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Abstract: The paper is devoted to the investigation of bilinear stochastic time
series model BL(p, 0, 1, 1). The linear autoregressive forecasting statistic is
considered under the mean-square risk criterion; its robustness under bilinear
distortions is evaluated.
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1 Introduction

There is a growing interest in the investigation of nonlinear time series models that is
caused by nonlinearity of real processes. This paper contributes to the development of the
particular nonlinear time series model analysis, the bilinear time series model.

Bilinear time series model was proposed by Granger and Andersen in 1978 (Fan and
Yao, 2003; Granger and Andersen, 1978) as an alternative to the linear time series model.
The model gives a possibility to describe “sufficiently large stochastic outbursts” that of-
ten appear in applications to seismological and financial data analysis. Since the time
of introduction, quite a lot of researches has been carried out in the investigation of the
bilinear model; stationarity, casuality, invertibility conditions have been found, moreover,
parameter estimation techniques, tests for bilinearity and other solutions have been pre-
sented and studied (Granger and Andersen, 1978; Rao and Gabr, 1984; Terdik, 1999).

This paper points at the problem of the bilinear time series BL(p,0,1,1) prediction.
The forecasting statistic of the well-known linear autoregressive model AR(p) is applied;
its robustness under bilinear distortions is studied.

The paper is organized according to the following structure. In Section 2 the bilinear
model BL(p,0,1,1) and the corresponding linear model AR(p) are defined and some their
properties are listed. Further, the linear forecasting for bilinear time series is considered
in Section 3, and its robustness is studied in Section 4. Section 5 presents the results of
numerical experiments.

2 Models BL(p, 0, 1, 1), AR(p) and their Properties

The bilinear model BL(p, 0, 1, 1) is a simple nonlinear modification of the well-known and
intensively used linear autoregressive model AR(p) of the order p. Therefore, it is quite
reasonable to consider these models together and apply some earlier obtained results of
linear model AR(p) to nonlinear model BL(p, 0, 1, 1).
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The time series {x0
t}t∈Z is said to correspond with autoregressive model AR(p) if it

satisfies the linear stochastic difference equation

x0
t =

p∑
j=1

αjx
0
t−j + ut, t ∈ Z, (1)

where Z = {. . . ,−1, 0, +1, . . . } is the set of integers, {ut}t∈Z are independent identically
distributed by N(0, σ2), {αj}p

j=1 are autoregressive coefficients.
Respectively, the time series {xt}t∈Z is said to correspond with bilinear model BL(p,

0, 1, 1) if it satisfies the bilinear stochastic difference equation

xt =

p∑
j=1

αjxt−j + βxt−1ut−1 + ut, t ∈ Z, (2)

where β is the bilinearity coefficient. Note, if β = 0, then the models (1) and (2) are the
same.

Further only stationary models AR(p) (1) and BL(p, 0, 1, 1) (2) will be considered.
The conditions (Anderson, 1994; Rao and Gabr, 1984)

ρ(A) < 1 and ρ(A⊗ A + σ2B ⊗B) < 1

provide their stationarity respectively. Here the matrices A and B are

A =




−α1 −α2 . . . −αp−1 −αp

1 0 . . . 0 0
0 1 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 1 0



∈ Rp, B =




1 0 . . . 0 0
0 0 . . . 0 0
0 0 . . . 0 0
. . . . . . . . . . . . . . .
0 0 . . . 0 0



∈ Rp

and ⊗ means the Kronecker product.
Note that the model (1) defines zero-mean time series, while the model (2) has the

mean equal to

E{xt} =
βσ2

1−∑p
j=1 αj

.

Let’s define the second order moments of AR(p) and BL(p, 0, 1, 1) time series respec-
tively:

c0(s) ::= E{x0
t x

0
t−s}, c(s) ::= E{xtxt−s}, s ∈ Z.

It is known (Anderson, 1994) that the moments of the AR(p) process c0(s), s ∈ Z, satisfy
the Yule-Walker system of equations. The second order moments of bilinear time series
can be found as a solution of the Yule-Walker-like linear system of equations as well.

