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Abstract: We develop a practical implementation of the test proposed in
Berkes, Horváth, Kokoszka, and Shao (2006) designed to distinguish be-
tween a change-point model and a long memory model. Our implementa-
tion is calibrated to distinguish between a shift in volatility of returns and
long memory in squared returns. It uses a kernel estimator of the long-run
variance of squared returns with the maximal lag selected by a data driven
procedure which depends on the sample size, the location of the estimated
change point and the direction of the apparent volatility shift (increase versus
decrease). In a simulations study, we also consider other long-run variance
estimators, including the VARHAC estimator, but we find that they lead to
tests with inferior performance. Applied to returns on indexes and individual
stocks, our test indicates that even for the same asset, a change-point model
may be preferable for a certain period of time, whereas there is evidence of
long memory in another period of time. Generally there is stronger evidence
for long memory in the eight years ending June 2006 than in the eight years
starting January 1992. This pattern is most pronounced for US stock indexes
and shares in the US financial sector.

Zusammenfassung: Wir entwickeln die praktische Umsetzung des in Berkes
et al. (2006) vorgeschlagen Tests zur Unterscheidung zwischen einem Change-
Point und einem Long Memory Modell. Unsere Implementierung ist darauf
abgestimmt, zwischen einer Verschiebung in der Volatilität von Returns und
Long Memory in quadrierten Returns zu unterscheiden und verwendet einen
Kernschätzer der Long-Run Varianz der quadrierten Returns. Dabei wird
der maximale Lag durch eine datengesteuerte Prozedur gewählt, die vom
Stichprobenumfang, der Lage des geschätzten Change-Points und der Rich-
tung der anscheinenden Volatilitätsverschiebung (Zunahme gegen Abnahme)
abhängt. In einer Simulationsstudie betrachten wir auch andere Long-Run
Varianz Schätzer wie den VARHAC Schätzer, aber wir erkennen, dass diese
zu Tests mit schlechterem Verhalten führen. Angewandt auf Returns von
Indizes und individuellen Aktien zeigt unser Test, dass sogar für dieselbe
Anlage für eine bestimmte Zeitperiode ein Change-Point Modell vorgezogen
werden kann, während es Hinweise auf long memory in einer anderen Peri-
ode gibt. Im Allgemeinen gibt es stärkere Hinweise für long memory in den
acht Jahren vor dem Juni 2006 als in den acht Jahren nach dem Jänner 1992.
Dieses Muster ist am stärksten für die US Aktienindizes und Beteiligungen
im US Finanzsektor ausgeprägt.
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1 Introduction

Long memory, or long-range dependent, stochastic processes have over the last two de-
cades been extensively used in modeling time series arising in areas as diverse as geo-
physics, most notably hydrology and climatology, engineering, medicine, and computer
networks. The 1980’s saw applications of long memory processes in modeling macroe-
conomic time series, whereas the 1990’s witnessed an increased interest in modeling the
volatility of returns on speculative assets by such processes, see Henry and Zaffaroni
(2002) for a discussion and relevant references. Doukhan, Oppenheim, and Taqqu (2002)
provide a recent extensive review of the theory and applications of long-range dependent
models.

A stationary long memory stochastic process exhibits persistent aperiodic cycles which,
in finite samples, can create an appearance of changes in the mean level, or in variability,
if long memory in squares is of interest. It has recently been argued that the empirical ev-
idence for long memory can be attributed to the presence of trends or structural breaks in
the data. A slowly decaying autocovariance function and a spectral density which follows
a line near the origin on the log-log scale are the simplest manifestations of long memory.
It is by now well documented that models incorporating various forms of nonstationarity
also exhibit these and other features of stationary long memory models. The last few
years have seen an intensified debate over which modeling approach is more appropriate.

Bhattacharya, Gupta, and Waymire (1983) and Giraitis, Kokoszka, and Leipus (2001)
showed that statistics computed from short memory processes perturbed by trends or
shifts in the mean may exhibit the same properties as those of long-range dependent
processes. The confusion between long memory and change-points is also reflected by
the fact that tests for long memory typically reject in the presence of change-points and
many change-point tests reject in the presence of long memory, see Hidalgo and Robin-
son (1996) and Krämer and Sibbertsen (2000) for detailed examples and discussion. It
is thus seen that despite their different mathematical formulations, long-range dependent
processes and structural change models can describe the same phenomena.

There have, correspondingly, been two competing positions on how to model the
volatility of financial returns. One is in favor of long-memory, the other prefers regime
changes. Dacorogna, Müller, Nagler, Olsen, and Picket (1993), Ding, Granger, and Engle
(1993), Granger and Ding (1996), Baillie, Bollerslev, and Mikkelsen (1996), Bollerslev
and Mikkelsen (1996), Andersen and Bollerslev (1997), Chambers (1998) and Bollerslev
and Wright (2000), among others, advocate long memory models. The main conclusion of
these studies is that the volatility of financial returns can be well described by long-range
dependent models. Other researchers argued that the manifestations of long memory ob-
served in the volatility of financial returns are due to unaccounted for structural breaks.
Diebold (1986), Lamoreaux and Lastrapes (1990), Mikosch and Stărică (Mikosch and
Stărică, 1999, Mikosch and Stărică, 2002), Diebold and Inoue (2001), among others, con-
tended that the long-range dependence in the conditional variance of returns is, in fact, a
manifestation of changes in parameters or the unconditional variance. These ideas have
recently been further developed by Stărică and Granger (2005). Krämer, Sibbertsen, and
Kleiber (2002) observed that long memory in squares of German stock returns disappears
once shifting means are properly accounted for. Econometric models where structural
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change can be modeled endogenously have been proposed by Cai (1994), Hamilton and
Susmel (1994), Dueker (1997), to name just a few contributions.

An intermediate position of combining long memory and level shifts has also emerged.
Bos, Franses, and Ooms (1999) found evidence of long-range dependence in the inflation
rates of the G7 countries, and observed that the addition of a set of level shifts does de-
crease the intensity of this dependence for some countries. A similar conclusion was
reached by Teyssiere and Abry (2006) who applied a wavelet based estimator, which
is less sensitive to trends and level shifts. The wavelet estimator indicated a substan-
tially lower intensity of long memory. Andreou and Ghysels (2002) examined estimating
change–points in the presence of long memory. Using exchange rates data, Morana and
Beltratti (2004) concluded that superior forecasts can be obtained at longer horizons by
modeling both long memory and structural changes.

