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Abstract: This paper provides the estimation of the scale parameter of the
exponential distribution under multiply type-II censoring. Using generalized
non-informative prior and natural conjugate prior, Bayes estimator and ap-
proximate Bayes estimators of the scale parameter have been obtained under
square error loss function. The proposed Bayes estimators and approximate
Bayes estimators are compared with the estimators proposed by Singh et al.
(2005) and Balasubramanian and Balakrishnan (1992) on the basis of their
simulated risks under square error loss function of 1000 randomly generated
Monte Carlo samples.

Zusammenfassung:Dieser Aufsatz bietet Schätzer des Skalenparameters
der Exponentialverteilung unter multipler Type-II Zensierung an. Unter Ver-
wendung eines generalisierten nicht-informativen wie auch eines natürlichen
konjugierten Priors erḧalt man Bayes- und approximative Bayes-Schätzer des
Skalenparameters unter quadratischer Verlustfunktion. Die vorgeschlagenen
Scḧatzer werden bez̈uglich ihrer simulierten Risken unter quadratischer Ver-
lustfunktion von 1000 zuf̈allig generierten Monte Carlo Stichproben mit den
Scḧatzern aus Singh et al. (2005) und Balasubramanian and Balakrishnan
(1992) verglichen.

Keywords: Exponential Distribution, Maximum Likelihood Estimation, Non-
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1 Introduction

In life testing experiments, the experimenter may not be always in a position to observe
the life times of all items put on test because of time limitations and other restrictions on
the data collection. Let us suppose that out ofn items only the firstl have been observed
and those of the remaining(n − l) components are unobserved or missing. This type of
censoring is known as right type-II censoring. Another way to get censored data is to
observe the largestm life times. In this case the life times of the first(n−m) components
are missing. Such censoring is known as a left type-II censoring scheme. Moreover, if left
and right censoring appears together, this is known as doubly type-II censoring. A reverse
situation to doubly type-II censoring is mid censoring where the data on two extremes
are available but some middle observations are censored. Furthermore, if mid censoring
arises amongst the doubly censored observations, the scheme is known as a multiply
type-II censoring scheme. Balakrishnan (1990) discussed a more general version of this
censoring scheme where ther1th, r2th, . . . , rkth, (1 ≤ ri ≤ ri+1 ≤ n) failure times are
only available.
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Under classical inference, procedures are available to deal with the complete and with
certain censored samples. It is noted that under multiply type-II censoring even the likeli-
hood estimator for a one parameter exponential distribution does not exist in closed form.
Balasubramanian and Balakrishnan (1992) proposed certain approximations to solve the
likelihood equations and, thus, proposed an approximate likelihood estimator for the pa-
rameter of an exponential distribution under multiply type-II censoring. For the same
situation Singh et al. (2005) proposed to approximate the likelihood function to obtain an
approximate likelihood estimator in closed form.

In a separate study Singh and Kumar (2005a) assumed that a point guess about the
parameter is available. They proposed the use of shrinkage estimators for multiply type-
II censored samples. A basic question against the use of such a shrinkage estimator is
that as soon as we say that we have a point guessθ0 of θ with confidenceα (known or
unknown), inherently we assume that the value ofθ other thanθ0 is also possible with
confidence1−α. Thus, the very basic assumption of the shrinkage technique justifies the
random character of the parameter. Moreover, summarizing all prior information in form
of a single point guess has also been questioned by various authors. Alternatively it seems
more reasonable to consider the problem under a Bayesian set-up. No doubt the choice
of a prior distribution is our next concern. In fact, it is no serious problem, because when
very little or no information onθ is priori available, the use of a non-informative prior for
has been suggested by Singh and Kumar (2005b). Among the informative priors, the most
widely used and perhaps the most convenient one is the natural conjugate prior. This class
of priors has a number of optimal properties, most important being mathematical tractable
and rich, see Martz and Waller (1982). The aim of this paper is to find the Bayes estimator
for the exponential distribution using a non-informative and a natural conjugate prior for
multiply type-II censored samples. It also aims to use the approximate likelihood function
obtained by Singh et al. (2005) to find approximate Bayes estimators and then compare
these with the exact Bayes estimators (although not available in closed form and thus
evaluated only numerically).