Introduce the matrix notation:

W = W1 + Ip+1 + W2 ∈ R(p+1)×(p+1),

W1 =




0 −α1 −α2 ... −αp

0 −α2 −α3 ... 0
... ... ... ... ...
0 −αp 0 ... 0
0 0 0 ... 0




, W2 =




0 0 ... 0 0
−α1 0 ... 0 0
... ... ... ... ...

−αp−1 −αp−2 ... 0 0
−αp −αp−1 ... −α1 0




,
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i1 = (1, 0, . . . , 0) ∈ Rp+1 is the first column of the identity matrix Ip+1 ∈ R(p+1)×(p+1),

11p+1 = (1)p+1
i,j=1 ∈ R(p+1)×(p+1), c = (c(0), c(1), . . . , c(p))′ ∈ Rp+1,

f =

(
1 +

1 + α1

1−∑p
j=1 αj

,
2

1−∑p
j=1 αj

,
1

1−∑p
j=1 αj

, . . . ,
1

1−∑p
j=1 αj

)′

∈ Rp+1.

Lemma 1. The second order moments of the stationary bilinear time series BL(p, 0, 1, 1)
satisfy the following equations:

(1− β2σ2)c(0) =

p∑
j=1

αjc(j) + σ2 + β2σ4 +
β2σ4(1 + α1)

1−∑p
j=1 αj

,

c(1) =

p∑
j=1

αjc(j−1)+
2β2σ4

1−∑p
j=1 αj

, c(s) =

p∑
j=1

αjc(j−s)+
β2σ4

1−∑p
j=1 αj

, s = 2, . . . , p,

or in the matrix form:

(W − β2σ2i1i
′
1) · c = σ2i1 + β2σ4f ;

if |W | 6= 0 and β2σ2W−1(1, 1) 6= 1, then

c = W−1(Ip+1 − β2σ2i1i
′
1W

−1)−1(σ2i1 + β2σ4f).

Proof. Calculate mathematical expectation of both sides of the difference equation (2)
multiplied by xt−s:

E{xtxt−s} =

p∑
j=1

αjE{xt−jxt−s}+βE{xt−1xt−sut−1}+E{xt−sut}, s = 0, . . . , p. (3)

In particular, when s = 0,

E{x2
t} =

p∑
j=1

αjE{xt−jxt}+ βE{xt−1xtut−1}+ E{xtut}.

Because of the independence property for {ut}t∈Z , E{xt−sut} = 0, s = 1, . . . , p. More-
over, E{xtut} = σ2.

It is easily obtained that

E{xt−kxtut} =
βσ4

1−∑p
j=1 αj

, k = 1, . . . , p, E{x2
t ut} =

2βσ4

1−∑p
j=1 αj

.

The proof of the last statement on E{x2
t ut} is based on the equation

E{x2
t u

2
t} = σ2E{x2

t}+ 2σ4.

By substituting the values E{xt−kxtut}, k = 0, . . . , p, into (3), we obtain the statement of
the lemma at first in scalar form and then represent it in matrix form.

Together with exact values of the second order moments, the asymptotic expansion at
β → 0 is useful.
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Corollary 1. Under the assumptions of Lemma 1, if |W | 6= 0 and β → 0, then

c = σ2W−1i1 + β2σ4(W−1f + W−1(1, 1)W−1i1) + o(β2) 11p+1;

in particular,

c(0) = σ2W−1(1, 1) + β2σ4(i′1W
−1f + (W−1(1, 1))2) + o(β2).

For further analysis, it is more convenient to use the matrix form of the models AR(p)
and BL(p, 0, 1, 1). The following lemma gives this representation.

Introduce the notation:

S1 =




1 −α1 . . . −αp−1

0 1 . . . −αp−2

. . . . . . . . . . . .
0 0 . . . 1


 ∈ Rp×p, S2 =




αp 0 . . . 0
αp−1 αp . . . 0
. . . . . . . . . . . .
α1 α2 . . . αp


 ∈ Rp×p,

Xm
n = (xm, . . . , xn)′ ∈ Rm−n+1, X0m

n = (x0
m, . . . , x0

n)′ ∈ Rm−n+1,

Um
n = (um, . . . , un)′ ∈ Rm−n+1, < XU >m

n = (xmum, . . . , xnun)′ ∈ Rm−n+1.