It is clear that both long memory and change point models have merits: a long mem-
ory model may provide a parsimonious description of a long, possibly non-stationary,
time series, and may be useful for long-term forecasting, a change-point model may be
more suitable for short term forecasts. In some financial applications, however, the choice
between long memory and structural breaks is important, particularly in risk measure-
ment, asset allocation and option pricing. To name just a few references, Bollerslev and
Mikkelsen (1996) showed that taking into account a long memory structure of the volatil-
ities can sometimes even double the price of options, compared with situations when
long-memory is neglected. Garcia and Ghysels (1998) studied the effect of structural
breaks on asset pricing, whereas Pastor and Stambaugh (2001) focused on their effect on
equity premiums.

Formal statistical tests which would help decide whether a long-range dependent pro-
cess or a weakly dependent process with change-points is a better fitting model for a par-
ticular time series are therefore of value. There has however not been much research in
this direction. The periodogram based testing procedure of Künsch (1986) was developed
to distinguish between a long-range dependent process and the process Xk = Yk + f(k)
with a monotonic function f and Gaussian weakly dependent Yk. Heyde and Dai (1996)
constructed tests for detecting long-range dependence which are based on a smoothed
periodogram are robust in the presence of small trends. Sibbertsen and Venetis (2004)
recently further developed these ideas, while Jach and Kokoszka (2008) proposed a test
based on wavelet domain likelihood. These tests are however not directly applicable to
discriminating between long memory and volatility shifts in financial time series because
they were designed for linear time series models.

In this paper we develop and compare several practical implementations of the test
proposed by Berkes et al. (2006) and apply them to stock indexes and individual stocks.
Denote by {rt}n

1 the returns on a speculative asset and by Xt = r2
t the squared returns.

Under the null hypothesis the Xt follow a change point model, under the alternative they
are long range dependent. The testing procedure is based on a CUSUM statistic for the
partial sums and involves estimating the long-run variances of subsamples obtained by
dividing the observations into two parts, before and after a potential change-point. These
variances are estimated, respectively, by estimators s2

n1 and s2
n2 which require the selection

of a lag parameter q, defined in Section 2. The performance of several selection methods
is evaluated via a simulation study. The best performance is obtained by a data driven pro-
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cedure which incorporates the pattern of volatility shift and uses different lags depending
on whether the volatility increases or decreases over the observed sample. Applied to
returns on indexes and individual stocks, our test indicates that even for the same asset,
a change–point model may be preferable for a certain period of time, whereas there is
evidence of long memory in another period of time. Generally there is stronger evidence
for long memory in the eight years ending June 2006 than in the eight years starting Jan-
uary 1992. This pattern is most pronounced for US stock indexes and shares in the US
financial sector.

The paper is organized as follows. We introduce the testing procedure in Section 2.
Section 3 discusses several estimators s2

n1 and s2
n2. Using the models obtained in Section

4 from daily returns on representative stocks and indexes, we study the finite sample
performance of the tests by means of simulations in Section 5. In Section 6, the test is
applied to a wide selection of indexes and to individual stocks grouped by sector. We
summarize our results in Section 7.

2 The Test Procedure
Recall that Xt = r2

t , where {rt}n
1 are returns on a speculative assets which are assumed

to have mean zero.
The Xt follow a change-point model if

Xt =

{
µ + Yt, 1 ≤ t ≤ k∗

µ + ∆ + Yt, k∗ < t ≤ n.
(2.1)

In (2.1), k∗ is the unknown time of a change in mean; the means µ and µ + ∆ are also
unknown. The sequence {Yt} is assumed to have mean zero and to be stationary and
weakly dependent. In our context, Yt = r2

t − Er2
t .

We wish to test

H0 : The observations Xt follow model (2.1).

versus
HA : The observations Xt are long range dependent.

Observe that the unknown means µ and µ+∆ in (2.1) are the variances of the returns.
We thus test to discriminate between long-range dependence in variance and changes in
variance. Berkes et al. (2006) discuss the extension of the above testing problem which
allows multiple change-points under H0. However, visual inspection of the data stretches
we study, see Figure 1, shows that it is reasonable to assume at most one change-point.

Examples of models satisfying H0 and HA are given in Berkes et al. (2006). Roughly
speaking, under H0, the autocovariances of the Yt = r2

t − Er2
t must decay exponentially,

and under HA, the autocovariances of r2
t must decay hyperbolically (and the process r2

t

must be stationary).
The testing procedure first estimates the change point k∗ using the CUSUM estimator

k̂ = min

{
k : max

1≤t≤n

∣∣∣∣∣
∑

1≤j≤t

Xj − t

n

∑
1≤j≤n

Xj

∣∣∣∣∣ =

∣∣∣∣∣
∑

1≤j≤k

Xj − k

n

∑
1≤j≤n

Xj

∣∣∣∣∣

}
. (2.2)



A. Zhang et al. 257

Table 1: Asymptotic critical values of the test statistic Mn.

α 0.10 0.05 0.01
c(α) 1.36 1.48 1.72

Setting n1 = k̂ and n2 = n− k̂, we then separate the realization into two sub-series, one
before the other after the break, denoted, respectively, by {Xt}n1

1 and {Xt}n
n1+1. We next

define the statistics

Tn1 =
1

sn1

n1
−1/2 max

1≤k≤n1

∣∣∣∣∣
∑

1≤t≤k

Xt − k

n1

∑
1≤t≤n1

Xt

∣∣∣∣∣ (2.3)

based on {Xt}n1
1 and

Tn2 =
1

sn2

n
−1/2
2 max

n1<k≤n

∣∣∣∣∣
∑

n1<t≤k

Xt − k − n1

n2

∑
n1<t≤n

Xt

∣∣∣∣∣ (2.4)

based on {Xt}n
n1+1. In the definitions above, s2

n1
and s2

n2
are the estimates of the long-run

variance of {Xt}n1
1 and {Xt}n

n1+1, respectively. The idea of the test is that under H0,
Tn1 and Tn2 have the same asymptotic distribution as if {Xt}n1

1 and {Xt}n
n1+1 did not

contain a change-point. This is because the difference between k∗ and k̂ is asymptotically
negligible. Under HA, Tn1 and Tn2 diverge to infinity because they are computed from
long memory sequences.

Under H0, the test statistic

Mn = max{Tn1 , Tn2}. (2.5)

has a known limiting distribution:

Mn
d→ M = max

{
sup

0≤t≤1
|B(1)(t)|, sup

0≤t≤1
|B(2)(t)|

}
,

where B(1) and B(2) are independent Brownian bridges, see Corollary 2.1 of Berkes et al.
(2006). Table 1 gives asymptotic critical values c(α) defined by P (M > c(α)) = α. We
reject H0 if Mn > c(α).