In the next section this paper describes a Bayesian estimation procedure for the param-
eter of an exponential distribution based on a multiply type-II censored sample assuming
a non-informative and a natural conjugate prior. The Bayes estimator has been obtained
for both exact likelihood and approximate likelihood given by Singh et al. (2005). Ap-
proximate maximum likelihood estimates (MLEs) are also mentioned and compared with
Bayes estimators. The Bayes estimates and likelihood estimates for an example from
Lawless (1982) has been obtained in Section 3 for various values of the hyper parameters.
This has been done for illustration of the proposed procedure only. Finally, the proposed
estimators are compared with approximate MLEs for their risks on the basis of a Monte
Carlo simulation study. A brief conclusion is given at the end.

2 Bayes Estimation

Consider a one parameter exponential distribution with probability density function

f(x|θ) =
1

θ
exp(−x/θ) , x ≥ 0 , θ > 0 , (1)
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and cumulative distribution function

F (x|θ) = 1− exp(−x/θ) , x ≥ 0 , θ > 0 .

Here,θ is the expected life-time.
Supposen items, the life times of which follow an exponential distribution, are placed

on test and ther1th, r2th, . . . , rkth failure times are recorded. Let therith failure time
Xri:n be denoted byYi. Thus,Y = (Y1, . . . , Yk) is the multiply type-II censored sample
available from (1). The likelihood function for such a sample is

L(Y |θ) =
n!

s!t!
∏k−1

i=1 ui

θ−k
(
1− e−Y1/θ

)t
k−1∏
i=1

(
e−Yi/θ − e−Yi+1/θ

)ui
e−Sk/θ , (2)

wheres = n− rk, t = r1 − 1, ui = ri+1 − ri − 1, andSk =
∑k

i=1 Yi + (n− rk)Yk.

2.1 Non-Informative Prior

A generalized non-informative prior for the parameterθ (see Martz and Waller, 1982)
may be taken as

g(θ) ∝ 1

θc
, c > 0 . (3)

This contains Jeffery’s non-informative prior as a special case whenc = 1.
The posterior distribution ofθ can be obtained by combining the prior distribution and

the likelihood via Bayes’ theorem. This can be written as

P (θ|Y ) =
L(Y |θ)g(θ)∫∞

0
L(Y |θ)g(θ)dθ

. (4)

On solving (4) with help of (2) and (3), we have

P1(θ|Y ) =
θ−(k+c)

(
1− e−Y1/θ

)t ∏k−1
i=1

(
e−Yi/θ − e−Yi+1/θ

)ui e−Sk/θ

∫∞
0

θ−(k+c) (1− e−Y1/θ)
t ∏k−1

i=1 (e−Yi/θ − e−Yi+1/θ)
ui e−Sk/θdθ

. (5)

It is well known that the Bayes estimator ofθ under squared error loss is the posterior
mean

θ̂ =

∫
θP (θ|Y )dθ . (6)

SubstitutingP1(θ|Y ) from (5) in (6), it reduce to

θ̂1B =

∫∞
0

θ−(k+c−1)
(
1− e−Y1/θ

)t ∏k−1
i=1

(
e−Yi/θ − e−Yi+1/θ

)ui e−Sk/θdθ∫∞
0

θ−(k+c) (1− e−Y1/θ)
t ∏k−1

i=1 (e−Yi/θ − e−Yi+1/θ)
ui e−Sk/θdθ

. (7)

It may be noted here that equations (5) and (7) do not simplify to nice closed forms, due
to the complex form of the likelihood function given in (2). Therefore, we propose to use
a numerical integration method (namely the Gauss-Laguerre formula) for the evaluation
of the integrals involved in these expressions.
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We have seen that neither the posterior distribution nor the Bayes estimate simplify
to a closed form. However, while obtaining the MLE ofθ, it was noted by Singh et al.
(2005) that using the approximate likelihood

L(Y |θ) ∝ n!

