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Abstract: This paper considers the problem of interpolation (smoothing) of a
partially observable Markov random sequence. For the dynamic observation
models, an equation for the interpolation of the posterior probability density
is derived. The main goal of this paper is to consider the smoothing prob-
lem for the case of unknown distributions of an unobservable component of a
random Markov sequence. Successful results were obtained for the strongly
stationary Markov processes with mixing and for the conditional density be-
longing to the exponential family of densities. The resulting method is based
on the empirical Bayes approach and kernel nonparametric estimation. The
equation for the optimal smoothing estimator is derived in the form indepen-
dent of unknown distributions of an unobservable process. Such form of the
equation allows to use the nonparametric estimates for some conditional func-
tionals in the equation given a set of dependent observations. To compare the
nonparametric estimators with optimal mean square smoothing estimators in
Kalman scheme, simulation results are given.
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1 Introduction
This paper is devoted to synthesis of interpolation algorithms for an unobservable station-
ary sequence in conditional Markov scheme. The characteristic feature of the problem
consists in absence of knowledge of the probability distribution family for the unobserv-
able sequence. Nevertheless, some efforts are made to construct the sequence of esti-
mators that have the asymptotic behavior (under a large volume of observations) close
to the behavior of optimal interpolation estimators built under full statistical information
on observable and unobservable signal components. For the case of full information, the
transformation equations for the posterior probability density of unobservable sequences
are known. They were obtained by R. Stratonovich for filtration and interpolation prob-
lems in 1966. The paper of Khazen (1978) represents the interpolation equation in the
form of the normalizing product of filtration posterior probability densities in forward
and backward time. This was done only for static observation models. The present paper
shows that the similar equation is valid also for dynamic observation models (e.g., au-
toregressive models), however, in this case the equation is to be supplemented by another
recursive equation that reflects the dynamic properties of observations.

Unfortunately, it is impossible to make use of this equations when the probability fam-
ily for the unobservable sequence is unknown. However, for some conditional probability
family of observations it is possible to transform these equations eliminating (explicit)
dependence on statistic characteristics unknown a priori. The solution is found on the
principles of the empirical Bayes approach and the theory of kernel non-parametric func-
tional estimation (see Vasiliev, Dobrovidov, and Koshkin, 2004).



22 Austrian Journal of Statistics, Vol. 37 (2008), No. 1, 21–29

2 Interpolation Equation for Dynamic Observation
Models

Interpolation (smoothing) of the partly observable Markov random sequence (Sn, Xn)n≥1,
Sn ∈ Rm, Xn ∈ Rl, is the problem of constructing estimators of the unobservable vector
Sk or a known one-to-one function Q(Sk) by observations xn

1 = (x1, . . . , xn)T of the se-
quence (Xn)n≥1 for all k ≤ n. It is well known, that the optimal mean-square smoothing
estimator of Q(Sk), k ≤ n, equals to the conditional expectation

E(Q(Sk)|xn
1 ) =

∫

Rm

Q(sk)π(sk|xn
1 )dsk , (1)

where πk(sk|xn
1 ) is the conditional posterior probability density of Sk given all observable

realizations xn
1 which is called to be the interpolating posterior density. There are some

ways to calculate this conditional density. One of the interesting approaches examined
below and referred to as the two-filter smoothing consists in recursive calculation of the
filtering posterior probability density wk(sk|xk

1) in forward time and the filtering posterior
density w̃k(sk|xn

k) in backward time. This algorithm is as follows (Khazen, 1978; Briers,
Douset, and Maskell, 2003):

πk(sk|xn
1 ) =

f(xk
1)f(xn

k)

f(xn
1 )

· wk(sk|xk
1)w̃k(sk|xn

k)

f(sk, xk)
, (2)

where the first factor is a normalizing constant depending only on observations. Here
and further the function f without index denotes any probability density that may differ
from another one even in the same formula, because its argument completely determines
the object. The computation results for filtering densities in forward time and backward
time are multiplied giving the interpolating posterior density. For static and dynamic
observation models, the algorithms of such computation are different. For static models
described by the conditional density f(xk|sk), the joint probability density f(sk, xk) in
the denominator of (2) can be represented in the form of the product p(sk)f(xk|sk), where
p(sk) is the prior density. For dynamic observation models described by the conditional
density f(xk|xk−1, sk), such a product form can not be constructed, because the density
f(xk|sk) is unknown in this case. Nevertheless, the joint probability density f(sk, xk)
admits representation via f(xk|xk−1, sk) by means of the following recursive equation

f(sk, xk) =

∫

Sk−1

p(sk|sk−1)

∫

Xk−1

f(xk|xk−1, sk)f(sk−1, xk−1)dxk−1dsk−1 (3)

with the initial condition f(s1, x1) that is given by the prior density of the Markov process
(Sn, Xn)n≥1. This equation can be simply derived using the total probability formula.
Consequently, for dynamic observation models, pair (2), (3) is the system of equations
for interpolating posterior probability density.