A main practical difficulty with the implementation of this testing procedure is the
estimation of the long-run variances. Berkes et al. (2006) used in their small simulation
study the Bartlett estimators

s2
n1

=
1

n1

∑
1≤t≤n1

(Xt − X̄n1)
2

+2
∑

1≤j≤q(n1)

ωj(q(n1))
1

n1

∑
1≤t≤n1−j

(Xt − X̄n1)(Xt+j − X̄n1),

(2.6)
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s2
n2

=
1

n2

∑
n1<t≤n

(Xt − X̄n2)
2

+2
∑

1≤j≤q(n2)

ωj(q(n2))
1

n2

∑
n1<t≤n

(Xt − X̄n2)(Xt+j − X̄n2),

(2.7)

where

X̄n1 =
1

n1

∑
1≤t≤n1

Xt, X̄n2 =
1

n2

∑
n1<t≤n

Xt,

and the Bartlett kernel is

ωj(q) = 1− j

q + 1
.

Berkes et al. (2006) used the deterministic lag q(n) = 15 log10 n which is 50% larger
than the default S-PLUS maximum lag for the autocorrelation function, 10 log10 n. This
choice produces reasonable results, but we will see in this paper that different, data driven
lag choices or even different estimators give much better results. The problem of variance
estimation is taken up in detail in Section 3.

3 Variance Estimation

In this section, we describe four estimators s2
n1

(and s2
n2

) appearing in (2.3) (and (2.4)).
There are many variants of each estimation method listed below, but we found that the
specifications we selected well reflect the characteristics of each method. We give each
method a short name and an abbreviation.

1) Deterministic, qn. Set qn(n1) = 10log10(n1) and qn(n2) = 10log10(n2). These
are the default values in many statistical packages. Replacing 10 by a different constant
improves performance in some cases, but makes it worse in others.

2) Data driven, q∗arma. Assume that under H0, GARCH(1,1) is the underlying model
for the returns before and after the change-point. Specifically, assume that the volatility
σt evolves according to

σ2
t = ω + αr2

t−1 + βσ2
t−1, (3.1)

with nonnegative parameters α and β such that α + β < 1. The Xt = r2
t then follow

an ARMA(1,1) model with the autoregressive coefficient ρ = α + β and the moving
average coefficient ψ = −β, see Hamilton (1994, pp. 665-666). By minimizing the
asymptotic truncated MSE, Andrews (1991) derived the optimal bandwidth q∗ for a class
of real-valued kernel functions. The optimal truncation lag for the Bartlett kernel is given
by

q∗ = 1.1447 (a(X)n)1/3 , (3.2)

where a(X) is a function of the unknown spectral density f(λ). For ARMA(1,1) models
with the autoregressive parameter ρ and the moving average parameter ψ, the estimate
of a(X) is given by Eq. (6.6) in Andrews (1991), in which an integer p is involved. By
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setting p = 1, we obtain

â(X) =
4
(
1 + ρ̂ψ̂

)2 (
ρ̂ + ψ̂

)2

(1− ρ̂2)2
(
1 + ψ̂

)4 , (3.3)

where ρ̂ and ψ̂ are appropriate estimates. To obtain them, we first calculate k̂ (2.2), and
split the return series into sub-series before the break {rt}n1

1 and after the break {rt}n
n1+1,

where n1 = k̂. Focusing on {rt}n1
1 , we compute the quasi-maximum likelihood estimates

(QMLE) α̂1 and β̂1 of the GARCH(1,1) model. By setting ρ̂1 = α̂1 + β̂1 and ψ̂1 = −β̂1

and plugging them in (3.3), we get the estimate â1(X). As the final step, we calculate the
optimal bandwidth q∗arma(n1) for the squared series before the change point by substituting
a(X) in (3.2) by â1(X) and n by n1. The lag q∗arma(n2), n2 = n− n1, is computed in the
same way for the series, {Xt}n

n1+1, after the change point.
3) Modified data driven, q∗c arma. As will be seen in the simulation study in Section

5, the empirical sizes of the test using q∗arma are generally much lower than the nominal
ones, indicating that the q∗arma is too long to give satisfactory results. We therefore reduce
the maximum lags by multiplying both q∗arma(n1) and q∗arma(n2) by a factor c less than 1.
More importantly, our numerical experiments indicated that the constant c must depend
on both n and k̂, and even on the pattern of the apparent volatility change. Specifically,
denote by Var(Xn1) and Var(Xn2) the sample variances of the squared sub-series, {Xt}n1

1

and {Xt}n2
n1+1, before and after the estimated change point k̂, respectively. The factor c is

determined as follows.

If Var (Xn1) ≤ Var (Xn2) , c = log10

( n

100

) 1
n1

n
+ 1.5

, (3.4)

If Var (Xn1) > Var (Xn2) , c = log10

( n

100

) 1
n2

n
+ 1.5

. (3.5)

The rationale will be explained in Section 5, where the effects of n and k∗ on empirical
sizes are discussed in detail. In the sequel, we denote by q∗c arma the product of c and q∗arma.

4) Prewhitening. This method does not depend on choosing a truncation lag, but uses
the VARHAC (vector autoregression heteroskedasticity and autocorrelation consistent)
procedure proposed by DenHaan and Levin (1996). We first fit an AR(b) model with
autoregressive order b chosen by Akaike’s Information Criterion (AIC). Denote by ρ̂i,
i = 1, 2, . . . b, the ith estimated autoregressive coefficient, and by σ2

PW.resid the sample
variance of the residuals. Obtaining these residuals is referred to as prewhitening. The
estimate of the long-run variance is then

s2 =
σ2

PW.resid(
1−∑b

i=1 ρ̂i

)2 . (3.6)

We apply the procedure to the two squared sub-series, {Xt}n
1 and {Xt}n2

n1+1, to obtain s2
n1

and s2
n2

, respectively.
Originally proposed by Press and Tukey (1956), prewhitening has long been used in

time series literature to reduce the bias of kernel-based spectral estimation, especially
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in the presence of strong temporal dependence. The AR model is not meant to be the
true model of the underlying process, instead it is used as a tool to “soak up” some of
the dependence. (cf. Andrews and Monahan, 1992, pp. 954). The VARHAC method
differs in two aspects from the prewhitened kernel estimator in Andrews and Monahan
(1992). First, they use AR model of fixed order, AR(1), in their simulations, instead of
an order chosen by AIC. Second, as opposed to using the sample variance σ2

PW.resid in
(3.6) to construct the variance estimate s2, they follow a bandwidth selection procedure
by fitting an AR(1) model to the prewhitened residuals and then use a kernel function
to obtain the variance of the residuals. They do so to reduce the dependencies that might
still exist in the prewhitened residuals. DenHaan and Levin (2000) highlight the pitfalls of
using a fixed order of VAR prewhitening and find relatively little benefit from applying a
kernel-based method to the prewhitened residuals. Our simulations confirm their findings.
Indeed, for the squares of returns, the AR(b) prewhitened residuals are so close to white
noise that fitting an AR(1) model yields the autoregressive coefficient not significantly
different from zero.