s!t!
∏k−1

i=1 ui

θ−(k+t+
Pk−1

i=1 ui)e−1/θ(sk+
Pk−1

i=1 Yiui)Y t
1

k−1∏
i=1

(Yi+1 − Yi)
ui (8)

instead of (2) added mathematical ease in further calculations and, in turn, provided a
closed form for the approximate MLE. Tempted by this thought, we therefore propose to
use (8) instead of (2) to find an approximate posterior and consequently an approximate
Bayes estimator. On solving (4) with help of (5) and (8), we get

P2(θ|Y ) =
θ−(k+c+t+

Pk−1
i=1 ui)e−1/θ(sk+

Pk−1
i=1 Yiui)

(
sk +

∑k−1
i=1 Yiui

)−(k+c+t−1+
Pk−1

i=1 ui)
Γ

(
k + c + t− 1 +

∑k−1
i=1 ui

) . (9)

SubstitutingP2(θ|Y ) from (9) in (6), we get the approximate Bayes estimator ofθ as

θ̂1AB =
sk +

∑k−1
i=1 Yiui

k + c + t− 2 +
∑k−1

i=1 ui

. (10)

Needless to mention thatθ̂1AB is non-negative and linear in theYi’s.

2.2 Natural Conjugate Prior

A natural conjugate prior for the parameterθ of the exponential distribution is well known
to be an inverted gamma prior, given as

g(θ) ∝ θ−(b+1)e−a/θ , a , b > 0 , (11)

where the hyper parametersa andb are chosen to reflect our beliefs. It may also be noted
that (11) is a proper prior for a suitable choice of constants of proportionality provided
a > 0. Fora = 0, (11) reduce to a general class of improper (quasi) priors. Moreover, if
botha andb are taken equal to zero, it reduces to the well known Jeffrey’s non-informative
prior.

Substitutingg(θ) from (11) andL(Y |θ) from (2), we get the posterior distribution
under conjugate prior as

P3(θ|Y ) =
θ−(k+b+1)

(
1− e−Y1/θ

)t ∏k−1
i=1

(
e−Yi/θ − e−Yi+1/θ

)ui e−(a+Sk)/θ

∫∞
0

θ−(k+b+1) (1− e−Y1/θ)
t ∏k−1

i=1 (e−Yi/θ − e−Yi+1/θ)
ui e−(a+Sk)/θdθ

. (12)

Therefore, the Bayes estimator for conjugate prior can be obtained by substitutingP3(θ|Y )
from (12) in (6), which reduces after simplification to

θ̂2B =

∫∞
0

θ−(k+b)
(
1− e−Y1/θ

)t ∏k−1
i=1

(
e−Yi/θ − e−Yi+1/θ

)ui e−(a+Sk)/θdθ∫∞
0

θ−(k+b+1) (1− e−Y1/θ)
t ∏k−1

i=1 (e−Yi/θ − e−Yi+1/θ)
ui e−(a+Sk)/θdθ

. (13)
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Once again, we see that due to the complex form of the exact likelihood, the posterior
distribution and the Bayes estimator do not reduce in nice closed forms and, therefore,
for solving (12) and (13), one can make use numerical of integration methods. On other
hand, if one uses the approximate likelihood given in (8) instead of the exact likelihood
given in (2), closed form expressions for the approximate posterior distribution and for
the Bayes estimator are obtained.

To get the approximate posterior for a conjugate prior, we substituteL(Y |θ) from (8)
andg(θ) from (11) in (4). After simplification, it reduces to

P4(θ|Y ) =
θ−(k+b+t+1+

Pk−1
i=1 ui)e−1/θ(a+sk+

Pk−1
i=1 Yiui)

(
a + sk +

∑k−1
i=1 Yiui

)−(k+b+t+
Pk−1

i=1 ui)
Γ

(
k + b + t +

∑k−1
i=1 ui

) .

To obtain the approximate Bayes estimator for a conjugate prior under squared error loss,
we substitute the approximate posterior given in (6) and, after simplification, the approx-
imate Bayes estimator is

θ̂2AB =
a + sk +

∑k−1
i=1 Yiui

k + b + t− 1 +
∑k−1

i=1 ui

. (14)

θ̂2AB is a linear function of theYi’s and its non-negativity is obvious. The approximate
MLE based on the approximate likelihood (8) as obtained by Singh et al. (2005) is

θ̂UA =
sk +

∑k−1
i=1 Yiui

k + t +
∑k−1

i=1 ui

.

