂Sn

∂t>
(θ)
√

n∆θ = −√nSn(θ)−√nrn,

√
n∆θ = −V −1 · √nSn(θ) + op(1). (13)

By (iii) and (v)

√
nSn(θ)

d→ N(0, Σ1), Σ1 := Eθ q(z, θ)q>(z, θ).

Therefore, we get √
n∆θ

d→ N (0, V −1Σ1V
−>).

2◦. The next step is to prove the asymptotic normality of fn. Consider the (i, j)-th
element of the matrix, which forms fn:

sij =
∂Sni

∂tj
(θ̂)− ∂S∞i

∂tj
(θ̂, θ̂) =

∂Sni

∂tj
(θ) +

∂2Sni

∂tj∂t
(θ)∆θ − ∂S∞i

∂tj
(θ, θ)− Lij∆θ + O(‖∆θ‖2),

where

Lij =
∂

∂tj

(
∂

∂t
+

∂

∂s

)
S∞i(t, s)

∣∣∣∣
(θ,θ)

= 0,

due to the condition S∞(t, t) = 0. Here assumptions (iii) and (iv) were used together with
the same reasoning as in the first part of the proof. Applying (13) we have

√
nsij =

√
n

(
∂Sni

∂tj
(θ)− ∂S∞i

∂tj
(θ, θ)

)
+

∂2Sni

∂tj∂t
(θ)
√

n∆θ + op(1) =

√
n

(
∂Sni

∂tj
(θ)− ∂S∞i

∂tj
(θ, θ)

)
− ∂2S∞i

∂tj∂t
(θ, θ)V −1

√
nSn(θ) + op(1) =

[
1 − ∂2S∞i

∂tj∂t
(θ, θ)V −1

]
· √n

[
∂Sni

∂tj
(θ)− ∂S∞i

∂tj
(θ, θ) S>n (θ)

]>
+ op(1).

Therefore,
fn = A · gn + op(1),

where A is defined in (3) and the sequence

gn :=
√

n


vec

(
∂

∂t>
Sn(θ)− ∂

∂t>
S∞(θ, θ)

)

Sn(θ)




satisfies the Central Limit Theorem. gn
d→ N (0, Σ) with the matrix Σ given in (4). We

have fn
d→ N (0, AΣA>).
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Proof of Theorem 2

Consider the difference between S̃n(t) and Sn(t). Assumptions (8) and (9) with j = 0
imply that

sup
t∈Θ

‖S̃n(t)− Sn(t)‖ ≤

≤ 1

n
√

n

n∑
i=1

|p(ξi)| sup
t∈Θ

∥∥∥∥
∂q

∂y
(xi, yi, t)

∥∥∥∥ +
1

n2

n∑
i=1

|p2(ξi)| sup
t∈Θ

∥∥∥∥
∂2q

∂y2
(xi, yi, t)

∥∥∥∥ → 0,

as n → ∞ Pθ-a.s. Then S̃n(t) → S∞(t, θ) uniformly in t ∈ Θ Pθ-a.s. (here S∞ is the
same as in assumption (iv)). Then eventually a solution to the equation S̃n(t) = 0 exists
and the equality S̃n(θ̃) = 0 holds implying θ̃ → θ as n →∞ Pθ-a.s. We have a.s.

S̃n(θ) +
∂S̃n

∂t>
(θ)(θ̃ − θ) = O(‖θ̃ − θ‖2),

√
n(θ̃ − θ) = −

(
∂S̃n

∂t>
(θ)

)−1√
nS̃n(θ) + op(1).

Under assumptions (iii), (iv), (8), and (9) with j = 1,

∂S̃n

∂t>
(θ) → ∂S∞

∂t>
(θ, θ) = V,

√
nS̃n(t) =

√
nSn(t) + Eθ

∂q

∂y
(x, y, θ)p(ξ) + op(1).

Thus √
n(θ̃ − θ) = −V −1

√
nS̃n(θ) + op(1),

and

√
n(θ̃ − θ)

d→ N (λ, Σ1), λ = −V −1 Eθ
∂q

∂y
(x, y, θ)p(ξ), Σ1 := Eθ q(z, θ)q>(z, θ).

Investigating the f̃n we repeat the reasoning from the proof of Theorem 1. Denote by s̃ij

the (i, j)-th element of the matrix, which forms f̃n. Then

s̃ij =
√

n

(
∂S̃ni

∂tj
(θ)− ∂S∞i

∂tj
(θ, θ)

)
+

∂2S̃ni

∂tj∂t
(θ)
√

n(θ̃ − θ) + op(1) =

√
n

(
∂S̃ni

∂tj
(θ)− ∂S∞i

∂tj
(θ, θ)

)
− ∂2S∞i

∂tj∂t
(θ, θ)V −1

√
nS̃n(θ) + op(1) =

sij + Eθ
∂2qi

∂y∂tj
(x, y, θ)p(ξ) +

∂2S∞i

∂tj∂t
(θ, θ) · λ + op(1).

Taking vec operation we obtain the expansion (10) and then the statement of the theorem.
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