4 Patterns of Volatility

In this section we study the daily returns on major US stocks and stock indexes with the
objective to find what the typical model changes and the implied variance changes of real
financial time series are. In the simulation study in Section 5 we will use these practically
relevant models to compare the finite sample performance of the various variance estima-
tors introduced in Section 3. The criteria for choosing the best estimator are not however
the usual variance/bias criteria, but rather the closeness of the empirical size to the nom-
inal size and effective power for the test considered in this paper applied to practically
relevant models.

We consider two indexes: the Dow Jones Industrial Average index (DJIA) of the pe-
riod from 1/1/1992 to 12/31/1999 and the National Association of Securities Dealers Au-
tomated Quotations Composite index (NASDAQ) covering the period from 7/1/1994 to
12/31/1998. In addition, we consider four constituent stocks of DJIA: the General Elec-
tric, the Wal-Mart Stores, Inc., the American Express of the same period from 1/1/2000
to 6/30/2004, and the Altria Group, Inc. of the period from 7/1/1997 to 12/31/1999.
The coverage periods of the time series range from two and half years to eight years,
with number of observations varying between 631 and 2021. We work with log returns
rt = 100 log(Pt/Pt−1), where Pt denotes the index value or stock price at time t. For each
of the time series, we first estimate the break point of volatility using k̂ in (2.2), and then
separate the returns data with respect to the change-point and fit a GARCH(1,1) model to
these sub-series so as to estimate the models before and after the break.

Figure 1 presents the time series plots of the six data sets, with the same limits on the
y-axis. The locations of the estimated break points of volatility are marked by a dashed
line. DJIA is a price-weighted average of thirty blue chip companies, and NASDAQ,
comprised of more than 5000 domestic and foreign companies, is a weighted index based
on market value. We thus expect, as clearly shown in the plots, that the volatilities of
the indexes should be relatively smaller than those of individual stocks. It is also seen
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Figure 1: Daily returns on stocks and stock indexes. Dotted lines indicate the borderlines
of the subsamples, i.e., the location of the estimated change-point.

that, during the two and half years starting from 2001, the returns of the three stocks,
GE, Wal-Mart, and American express, exhibit somewhat similar patterns. For instance,
the estimated breaks of the three time series happen closely, approximately in the fourth
quarter of 2002, and, moreover, the volatilities all decrease after the change-points. This
may be attributed to the steady increase of stock prices since then. In contrast, during the
time periods consider for DJIA, NASDAQ, and Altria Group, the returns are more volatile
after the change-points.

The GARCH(1,1) model with mean µ was fitted to the sub-series of the six time
series. Table 2 gives the results. The sample variance and implied variance of each stretch
of data are also reported. Sample variances are computed in the usual way. Provided that
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Table 2: GARCH(1, 1) models fitted to the returns on DJIA, NASDAQ, General Electric,
Wal-Mart, American Express, and Altria Group. The parameters ω, α, β are defined in
(3.1), µ is the mean return.

Speculative Number Sample Implied
Asset Period Model of obs. µ ω α β Var. Var.
DJIA 1/1/1992∼ Model 1 1061 0.076 0.025 0.064 0.879 0.424 0.439

12/31/1999 Model 2 960 0.073 0.095 0.097 0.839 1.465 1.484
NASDAQ 7/1/1994∼ Model 3 775 0.129 0.133 0.132 0.750 1.133 1.127

12/31/1998 Model 4 363 0.321 0.549 0.171 0.677 3.570 3.612
General 1/1/2001∼ Model 5 473 −0.130 4.345 0.094 0.281 7.147 6.952
Electric 6/30/2004 Model 6 402 0.031 0.284 0.082 0.775 2.038 1.986
Wal-Mart 1/1/2001∼ Model 7 457 0.027 1.407 0.172 0.499 4.355 4.277

6/30/2004 Model 8 418 −0.015 0.379 0.038 0.753 1.850 1.813
American 1/1/2001∼ Model 9 475 −0.090 4.717 0.148 0.274 8.288 8.152
Express 6/30/2004 Model 10 398 0.074 0.201 0.107 0.796 2.068 2.072
Altria 7/1/1997∼ Model 11 389 0.092 0.933 0.116 0.618 3.558 3.507
Group 12/31/1999 Model 12 242 −0.224 1.145 0.088 0.773 8.482 8.237

α + β < 1, the unconditional variance of a GARCH(1,1) process is ω/(1 − α − β) and
is estimated by ω̂/(1− α̂− β̂). We refer to this quantity as the implied variance (implied
by the model). The closeness of the two variances reflects a reasonable fit of the models
to the data.

Relevant to our study, we distinguish two categories of models. Represented by DJIA,
NASDAQ, and Altria Group, the volatilities of the first group increase after the breaks,
while, the returns of the second group, represented by GE, Wal-Mart, and American Ex-
press, have more substantial swings before the breaks. Notice that in the first group the
sum of α̂ and β̂ does not change much after the breaks, the values of ω̂ do however in-
crease. For the second group of models, α̂ + β̂ increases slightly after the change-points,
but ω̂ drops considerably. We thus conclude from the expression ω̂/(1 − α̂ − β̂) that
the increase (decrease) of the parameter ω is the main cause of the ups (downs) of the
volatilities of the returns. As we observed in Figure 1, the volatility of indexes is much
lower than that of stocks, Table 2 gives precise numerical values. The sample variance
of DJIA increases from 0.424 to 1.465, and NASDAQ from 1.133 to 3.57, whereas, the
smallest volatility change we observe for stocks is 1.85 for Wal-Mart and the largest is
8.482 for Altria Group. These six time series thus form a representative sample capturing
the typical behavior of the return series.

5 Simulation Study
We compare the finite sample performance of the tests using the variance estimators in-
troduced in Section 3. Since the primary concern is the type I error, the first goal is to find
a test that outperforms the others in terms of empirical size.

We use the change-point models obtained from the returns on DJIA, NASDAQ, GE,
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Table 3: Empirical sizes (in percent) of the test using four different variance estimators
applied to simulated series of squared GARCH(1,1) observations following the change-
point models estimated from the returns on DJIA, NASDAQ, GE, and Wal-Mart in Table
2. The number of replications is R = 5000, with nominal size α = 5%.