The approximate MLE ofθ as proposed by Balasubramanian and Balakrishnan (1992) is

θ̂BL =

∑k−1
i=0 (δiYi + (1− δi)Yi+1)ui + Sk

k −∑k−1
i=0 uiγi

,

wherer0 = 0, Y0 = 0, pi = ri/(n + 1), qi = 1− pi, δi = qi/(qi − qi+1)− (qiqi+1)/(qi −
qi+1)

2 log(qi/(qi+1)) andγi = (qi+1 log qi+1 − qi log qi)/(qi − qi+1) + δi log qi + (1 −
δi) log qi+1, for i = 0, 1, . . . , k − 1. It may be noted that̂θUA, θ̂BL, θ̂1AB, andθ̂2AB are
linear functions of theYi’s and the non-negativity of all estimators is evident.

3 Illustrative Example

Consider the following multiply type-II censored data, which represents failure times in
minutes for a specific type of electrical insulation in an experiment in which the insulation
was subjected to a continuously increasing voltage stress (see Lawless, 1982, pp.138):

12.3, 21.8,−, 28.6, 43.2, 46.9,−, 75.3, 95.5, 98.1, 138.6,−
Here, twelve items were placed on a life-testing experiment and the third and seventh

observations are censored since the experimenter fail to observe their failure times. The
last observation is also censored since the experimentation was stopped as soon as the
eleventh failure occurred.
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Table 1: MLEs and Bayes estimates using a non-informative prior
c θ̂BL θ̂UA θ̂1B θ̂1AB

1 71.3462 69.7818 76.76 81.0454
2 71.3462 69.7818 69.7818 72.2881
3 71.3462 69.7818 63.9667 65.5515
4 71.3462 69.7818 59.0462 60.0841
5 71.3462 69.7818 54.8286 55.5301
6 71.3462 69.7818 51.1733 51.6995

Table 2: MLEs and Bayes estimates using a natural conjugate prior
a b θ̂BL θ̂UA θ̂2B θ̂2AB

1

1 71.3462 69.7818 69.8727 72.3791
2 71.3462 69.7818 64.05 65.6343
3 71.3462 69.7818 59.1231 60.1603
4 71.3462 69.7818 54.9 55.6007
5 71.3462 69.7818 51.24 51.7655
6 71.3462 69.7818 48.0375 48.5247

2

1 71.3462 69.7818 69.9636 72.4702
2 71.3462 69.7818 64.1333 65.7172
3 71.3462 69.7818 59.2 60.2364
4 71.3462 69.7818 54.9714 55.6713
5 71.3462 69.7818 51.3067 51.8315
6 71.3462 69.7818 48.1 48.5869

4

1 71.3462 69.7818 70.1455 72.6523
2 71.3462 69.7818 64.3 65.8829
3 71.3462 69.7818 59.3538 60.3887
4 71.3462 69.7818 55.1143 55.8124
5 71.3462 69.7818 51.44 51.9635
6 71.3462 69.7818 48.225 48.7112

Based on this sample, we calculated the exact Bayes estimatorθ̂1B given in (7) using
Gauss-Laguerre quadrature formula for various values of the hyper parameters. The ap-
proximate Bayes estimator̂θ1AB given in (10) has also been calculated. The estimates are
shown in Table 1 along with the approximate likelihood estimates discussed by Singh et
al. (2005).

For the multiply type-II censored sample mentioned above and considering a con-
jugate prior, we calculated the exact Bayes estimatesθ̂2B given in (13) using Gauss-
Laguerre quadrature for various values of the hyper parameters. The approximate Bayes
estimatorθ̂2AB given in (14) has also been calculated for the same values of the hyper
parameters. The results have been summarized in Table 2 along with the approximate
likelihood estimates as given by Singh et al. (2005).