The subsequent computation in (2), (3) can be carried out if all distributions of the
composed Markov process (Sn, Xn)n≥1 are known. But the main purpose of this paper
consists in solving the interpolation problem with unknown distributions of the unob-
servable strongly stationary Markov sequence (Sn)n≥1. The central idea to solve this
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problem is based on the principle of the empirical Bayes approach and the theory of non-
parametric functional estimation by weakly dependent observations (see Vasiliev et al.,
2004). The empirical Bayes approach aims to construct the estimators that are explic-
itly independent of the probabilistic characteristics of the unobservable random variables.
This can be achieved, for instance, by using the conditional densities of observations from
the exponential density family (see Chentsov, 1972)

f(xn|sn) = C̃(sn)h(xn) exp
{
TT(xn)Q(sn)

}
, (4)

where T = (T1, . . . , Tm)T, Q = (Q[1], . . . , Q[m])T, h(·), Q[j](·), and Tj(·), j = 1, . . . ,m

are the given Borelian functions and C̃(sn) is the normalizing factor.

3 Optimal Interpolation Estimator under Unknown
Probability Distribution of the Unobservable Signal

Some applied problems of extracting a signal from its mixture with a noise result in a
situation when this useful signal is never observed in the pure form and consequently
one can not gather any statistic about its distribution. Moreover, any information about
possible parametric family which includes the probability distribution for the signal is
usually absent. To solve this problem we propose to use the empirical Bayes approach
to the interpolation problem. This means that one must make an attempt to find such a
form of the estimation equation that does not depend explicitly on the unknown prob-
ability characteristics of the unobserved signal. Now there are no regular methods for
constructing such equations for arbitrary observation models. The success can be attained
for more narrow class of observation models described by conditional densities from the
exponential family (4). At that, the success in constructing the equation is attained not for
the signal posterior probability density (2), but directly for optimal mean square estima-
tor (1) itself. To derive this equation let us use the Markovian property of the sequence
Zk = (Sk, Xk)k≥1

f(sn
1 , x

n
1 ) = f(s1, x1)

n∏

k=2

g(sk, xk|sk−1, xk−1) , (5)

where (sk, xk) is the value of the random variable (Sk, Xk), and f(s1, x1) and g(·|·) are
the prior density and the transition density of (Zn)n≥1. Taking into account (5), the inter-
polating posterior density πk(sk|xn

1 ) is representable in the form

πk(sk|xn
1 ) =

1

f(xn
1 )

f(sk, x
n
1 ) =

1

f(xn
1 )

f(sk, x
k
1, x

n
k+1)

=
1

f(xn
1 )
· f(xk

1)wk(sk|xk
1) · f(xn

k+1|sk, xk) . (6)

In the future we must choose in equation (6) any factors depending on the observation xk.
For this purpose, the second factor of (6) is transformed as follows

f(xk
1)wk(sk|xk

1) =

∫

Rm

f(sk−2
1 , xk−2

1 , sk−1, xk−1)g(sk, xk|sk−1, xk−1)dsk−1 .
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But, since for dynamic models the transition density g(sk, xk|sk−1, xk−1) =
p(sk|sk−1)f(xk|xk−1, sk), we get

f(xk
1)wk(sk|xk

1) = f(xk|xk−1, sk)

∫

Rm

p(sk|sk−1)f(sk−1, x
k−1
1 )dsk−1

= f(xk−1
1 )f(xk|xk−1, sk)f(sk|xk−1

1 ) . (7)

Obviously, only the second factor of (7) depends on xk.
Let us consider the third factor in (6). Then we get

f(xn
k+1|sk, xk) =

∫

Rm

f(xn
k+2|sk+1, xk+1)g(sk+1, xk+1|sk, xk)dsk+1

=

∫

Rm

f(xn
k+2|sk+1, xk+1)p(sk+1|sk)f(xk+1|xk, sk+1)dsk+1

=

∫

Rm

f(xn
k+2, sk+1, xk+1)

p(sk+1|sk)

p(sk+1)

f(xk+1|xk, sk+1)

f(xk+1|sk+1)
dsk+1 . (8)