DJIA : Model 1 → Model 2 NASDAQ : Model 3 → Model 4

Method n k∗ = 1
4n k∗ = 1

2n k∗ = 3
4n k∗ = 1

4n k∗ = 1
2n k∗ = 3

4n

qn 500 5.24 2.56 1.52 2.86 1.30 0.74
1000 26.74 8.16 4.08 18.90 3.80 1.94
1500 35.28 12.12 6.62 26.96 5.54 2.94
2000 39.36 12.58 8.98 29.04 5.40 3.74

q∗arma 500 0.98 0.58 0.40 1.66 0.88 0.78
1000 1.66 1.06 1.00 3.56 2.18 1.62
1500 2.30 1.52 1.48 6.28 3.46 2.36
2000 2.60 2.46 1.86 8.92 3.52 2.84

q∗c arma 500 5.62 4.40 4.20 9.00 6.58 5.38
1000 6.32 4.24 3.64 10.56 6.18 5.02
1500 6.66 4.84 3.82 14.48 7.02 5.14
2000 6.40 5.20 4.80 15.24 6.26 5.02

Prewhitening 500 19.98 14.78 12.30 12.40 7.04 4.56
1000 20.64 12.72 11.44 15.96 5.76 4.32
1500 21.26 12.02 10.30 19.36 5.12 3.66
2000 21.42 10.00 8.76 19.54 4.68 3.82

GE : Model 5 → Model 6 Wal-Mart : Model 7 → Model 8

qn 500 0.70 0.42 2.26 0.72 0.54 1.52
1000 1.84 2.26 10.18 1.54 2.06 11.16
1500 2.82 2.96 11.86 2.20 3.04 17.84
2000 3.26 3.54 13.08 2.02 3.82 20.80

q∗arma 500 1.16 1.30 1.84 0.92 1.28 2.46
1000 2.18 2.48 2.80 2.26 2.62 7.32
1500 2.98 3.18 3.44 2.62 3.42 10.16
2000 3.68 3.70 3.96 2.48 4.22 11.54

q∗c arma 500 3.70 3.56 4.28 2.54 4.18 6.42
1000 4.48 3.86 5.08 3.52 4.36 11.02
1500 4.98 4.16 5.66 3.74 4.62 13.04
2000 4.84 4.78 5.14 3.90 5.28 13.92

Prewhitening 500 4.74 5.24 12.14 3.88 4.30 9.52
1000 5.12 5.12 11.62 4.78 4.92 17.60
1500 5.38 5.38 10.78 4.64 5.80 21.38
2000 4.60 5.50 9.36 4.40 6.52 23.40
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Figure 2: Comparison of empirical sizes for truncation lags q∗arma and q∗c arma. Results are
reported for the change-point models for DJIA and GE. The straight line indicates the
nominal size of 5%.

and Wal-Mart and generate squared GARCH(1,1) observations of length n = 500, 1000,
1500, and 2000, with breaks at k∗ = n/4, n/2, and 3n/4. For each series, the test
statistic Mn is computed and using the critical values in Table 1, a decision on whether to
reject H0 at α = 1%, 5% or 10% is made. We repeat the process R = 5000 times. The
empirical size is then the number of rejections divided by R. Once we find the procedure
that gives best empirical sizes, we validate its performance by applying it to models for
American Express and Altria Group. Its robustness to model mis-specification will also
be investigated.

The empirical sizes of the test at the nominal significance level α = 5% are presented
in Table 3, the results for 1% and 10% level are not presented to conserve space, but are
available upon request. The properties of the 1% and 10% tests are broadly the same as
those of the 5% test, on which we focus. The empirical sizes for the deterministic band-
width qn are very unstable, varying from 0.42% to 39.36%. It appears that the richness of
the dependence structure of squared GARCH(1,1) observations is far more than lags that
are just proportional to the log of the sample size can capture. The lack of stability is also
the main drawback of the method of prewhitening. It yields good sizes for some models,
but suffers from over-rejections, especially for the DJIA based model. Generally speak-
ing, the empirical sizes corresponding to the lags q∗arma are always well under the nominal
levels, only with some exceptions when the changes are from Model 3 to Model 4 for
NASDAQ with k∗ = n/4 and from Model 7 to Model 8 for Wal-Mart with k∗ = 3n/4.
From how the test statistic Mn is constructed, one can see that under-rejections are caused
by over-estimations of the long-run variance, that is, both s2

n1
and s2

n2
in (2.6) and (2.7),

respectively, are too large, which in turn leads us to conclude that the lags q∗arma are too
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long to yield good empirical sizes. We thus propose the lag q∗c arma that is the product of
q∗arma and a factor c < 1. A constant value of c, for time series of varying lengths with
different locations of change-point, does not work well however. We get good rejection
rates when, for instance, the length is 1000 with k∗ = 500 using c = 0.5, but the empirical
size for n = 2000 and k∗ = 1500 turn out to be two times of the target level. The reason
lies in the fact that sample size and location of breaks jointly influence the empirical sizes.
The factor c thus needs to take into account both n and k∗. Two plots are presented in
Figure 2 to illustrate the effects of n and k∗ on the empirical sizes, and also to show the
improvements resulting from using lags q∗c arma over q∗arma. We now provide a rationale
for the expressions for c in (3.4) and (3.5). It is clear that when lags are determined by
q∗arma sample size n and empirical rejection rate are positively associated, i.e., the more
observations, the higher the rejection rate. To alleviate this effect, we thus need to use rel-
atively wider bandwidth to taper the test statistic Mn and get fewer rejections for longer
series. The gradually increasing function log10(n/100) in (3.4) and (3.5) is used for that
purpose. Now focus on the left panel of Figure 2 where the model change is from 1 to
2 for DJIA with volatility increased after a break. Notice that as k∗ increases toward the
end of the series, the empirical sizes decrease, for every n. By contrast, in the right panel,
where the volatility decreases after a break, we observe basically opposite situation. Thus,
depending on whether the volatility increases or decreases after the apparent break, we
should use different c. Specifically, for change-point models with volatilities increased
after breaks, we use shorter lags to increase the value of Mn and get relatively more rejec-
tions for greater k∗. That is why, when Var(Xn1) ≤ Var(Xn2), the term (n1/n+1.5)−1 in
the expression of c in (3.4) is used, whose value decreases for larger n1 = k̂, the estimate
of the change-point k∗. Clearly, we should do the opposite for models with volatility de-
creased after breaks, i.e., when Var(Xn1) > Var(Xn2) we extend bandwidth for greater
k∗. In (3.5), the term (n2/n + 1.5)−1 is used instead in the determination of c, whose
value increases, recalling that n2 = n − n1, when the estimated break gets farther away
from the beginning of the series.