Lemma 2. The stochastic difference equations (1) and (2) can be represented in the ma-
trix form:

S1X
0T+p
T+1 = S2X

0T
T−p+1 + UT+p

T+1 , (4)

S1X
T+p
T+1 = S2X

T
T−p+1 + β < XU >T+p−1

T +UT+p
T+1 . (5)

Proof. The equations (4) and (5) follow from the difference equations (1), (2) and the
notations that has been introduced above.

3 Autoregressive Forecasting of Bilinear Time Series
The significant and complicated problem is to find a forecasting statistic x̂T+τ as an es-
timator of the future value xT+τ of the time series optimal w.r.t. some criterion by the
observed history X = {x1, . . . , xT} of length T . Here τ , τ = 1, . . . , p, is a horizon of
prediction. As an optimality criterion we will use a set of scalar risks

r(τ) = E{(x̂T+τ − xT+τ )
2} ≥ 0

and the (p× p)-matrix risk

R = (E{(x̂T+τ1 − xT+τ1)(x̂T+τ2 − xT+τ2)})p
τ1,τ2=1 ∈ Rp×p.

For the time series corresponded to the model AR(p) (1) the problem of forecasting
w.r.t. the mean-square risk optimality criterion is solved. The forecasted values, which
provide minimum of defined earlier risks, can be found from the following system of
equations (Anderson, 1994):

S1X̂
0T+p

T+1 = S2X
0T
T−p+1, (6)

where X̂0T+p

T+1 = (x̂T+1, . . . , x̂T+p)
′ is the p-vector of forecasted values, X0T

T−p+1 =
(xT−p+1, . . . , xT )′ is the p-vector of the last p observed values, matrices S1, S2 ∈ Rp×p

have been defined earlier.
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Theorem 1. The forecasting statistic defined by (6) for the stationary model AR(p) (1)
or (4) is unbiased; moreover, its matrix and scalar risks are defined by the following
formulas (Anderson, 1994):

R = σ2(S ′1S1)
−1,

r(τ) = σ2

τ∑
i=1

(
S−1

1 (1, i)
)2

, τ = 1, . . . , p.

Let us assume a low level of bilinear distortions in the model BL(p, 0, 1, 1) that means
the coefficient β to be sufficiently small. So it is reasonable to use the autoregressive
forecasting statistic (6) to predict future values of bilinear time series. Let us define the
forecasting statistic from the equation equivalent to (6):

S1X̂
T+p
T+1 = S2X

T
T−p+1. (7)

Theorem 2. The forecasting statistic (7) for the stationary model BL(p, 0, 1, 1) (2) or (5)
is biased:

E
{

XT+p
T+1 − X̂T+p

T+1

}
= βσ2S−1

1 (1, 1, . . . , 1)′ 6= (0, 0, . . . , 0)′ ∈ Rp.

Proof. From (5) and (7)

XT+p
T+1 − X̂T+p

T+1 = βS−1
1 < XU >T+p−1

T +S−1
1 UT+p

T+1 .

Therefore, after calculation of mathematical expectation we obtain that the forecasting
statistic (7) is biased.

However, it needs to be noted that for the low level of bilinear distortions β the fore-
casting statistic (7) tends to be unbiased.

Theorem 3. For the stationary model BL(p, 0, 1, 1) defined by (2) or (5) the autoregres-
sive forecasting statistic (7) has the following matrix mean-square risk:

R = σ2(S1)
−1(S−1

1 )′ + β2σ2c(0)(S1)
−1(S−1

1 )′ + β2σ4(S1)
−1 ( 11p×p + Ip) (S−1

1 )′

+
2β2σ4

1−∑p
j=1 αj

(S1)
−1

(
I−1,0,1
p − Ip

)
(S−1

1 )′, (8)

where I−1,0,1
p ∈ Rp×p is the matrix with identities only under and above diagonal, while

other elements are zeros.