Here only the last ratio f(xk+1|xk, sk+1)/f(xk+1|sk+1
) depends on xk. It is this depen-

dence on xk that does not yet permit us to construct a non-parametric version of the
equation (2) for dynamic observation models. However, for static observation models of
the form Xn = ϕ(Sn, ηn), where ϕ is a measurable function and ηn is an independent
noise, the conditional density of observations f(xk+1|xk, sk+1) = f(xk+1|sn+1) does not
depend on xk, and this transforms the equation (6) to the form:

πk(sk|xn
1 ) =

1

f(xn
1 )
· f(xk

1)wk(sk|xk
1) · f(xn

k+1|sk, xk)

=
1

f(xn
1 )

f(xk|sk)f(sk|xk−1
1 )

∫

Rm

f(xn
k+2, sk+1, xk+1)

p(sk+1|sk)

p(sk+1)
dsk+1

=
λk(x

n
1 without xk)

fk(xk|xn
1 without xk)

f(xk|sk)f(sk|xk−1
1 )f(sk|xn

k+1)p
−1(sk) , (9)

where only the second factor depends on xk; some new definitions for the normalizing
constants are introduced here:

λk = λk(x
n
1 without xk) , f(xk−1

1 )f(xn
k+1)

f(xk−1
1 , xn

k+1)
, (10)

fk(xk|xn
1 without xk) , f(xk|xk−1

1 , xn
k+1) . (11)

Such a form of the interpolation equation allows us to obtain its counterpart independent
of the statistical characteristics of the unobserved process (Sn)n≥1.

Denote
uk(sk) = f(sk|xk−1

1 )f(sk|xn
k+1)p

−1(sk) (12)

and remark once more that uk is independent of xk. Then, equation (9) can be represented
in the form

πk(sk|xn
1 ) =

λk(x
n
1 without xk)

fk(xk|xn
1 without xk)

f(xk|sk)uk(sk) . (13)
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Let us integrate this equation with respect to sk and carry over the normolizing factor
depending only of the observations to the left-hand side:

fk(xk|xn
1 without xk)

λk(xn
1 without xk)

=

∫

Sk

f(xk|sk)uk(sk)dsk . (14)

Assuming now that the density f(xk|sk) belongs to the exponential family (4), dif-
ferentiate (14) w.r.t. xk. The possibility of differentiating under the sign of integral is
justified by the assumption of existence of the second prior moment EQT (Sk)Q(Sk), that
is the natural restriction of signal power. The latter is sufficient for existence of the mean
square risk. Differentiation w.r.t. xk results in the equation

5xk
fk(xk|xn

1 without xk)

λk(xn
1 without xk)

=

∫

Sk

5xk
f(xk|sk)uk(sk)dsk . (15)

For the exponential conditional density f(xk|sk),

5xk
f(xk|sk) = (5xk

log h(xk) +5xk
TT(xk)Q(sk))f(xk|sk) . (16)

Substituting (16) to (15) and denoting by Q(ŝk) the integral
∫

Q(sk)πk(sk|xn
1 )dsk, let us

find the equation for the optimal mean square estimator Q(ŝk)

T T(xk)Q(ŝk) = 5xk
log

fk(xk|xn
1 without xk)

h(xk)
, (17)

where T is the Jacobi matrix with elements ∂Ti/∂x
[j]
k , i = 1, dots,m, j = 1, . . . , r.

The equation (17) is a simple linear vector equation w.r.t. Q(ŝk), but it can be solved
only for a certain density fk(xk|xn

1 without xk). In the case where all probability distri-
butions are known, this density can be computed, and the result coincides with (1) and
(2). But in the case where fk(xk|xn

1 without xk) can not be explicitly computed and
even its parametric form is unknown, we restore it from the observations using the kernel
non-parametric procedures.