The advantage of using lags q∗c arma as opposed to q∗arma is illustrated in Figure 2.
The empirical sizes yielded by the modified bandwidth are very close to the nominal
level of 5%, with positive and negative disparities less than 2%. Unfortunately, there
are some serious over-rejections in Table 3. When the changes are from Model 3 to
Model 4 for NASDAQ with k∗ = n/4 and from Model 7 to Model 8 for Wal-Mart with
k∗ = 3n/4, we see rejection rates as high as 15.24% for nominal 5% level. Indeed, we
expect over-rejections as severe as this by recalling that, even for longer lags q∗arma with
under-rejections as the dominating pattern, we get unusually high rejection frequencies
for these two particular change-point models. Similar over-rejections are also observed
for 1% and 10% tests. However, out of the four variance estimators considered in our
simulations, we recommend the use of the Bartlett kernel estimator with truncation lags
determined by q∗c arma, even though it may occasionally lead to over-rejections when the
change-point happens in the vicinity of either the start or the end of the series. This
procedure yields good empirical sizes when the location of the break is close to the middle
of the time series.

We next validate the procedure using lags q∗c arma by applying it to the models for
American Express and Altria Group in Table 2. Instead of considering different sample
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Table 4: Empirical sizes (in percent) of the test using the Bartlett kernel estimator with
lags q∗c arma applied to simulated series of squared GARCH(1, 1) observations follow-
ing the change-point models estimated from the returns on American Express and Altria
Group in Table 2. The number of replications is R = 5000.

Stock American Express Altria Group

Model change (Model 9 → Model 10) (Model 11 → Model 12)

n = 873, k∗ = 475 n = 631, k∗ = 389

Var. change 8.288 → 2.068 3.558 → 8.482

Nominal level 1% 5% 10% 1% 5% 10%
Empirical size 0.64 4.58 11.06 1.26 4.62 9.82

Table 5: Fitted EGARCH(1,1) and TGARCH(1,1) models from the returns on DJIA and
Altria Group, and General Electric and American Express, respectively.

Asymmetric Speculative No.
GARCH Asset Period Model of obs. µ ω α β γ

EGARCH DJIA 1/1/1992∼ A 1061 0.067 −0.193 0.142 0.907 −0.578
(1, 1) 12/31/1999 B 960 0.046 −0.037 0.048 0.986 −0.999

Altria 7/1/1997∼ C 389 0.001 0.312 0.188 0.615 −0.999
Group 12/31/1999 D 242 −0.088 0.035 0.051 0.958 −0.999

TGARCH General 1/1/2001∼ E 473 −0.171 1.301 0.032 0.672 0.245
(1, 1) Electric 6/30/2004 F 402 0.049 0.021 0.029 0.957 0.003

American 1/1/2001∼ G 475 −0.121 0.368 −0.025 0.881 0.198
Express 6/30/2004 H 398 0.046 −0.004 0.006 0.971 0.053

sizes with varying locations of the breaks, we let n and k∗ equal to the values obtained
from the real time series. The empirical sizes at significance levels 1%, 5%, and 10% are
presented in Table 4. The procedure works quite well; equally good performance is ob-
served for other models derived from real data for which the breaks occur approximately
halfway in the series.

Since the lag q∗c arma is based on the estimation of a GARCH model, a usual criticism
of such a parametric method is that a mis-specification of the model can lead to a large
rejection bias. We address this issue by assessing the empirical sizes of the procedure
using different models for data generating processes. Specifically, we consider two asym-
metric GARCH(1,1) models, the Exponential GARCH (EGARCH) and the Threshold
GARCH (TGARCH), that are widely used in practice. These two models were developed
to incorporate the asymmetric news impact, also referred to as the leverage effect, on the
volatility of financial time series which tends to rise in response to negative shocks and
fall in response to positive shocks.
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Table 6: Empirical sizes (in percent) of test using the Bartlett kernel estimator with lags
q∗c arma applied to simulated series of squared EGARCH(1,1) and TGARCH(1,1) obser-
vations following the change-point models estimated from the returns on DJIA, Altria
Group, GE, and American Express in Table 5. The number of replications is R = 5000.

Asymmetric Nominal level
GARCH Model change n k∗ 1% 5% 10%

EGARCH A → B (DJIA) 2021 1061 1.14 6.36 12.94
(1, 1) C → D (Altria Group) 631 389 0.88 3.96 9.12

TGARCH E → F (GE) 875 473 0.12 3.58 7.40
(1, 1) G → H (American Express) 873 475 0.12 3.62 7.58

We introduce the two models by noting that they differ from the standard GARCH(1,1)
model only in the definition of the conditional variance σ2

t in (3.1). For the EGARCH(1,1)
model proposed in Nelson (1991), the conditional variance is defined as follows,

σ2
t = eht (5.1)

where
ht = ω + α (|rt−1|+ γrt−1) + βht−1. (5.2)

The TGARCH model is also known as the GJR-GARCH model because Glosten,
Jagannathan, and Runkle (1993) proposed essentially the same model. The conditional
variance for TGARCH(1,1) is given by

σ2
t = ω + (α + γI(rt−1)) r2

t−1 + βσ2
t−1, (5.3)

where I(rt−1) = 1 if rt−1 < 0, and I(rt−1) = 0 otherwise.
We estimate EGARCH(1,1) model from the returns on DJIA and Altria Group and

estimate TGARCH(1,1) model from the returns on GE and American Express. The four
data sets, with their corresponding break points, are exactly the same as those used to esti-
mate GARCH(1,1) in Table 2. The results are reported in Table 5. We notice, as expected,
that the estimates of the leverage parameter γ are negative for the EGARCH models and
are positive for the TGARCH models. We next apply the Bartlett kernel estimator with
lags q∗c arma to the simulated series of squared EGARCH(1,1) and TGARCH(1,1) observa-
tions following the models in Table 5, with n and k∗ equal to those obtained from the time
series. The empirical sizes of the test based on R = 5000 replications are given in Table
6. The rejection frequencies are rather close to the nominal levels, the differences are less
than 1.5% for α = 5% and less than 3% for α = 10%. The test is slightly too conservative
when TGARCH is the DGP, but overall it is not very sensitive to model mis-specification.

To study the power of the test, we use the popular FIGARCH(p, d, q) process of Baillie
et al. (1996) in which the conditional variance σ2

t is assumed to satisfy the equation

b(L)σ2
t = a +

[
b(L)− φ(L)(1− L)d

]
ε2

t ,

where
φ(L) = 1− φ1L− φ2L

2 − . . .− φpL
p;
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Table 7: Empirical power (in percent) of the test using lags q∗c arma applied to simulated
series of squared FIGARCH observations.