Proof. From (5) and (7)

S1(X
T+p
T+1 − X̂T+p

T+1 ) = β < XU >T+p−1
T +UT+p

T+1 .

Therefore,
S1E{(X̂T+p

T+1 −XT+p
T+1 )(X̂T+p

T+1 −XT+p
T+1 )′}S ′1 = S1RS ′1

= β2E{< XU >T+p−1
T (< XU >T+p−1

T )′}+ βE{< XU >T+p−1
T (UT+p

T+1 )′}
+βE{UT+p

T+1 (< XU >T+p−1
T )′}+ E{UT+p

T+1 (UT+p
T+1 )′}.

By calculating the mathematical expectation of every element in the right part of this
expression and relying on Lemma 1, due to |S1| 6= 0, we get the required statement of the
theorem.
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Corollary 2. Under the conditions of Theorem 3, the scalar risks of the forecasting statis-
tic (7) are

r(τ) = σ2

τ∑
j=1

(S−1
1 (1, j))2 + β2σ2c(0)

τ∑
j=1

(S−1
1 (1, j))2 + β2σ4

( τ∑
j=1

(S−1
1 (1, j))2+

+

( τ∑
j=1

S−1
1 (1, j)

)2

+
4

1−∑p
j=1 αj

τ−1∑
j=1

S−1
1 (1, j)S−1

1 (1, j + 1)

)
, τ = 1, . . . , p. (9)

Proof. According to the definition, the scalar risks are the diagonal elements of the matrix
risk: r(τ) = R(p − τ + 1, p − τ + 1), τ = 1, . . . , p. Because of the triangularity of S−1

1

as well as S1, we obtain the formula (9).

Corollary 3. Under the conditions of Theorem 1, if |W | 6= 0, then the matrix and the
scalar mean-square risks satisfy the following asymptotic expansions at β → 0:

R = σ2S−1
1 (S−1

1 )′ + β2σ4

(
W−1(1, 1)S−1

1 (S−1
1 )′ + S−1

1

(
11p×p + Ip

)
(S−1

1 )′

+
2

1−∑p
j=1 αj

S−1
1

(
I−1,0,1
p − Ip

)
(S−1

1 )′
)

+ o(β2) 11p×p, (10)

r(τ) = σ2

τ∑
j=1

(S−1
1 (1, j))2 + β2σ4

(
(W−1(1, 1) + 1)

τ∑
j=1

(S−1
1 (1, j))2 +

( τ∑
j=1

S−1
1 (1, j)

)2

+
4

1−∑p
j=1 αj

τ−1∑
j=1

S−1
1 (1, j)S−1

1 (1, j + 1)

)
+ o(β2), τ = 1, . . . , p. (11)

Proof. The proof is based on the expansion of the matrix (8) and the scalar (11) risks with
neglected remainders of the expansions.

4 Robustness of the Autoregressive Forecasting Statistic
under Bilinear Distortions

The autoregressive forecasting statistic (7) applied to bilinear time series prediction ig-
nores special structural features caused by the bilinearity. Therefore, we must be cautious
while using this statistic and believe in the low level of bilinear distortions. Consider the
problem of robustness and adequate use of the autoregressive forecasting statistic.

Let us define some functionals of the forecast robustness. Assume that the bilinearity
level β ∈ [−β+, β+], where β+ > 0 is a maximum absolute level of distortions.

The instability coefficient (Kharin, 1996) is said to be the relative increment of the
guaranteed upper risk r+(τ) to the risk of the nondistorted times series r0(τ) = r(τ)|β=0:

κ(τ) = (r+(τ)− r0(τ))/r0(τ), r+(τ) = sup
β∈[−β+,β+]

r(τ).
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The δ-critical distortion level (Kharin, 1996) is said to be the maximal admissible
bilinearity level with the instability coefficient not greater than the given δ > 0:

β+(δ, τ) = sup
κ(τ)≤δ

β+.