4 Non-Parametric Interpolation Estimator
To solve the problem of interpolating on the basis of one realization xn

1 of a process
(Xk)1≤k≤n, Xk ∈ Rl, we can use the asymptotically ε-optimal interpolating procedure
from Vasiliev et al. (2004), in which the truncated conditional density f̄(xk|xk−1

k−τ , x
k+τ
k+1)

is used instead of the conditional density f(xk|xn
1 without xk) , f(xk|xk−1

1 , xn
k+1),

where the parameter τ is the order of the Markov process which approximates the non-
Markovian weak dependent process (Xn)n≥1. The criteria and methods of estimation of
τ which were developed in Vasiliev et al. (2004) with regard to filtration, can be extended
to the interpolation problems. In this way, the conditional density f(xk|xk−1

k−τ , x
k+τ
k+1) can

be written as the ratio

f(xk|xk−1
k−τ , x

k+τ
k+1) =

f(xk+τ
k−τ )

f(xk−1
k−τ , x

k+τ
k+1)

,
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where the numerator is the marginal density of l × (2τ + 1)-dimensional vector and the
denominator is the marginal density of l×2τ -dimensional vector of observations. By
substituting the multivariate non-parametric kernel estimators

fN(xn
1 ) =

1

Nhlr
N

N∑
i=1

n∏

k=1

l∏
j=1

K

(
(x

[j]
k −X

[j]
k (i))

hN

)
(18)

for these densities, we get a non-parametric form of the equation (17) in the form

T T(xk)Q(τ ŝk,N) =
5xk

fN(xk+τ
k−τ )

fN(xk+τ
k−τ )

− 5xk
h(xk)

h(xk)
. (19)

Interpretation of this equation is quite obvious. To construct the interpolation estimator at
the point k, one uses the data before and later of k in a distance not exceeding τ .

The interpolation estimator in the equation (19) is obviously consistent, but it depends
on the logarithmic gradient of the conditional probability density which is an unstable
functional that takes infinite values, when the denominator is equal to zero. For a more
strong convergence, one should construct a piecewise smooth approximation (see Vasiliev
et al., 2004) providing the mean-square convergence under some additional regularity
conditions.

5 Comparison of Non-Parametric Interpolation Estima-
tor with the Optimal Estimator in the Kalman Scheme

To illustrate the proposed estimator and its performance, consider an example with uni-
variate state and observation models (m = l = 1):

Sn+1 = aSn + bξn+1 , b2 = σ2(1− a2) , (20)
Xn = ASn + Bηn , Sn, Xn ∈ R . (21)

Here, S1, ξn and ηn are the mutually independent random variables with the Gaussian
distributions N(0, σ2) for S1 and N(0, 1) for ξn and ηn, n ≥ 1. The coefficients a, b,
A, B are known, |a| < 1. With suitable initial conditions, such equations generate a
strongly stationary process. For the model (20), (21), the conditional probability density
of observations is Gaussian and, therefore, the Kalman filter and the optimal forward and
backward recursive linear interpolation equations associated with it can be obtained using
the results of Liptser and Shiryaev (1977).

The Kalman filter:

Ŝk+1 = aŜk +
Ab2 + a2Aγk

B2 + A2b2 + A2a2γk

[xk+1 − AaŜk],

γk+1 =
B2(a2γk + b2)

A2(a2γk + b2) + B2
(22)
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with the initial conditions

Ŝ1 =
Aσ2

A2σ2 + B2
x1 , γ1 =

B2σ2

A2σ2 + B2
,

where Ŝk = E[Sk|xk
1], γk = E[(Sk − Ŝk)

2|xk
1].

Forward interpolation:

Dk = A2(a2γk + σ2(1− a2)) + B2

S̃k = Ŝk + Aaγk(Xk+1 − AaŜk)/Dk

γ̃k = A2σ2(1− a2) + B2)γk/Dk , k = 2, . . . , n , (23)

where Ŝk = E[Sk|xk+1
1 ], γ̃k = E[(Sk − S̃k)

2|xk+1
1 ].

Backward interpolation:

˜̃Sk = S̃k + ˜̃γkaσ2(1− a2)( ˜̃Sk+1 − Ŝk))/dkγk+1

˜̃γk = γ̃k + γ̃2
k(σ

2(1− a2))2 ˜̃γk+1/D
2
kγk+1 , k = 2, . . . , n− 1 , (24)

where ˜̃Sk = E[Sk|xn
1 ], ˜̃γk = E[(Sk − ˜̃Sk)

2|xn
1 ].

A non-parametric interpolation can be constructed using only one observation equa-
tion (21) and the sample of data of size n. In this univariate case, non-parametric interpo-
lation equation (17) is

Ŝτ
k =

B2

A

∂/∂xkf(xk+τ
k−τ )

f(xk+τ
k−τ )

+
xk

A
. (25)

It should be noted that this equation does not involve the parameters a, b of state-space
equation (20). The non-parametric kernel estimator for the denominator f(xk+τ

k−τ ) in (25)
is defined by formula (18). The numerator in (25) contains a partial derivative of the mul-
tivariate density f(xk+τ

k−τ ) at the point xk. Usually, the estimator of the density derivative is
selected as the derivative of the density estimator. In this case, the bandwidths and kernels
in both estimators are coincide. But it is not always so. For instance, if we want to have
identical rate of convergence for the derivative estimator and the density estimator in the
ratio (25), we need to choose not only different bandwidths, but also different kernels.