Nominal level
1% 5% 10% 1% 5% 10%

Sample size a = 0.6, b = 0.1, φ = 0.2 a = 0.2, b = 0.2, φ = 0.2
d = 0.2

500 14.72 33.14 45.12 10.09 23.74 34.44
1000 26.44 46.44 58.50 18.08 34.86 45.96
1500 30.14 51.22 62.42 22.08 40.20 50.96
2000 34.90 55.64 67.48 26.16 44.52 55.78

d = 0.4
500 35.84 57.14 67.78 36.86 56.48 66.74

1000 49.34 69.18 78.42 52.12 71.32 80.14
1500 55.96 75.00 83.00 59.30 76.14 83.50
2000 59.66 77.92 85.74 63.58 80.84 87.26

d = 0.6
500 36.82 57.50 68.56 41.48 61.88 72.62

1000 46.30 65.68 76.62 50.88 69.84 78.24
1500 48.00 69.70 78.76 55.46 73.98 81.14
2000 50.88 70.62 80.00 58.16 75.18 83.62

b(L) = 1− b1L− b2L
2 − . . .− bqL

q.

We consider order 1 polynomials φ(L) = 1−φL and b(L) = 1−bL and two sets of values
of the parameters a, b, φ, which are similar to those encountered in practice. Three values
of the memory parameter d are used. All parameter values satisfy stationarity conditions
derived by Baillie et al. (1996), i.e. a > 0, 0 6 d 6 1−2φ and 0 6 b 6 φ+d, 0 < d < 1.

The test is seen to have reasonably good power if d is not too close to zero. Table 7
indicates, however, that a rejection of H0 should be viewed as strong evidence in favor of
HA because the empirical rejection rate is never close to 100%.

6 Application to Indexes and Individual Stocks
Tables 8–11 on pages 272–275 show the values of the test statistic Mn for a number of
indexes and individual stocks. These observed values should be compared to the critical
values in Table 1. For each asset we consider two stretches of data, approximately of
length 2000. The first stretch corresponds to roughly 8 years beginning January 1, 1992,
the second to roughly 8 years ending June 30, 2006. Practically all assets show an appar-
ent increase in volatility around the middle of the first period, which persists until about
the middle point of the second period. This corresponds well to the experimental setting
analyzed in Table 3 and ensures that the empirical size is close to the nominal size.

We focus first on the results for stock indexes reported in Table 8. In most US indexes,
we find strong evidence for long memory in the second period, but no, or very weak
evidence, in the first period. For DJC and DJT, and foreign markets, there is practically
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no evidence of long memory, and a simple change point model is adequate. These findings
are interesting and their explanation likely requires deeper economic insights which are
beyond the scope of this paper.

For the financial sector companies, see Table 9, Mn is generally larger in the second
period, but the pattern of the rejection and acceptance of H0 is less clear here. Stocks of
the two insurance companies show moderate evidence of long memory, but so do those of
Provident bank and UMB financial.

In the retail sector, see Table 10, stocks of upscale department stores, Dillard’s and
Gottschalks, show strong evidence of long memory. Stocks in the oil and manufacturing
sectors, see Table 11, generally appear to follow the change-point model.

The above discussion is not intended to provide definite economic insights, but rather
to illustrate the methodology and stimulate research into the reasons behind the observed
results. It should be kept in mind that in a large collection of data sets, some rejections
will occur due to chance; even if all series perfectly satisfy H0, a level α test will show
about 100α% rejections.

7 Summary and Conclusions
We have developed a practical implementation of the test of Berkes et al. (2006) designed
to distinguish between a change-point model and a long memory model. To the best of our
knowledge, this is the first test of this type which can be applied to discriminate between
changes in unconditional volatility and long memory in volatility of returns. Such a test
reduces spurious rejections indicating long memory when in fact a change-point model is
an approximate data generating mechanism.

Our implementation uses a kernel estimator of the long-run variance of squared re-
turns with the maximal lag selected by a data driven procedure which depends on the
sample size, the location of the estimated change point and the direction of the appar-
ent volatility change (increase versus decrease). We also studied other long-run variance
estimators, including the VARHAC estimator, but we found that they lead to tests with
inferior performance.

When applied to returns on indexes and individual stocks, our test shows that long
memory is less prevalent than indicated by previous studies, but may be present in some
assets, at least over certain periods of time. Allowing at most one change-point under H0

leads to the acceptance of the change-point model in most cases.
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Heyde, C. C., and Dai, W. (1996). On the robustness to small trends of estimation based
on the smoothed periodogram. Journal of Time Series Analysis, 17, 141-150.

Hidalgo, J., and Robinson, P. M. (1996). Testing for structural change in a long-memory
enviornment. Journal of Econometrics, 70, 159-174.

Jach, A., and Kokoszka, P. (2008). Wavelet domain test for long–range dependence in
the presence of a trend. Statistics. (Forthcoming)
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Mikosch, T., and Stărică, C. (2002). Long-range dependence effects and ARCH modeling.
In P. Doukhan, G. Oppenheim, and M. S. Taqqu (Eds.), Theory and Applications of
long-range Dependence (p. 439-459). Boston: Birkhäuser.
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Table 8: Observed values of the statistics Mn for stock indices. The asterisks *, ** and
*** indicate, respectively, rejection at 10%, 5% and 1% levels.

Index Period Size Mn

DJIA 1/1/1992 - 12/31/1999 2021 1.30
DJIA 7/1/1998 - 6/30/2006 2013 2.01∗∗∗

DJC 1/1/1992 - 12/31/1999 2022 0.79
DJC 7/1/1998 - 6/30/2006 2013 1.21
DJT 1/1/1992 - 12/31/1999 2022 1.37∗

DJT 7/1/1998 - 6/30/2006 2013 1.07
NASDAQ 100 1/1/1992 - 12/31/1999 2022 1.22
NASDAQ 100 7/1/1998 - 6/30/2006 2013 3.83∗∗∗

NASDAQ COM 1/1/1992 - 12/31/1999 2022 1.22
NASDAQ COM 7/1/1998 - 6/30/2006 2006 3.98∗∗∗

S&P 1/1/1992 - 12/31/1999 2022 1.40∗

S&P 7/1/1998 - 6/30/2006 2013 2.32∗∗∗

Russell 1000 12/10/1992 - 12/31/2000 2032 1.44∗

Russell 1000 7/1/1998 - 6/30/2006 2009 2.22∗∗∗

Nikkei 225 1/1/1992 - 12/31/1999 1973 1.08
Nikkei 225 7/1/1998 - 6/30/2006 1974 1.05
Straits Times 1/1/1992 - 12/31/1999 2006 1.06
Straits Times 7/1/1998 - 6/30/2006 2024 1.30
DAX 30 1/1/1992 - 12/31/1999 2009 0.78
DAX 30 7/1/1998 - 6/30/2006 2035 1.15
CAC 40 1/1/1992 - 12/31/1999 2003 0.91
CAC 40 7/1/1998 - 6/30/2006 2040 1.18
SMI 1/1/1992 - 12/31/1999 2014 0.82
SMI 7/1/1998 - 6/30/2006 2018 0.92
FTSE 100 1/1/1992 - 12/31/1999 2022 1.17
FTSE 100 7/1/1998 - 6/30/2006 2020 1.22
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Table 9: Observed values of the statistics Mn for shares in the financial sector. The
asterisks *, ** and *** indicate, respectively, rejection at 10%, 5% and 1% levels.