The less instability coefficient κ(τ) and the greater δ-critical distortion level β+(δ, τ)
the autoregressive statistic is more robust under the bilinear distortions.

Theorem 4. For the stationary bilinear model BL(p, 0, 1, 1) (2), if |W | 6= 0, then the
instability coefficient and the δ-critical distortion level have the following asymptotic rep-
resentations at β → 0:

κ(τ) =
β2

+σ2

∑τ
j=1(S

−1
1 (1, j))2

(
(W−1(1, 1) + 1)

τ∑
j=1

(S−1
1 (1, j))2 +

( τ∑
j=1

S−1
1 (1, j)

)2

+
4

1−∑p
j=1 αj

τ−1∑
j=1

S−1
1 (1, j)S−1

1 (1, j + 1)

)
+ o(β2

+),

β+(δ, τ) ≈ δ1/2σ−1

(∑τ
j=1(S

−1
1 (1, j))2

)−1/2

(
(W−1(1, 1) + 1)

τ∑
j=1

(S−1
1 (1, j))2 +

( τ∑
j=1

S−1
1 (1, j)

)2

+
4

1−∑p
j=1 αj

τ−1∑
j=1

S−1
1 (1, j)S−1

1 (1, j + 1)

)−1/2

.

Proof. The theorem is proved by substitution asymptotic expansions of the scalar risks
obtained in Corollary 3 into the definitions of the instability coefficient and the δ-critical
distortion level.

Thus, for the given δ > 0 we can evaluate the bilinearity level β+(δ, τ) for which
the autoregressive forecasting statistic (7) can be used without significant increase in the
mean-square risk.

5 Numerical Results
Monte Carlo numerical simulations were organized to illustrate the obtained theoretical
formulas. The concrete model was considered:

xt = −0.5xt−1 − 0.5xt−2 + 0.1xt−3 + 0.2xt−4 − 0.2xt−5 − 0.1xt−6

−0.2xt−7 + 0.2xt−8 + 0.1xt−9 − 0.1xt−10 + βxt−1ut−1 + ut,

where {ut}t∈Z are independent identically distributed as N(0, 1).
The scalar risks of the autoregressive forecasting statistic for the bilinear model were

estimated, as well as the limits of 95% confidence intervals. The dependence on the bilin-
earity level and on the forecast horizon are shown on Figures 1 and 2 respectively. Figure
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Figure 1: The exact risk and its point and 95%-interval estimates at τ = 1.5

Figure 2: The exact risk and its point and 95%-interval estimates at β = 0, 0.2, 0.3

3 illustrates the accuracy of asymptotic approximation. Here the solid lines represent the
exact or asymptotic risks computed by the formula (9) or (11), the dashed lines are the
limits of confidence intervals and the dots are the Monte Carlo estimates of risks.

It is obvious from the Figures 1, 2 that the risk starts to increase very rapidly after β
comes over the δ-critical level of distortions β+(δ, τ) computed by Theorem 4 (Table 1).
Figure 3 shows that for small bilinearity level β the main terms of asymptotic expansion
provide us with quite accurate approximation of exact risks.
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Figure 3: The asymptotic risk and the point estimates of exact risk at τ = 1, 2, 5

Table 1: The δ-critical level of distortions
τ 1 2 5

δ = 0.1 0.141 0.171 0.163
δ = 0.5 0.316 0.383 0.364
δ = 1.0 0.447 0.542 0.515

6 Conclusion
The paper contributes to the sensitivity analysis of the mean-square risk of the so-called
“autoregressive forecasting statistic” (constructed for the hypothetical model AR(p)) in
the situation where the observed time series satisfies really the model BL(p,0,1,1) with
a small bilinearity coefficient β. Exact values and asymptotic expansions (at β → 0)
of matrix and scalar risks allow to find quantitative estimates of robustness and supply a
statistician with the δ-critical (for the given δ > 0) bilinearity level β+(δ, τ) satisfying the
δ · 100%-admissible increment of the risk. Numerical results are in a good coincidence
with the approximations of the risk generated by main terms of asymptotic expansions.
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