The non-parametric estimator for the ratio of the density derivative to the density itself
is described by the following expression:

(∂/∂xk)fN(xk+τ
k−τ )

fN(xk+τ
k−τ )

= h−2
N

n−τ∑
i=τ+1

(xi − xk)
τ∏

l=τ

exp

(
−(xk+l − xi+l)

2

2hN
2

)

n−τ∑
i=τ+1

τ∏
l=τ

exp

(
−(xk+l − xi+l)

2

2hN
2

) , (26)

where N = n − 2τ and hN is the bandwidth parameter; its optimal value depends on
unknown functions. In the experiment, these parameters are modified to get a “good
value” of the risk

R̂ =
1

M

M∑
j=1

(
1

N

N∑
i=1

(
Si(j)− Ŝi(j)

)2
)1/2

, (27)
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where M is the number of repeated experiments. This performance measure is the mean
square deviation of the process estimator (Ŝi)1≤i≤N from the process of the signal (Si)1≤i≤N

averaged by M experiments. We consider three estimators: Kalman estimator Ŝk from
the equation (22) with the risk RK , optimal backward interpolation ˜̃Sk from the equation
(24) with the risk ROI , and non-parametric interpolation from the equation (25) with the
risk RNI . Because

ROI ≤ RK and ROI ≤ RNI ,

for convenience of comparison, let us introduce the relative errors in percentage as

εK =
RK −ROI

ROI

· 100 , εNI =
RNI −ROI

ROI

· 100 .

It shows how much one estimator is better or worse than another one. The simulation
results are presented in Figure 1 for n = 1000, σ2 = 2, a = 0.7, b = 1, A = B = 1, and
τ = 1.

1040 1050 1060 1070 1080 1090 1100
−4

−3

−2

−1

0

1

2

3

Kalman filter 

Optimal interpolation 

Nonparametric interpolation 

Unobseved signal 

Interpolation

Figure 1: Comparison of the non-parametric smoothing estimator with the optimal esti-
mators

The relative errors εK and εNI are given in Table 1. The simulation shows that non-
parametric estimators can superior the optimal Kalman filtering estimators by the per-
formance, but it is always inferior w.r.t. the optimal backward interpolation. In spite of
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Table 1: Relative excess of the empirical risk over the optimal smoothing risk

M Optimal Kalman εK Non-par εNI

50 0% 7.48% 4.42%

existence of some methods for bandwidth parameter selection in non-parametric den-
sity estimators (e.g., plug-in or cross-validation), there are no corresponding methods for
non-parametric estimation of the density derivative. Therefore, the way for completely
automatic bandwidth selection still remains open.

6 Conclusion
The paper presents three interpolating algorithms for estimation of an unobservable sig-
nal corrupted by noise on the fixed time interval. By the example of a linear model, the
simulation experiments illustrate the performance of the proposed non-parametric inter-
polation estimator in comparison with the optimal Kalman filtering estimator and with the
optimal backward interpolation.

Acknowledgements
The paper was supported by RFFR Grant 06-08-00072-a

References
Briers, M., Douset, A., and Maskell, S. (2003). Smoothing algorithms for state-space

models. IEEE Transactions on signal processing, 55, 1-21.
Chentsov, N. (1972). Statistical Decision Rules and Optimal Inference (2nd ed.).

Moscow: Nauka (in Russian).
Khazen, E. (1978). Restoration of the component of a multivariate markov process under

the observations of other its components. Probl. Control Inform. Theory, 7 (4),
263-275.

Liptser, R., and Shiryaev, A. (1977). Statistics of Random Processes I: General Theory
(1977). II: Applications (1978) (2nd ed.). New York: Springer-Verlag.

Vasiliev, V., Dobrovidov, A., and Koshkin, G. (2004). Nonparametric Estimation of
Functionals of Stationary Sequences Distributions (2nd ed.). Moscow: Nauka (in
Russian).

Author’s Address:

Alexandr V. Dobrovidov
Trapeznikov Institute of Control Sciences
Russian Academy of Sciences
6-3-174 Sumskaya, Moscow, 113587, Russia

E-mail: dobrovid@ipu.rssi.ru