Company Period Size Mn

Credit Suisse 1/1/1992 - 12/31/1999 2022 1.19
Credit Suisse 7/1/1998 - 6/30/2006 2013 1.24
Citigroup 1/1/1992 - 12/31/1999 2022 0.91
Citigroup 7/1/1998 - 6/30/2006 2013 1.16
Wells Fargo & Co 1/1/1992 - 12/31/1999 2022 1.00
Wells Fargo & Co 7/1/1998 - 6/30/2006 2013 1.24
Bank of America 1/1/1992 - 12/31/1999 2022 1.22
Bank of America 7/1/1998 - 6/30/2006 2013 1.04
Bank of New York 1/1/1992 - 12/31/1999 2006 0.69
Bank of New York 7/1/1998 - 6/30/2006 2007 1.08
Protective Life 1/1/1992 - 12/31/1999 2043 1.40∗

Protective Life 7/1/1998 - 6/30/2006 2013 1.60∗∗

Presidential Life 1/1/1992 - 12/31/1999 2020 1.41∗

Presidential Life 7/1/1998 - 6/30/2006 2007 1.53∗∗

Provident Bank 1/1/1992 - 12/31/1999 2021 1.60∗∗

Provident Bank 7/1/1998 - 6/30/2006 2006 1.65∗∗

Bank of Hawaii 1/1/1992 - 12/31/1999 2022 1.00
Bank of Hawaii 7/1/1998 - 6/30/2006 2007 1.82∗∗∗

Zions Bank 1/1/1992 - 12/31/1999 2011 1.00
Zions Bank 7/1/1998 - 6/30/2006 2006 1.51∗∗

UMB Financial 1/1/1992 - 12/31/1999 2022 1.93∗∗∗

UMB Financial 7/1/1998 - 6/30/2006 2013 1.48∗∗

American Express 1/1/1992 - 12/31/1999 2022 1.30
American Express 7/1/1998 - 6/30/2006 2007 1.06
AmericanCredit 1/1/1992 - 12/31/1999 2022 1.29
AmericanCredit 7/1/1998 - 6/30/2006 2007 1.69∗∗
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Table 10: Observed values of the statistics Mn for shares in the retail sector. The asterisks
*, ** and *** indicate, respectively, rejection at 10%, 5% and 1% levels.

Company Period Size Mn

Dillard’s 1/1/1992 - 12/31/1999 2022 1.73∗∗∗

Dillard’s 7/1/1998 - 6/30/2006 2007 1.52∗∗

JC Penney 1/1/1992 - 12/31/1999 2022 1.17
JC Penney 7/1/1998 - 6/30/2006 2007 1.67∗∗

Gottschalks 1/1/1992 - 12/31/1999 2004 1.54∗∗

Gottschalks 7/1/1998 - 6/30/2006 2003 1.79∗∗∗

Big Lots 1/1/1992 - 12/31/1999 2022 1.12
Big Lots 7/1/1998 - 6/30/2006 2005 1.26
McDonald’s 1/1/1992 - 12/31/1999 2022 0.69
McDonald’s 7/1/1998 - 6/30/2006 2007 1.10
Ruby Tuesday 1/1/1992 - 12/31/1999 2022 0.97
Ruby Tuesday 7/1/1998 - 6/30/2006 2007 0.65
Luby’s 1/1/1992 - 12/31/1999 2022 2.33∗∗∗

Luby’s 7/1/1998 - 6/30/2006 2007 0.94
Wal-Mart 1/1/1992 - 12/31/1999 2022 0.71
Wal-Mart 7/1/1998 - 6/30/2006 2013 1.16
TJX 1/1/1992 - 12/31/1999 2022 0.87
TJX 7/1/1998 - 6/30/2006 2007 1.14
Target 1/1/1992 - 12/31/1999 2022 0.88
Target 7/1/1998 - 6/30/2006 2013 1.14
Family Dollar 1/1/1992 - 12/31/1999 2022 1.11
Family Dollar 7/1/1998 - 6/30/2006 2007 1.58∗∗

Best Buy 1/1/1992 - 12/31/1999 2022 0.91
Best Buy 7/1/1998 - 6/30/2006 2013 0.73
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Table 11: Observed values of the statistics Mn for shares in the oil and manufacturing
sectors. The asterisks *, ** and *** indicate, respectively, rejection at 10%, 5% and 1%
levels.

Company Period Size Mn

Williams 1/1/1992 - 12/31/1999 2022 0.65
Williams 7/1/1998 - 6/30/2006 2006 1.12
Exxon Mobil 1/1/1992 - 12/31/1999 2022 1.50∗∗

Exxon Mobil 7/1/1998 - 6/30/2006 2013 1.10
Abraxas Petroleum 1/1/1992 - 12/31/1999 1631 1.12
Abraxas Petroleum 7/1/1998 - 6/30/2006 2005 1.16
Royal Dutch Shell 1/1/1992 - 12/31/1999 2022 1.45∗

Royal Dutch Shell 7/1/2002 - 6/30/2006 2006 0.94
Chevron 1/1/1992 - 12/31/1999 2022 1.26
Chevron 7/1/1998 - 6/30/2006 2013 1.20
General Motors 1/1/1992 - 12/31/1999 2022 1.67 ∗∗

General Motors 7/1/1998 - 6/30/2006 2013 1.28
Honda Motor 1/1/1992 - 12/31/1999 2022 1.68∗∗

Honda Motor 7/1/1998 - 6/30/2006 2007 1.08
Ford Motor 1/1/1992 - 12/31/1999 2022 1.00
Ford Motor 7/1/1998 - 6/30/2006 2013 1.06
Maxwell Technologies 1/1/1992 - 12/31/1999 2022 1.12
Maxwell Technologies 7/1/1998 - 6/30/2006 2013 0.92
SL Industries 1/1/1992 - 12/31/1999 1988 1.15
SL Industries 7/1/1998 - 6/30/2006 1999 1.62∗∗

Vishay Intertechnology 1/1/1992 - 12/31/1999 2022 1.63∗∗

Vishay Intertechnology 7/1/1998 - 6/30/2006 2013 1.77∗∗∗

WMS Industries 1/1/1992 - 12/31/1999 2022 1.26
WMS Industries 7/1/1998 - 6/30/2006 2006 1.06
Methode Electronics 1/1/1992 - 12/31/1999 2022 1.09
Methode Electronics 7/1/1998 - 6/30/2006 2007 1.10
International Game technology 1/1/1992 - 12/31/1999 2022 0.93
International Game technology 7/1/1998 - 6/30/2006 2007 1.16
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