However, on the basis of a single sample, one should not conclude about the proper
choice of hyper parameters to be used for the estimates. And, therefore, for the complete
study of the performances of these estimators, we propose to study the estimators for their
long run use on the basis of their risks (expected loss over whole sample space) and the
same is given in the next section.
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4 Monte Carlo Simulation Study

It may be noted from the previous section that the approximate Bayes estimatorsθ̂1AB

and θ̂2AB are in closed forms and their risks can easily be calculated. The exact Bayes
estimatorŝθ1B andθ̂2B involve integral expressions and their risks can not be obtained in
closed forms. Therefore, we propose to study the behavior of the estimators on the basis of
their simulated risks. For this purpose, a Monte Carlo study of 1000 samples each of sizes
10, 20 and 30 was conducted forθ = 0.5(0.5)10. To cover different censoring fractions,
we assigned different values tok and to theri’s (e.g., fork = 3, ri is assigned to1, 2, 3;
1, 3, 5; 6, 7, 8; and2, 4, 7, respectively, whereas fork = 5, ri is chosen as1, 2, 5, 6, 8;
3, 4, 7, 8, 9; 1, 2, 3, 4, 5; and6, 7, 8, 9, 10, respectively, whenn = 10).

4.1 Comparison of Risks Using a Non-Informative Prior

The simulated risks under squared error loss for the Bayes estimatorθ̂1B and θ̂1AB have
been obtained for a number of values of the hyper parameterc. The values considered for
c are1, 2, 3, 4, 5, 6. The curves for the risk of the estimators were traced for the variation
in the values ofc keepingn, θ, k, andri fixed. It was noted that the shapes of the risks
curves remains more or less same for the variation in the values ofn andθ. Therefore the
curves of risks are only partially shown in Figure 1 forn = 10, θ = 5, andri assigned to
1, 2, 3, 4, 5; 1, 2, 5, 6, 8; 3, 4, 7, 8, 9; and6, 7, 8, 9, 10, respectively. It may be noted from
these figures that if early failures constitute the observed values, for a wide range of values
of c, the Bayes estimator has smaller risks than MLEs. As more and more high order
failures are included in the observed values (keeping the total number of observations
fixed), this range ofc decreases. It is noted from an extensive study for various choice of
n, θ, andri that most often the Bayes estimators have smallest risk ifc is close to 3 for
θ̂1AB and 2 forθ̂1B. It is also noted from the results that the risks of Bayes estimators are
less than those of the approximate MLEs if early failures are observed. Contrary to it, if
only high order failures are observed, there may not be any gain or may be marginal gain
in the sense of reduction in risk due to the use of Bayes estimators even with a proper
choice of hyper parameterc. It may be interesting to note here that if high order failures
constitute the observations, the approximate Bayes estimator has smaller risk than that
of the exact Bayes estimator. On the other hand, if early failures are included in the
observations, the exact Bayes estimator has smaller risk for small values ofc whereas for
large values ofc, the approximate Bayes estimator has smaller risk.

The curves for the risk of the estimators were also traced for variation in the values
of θ keeping the other parameters fixed. It is noted from the figures that the relative
positions of the risk curves for various estimators remain the same for variation inn,
although the risks decrease in magnitude asn increases. However, the type of observation
(early failures or high order failures) in the sample effects the relative position of the risk
curves more than the number of observations. It has also been noted above that the choice
of c does effect the behavior of risks but the values ofc close to 3 provide smaller risk
for Bayes estimators and for large and small values ofc, the risk of Bayes estimators
become larger than the risk of approximate MLEs. Therefore, in Figure 2 we have shown
the risk of the estimators only forn = 10, c = 1, 3, 6; θ = 2, 5, 10; k = 5, andri set
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Figure 1: Risk of estimators forn=10, θ=5, if ri =1, 2, 3, 4, 5 or 1, 2, 5, 6, 8 (above), and
ri = 3, 4, 7, 8, 9 or 6, 7, 8, 9, 10 (below). θ̂BL and θ̂UA shown as dotted and dashed lines;
θ̂1AB andθ̂1B as solid lines with triangle and box symbols, respectively.

Figure 2: Risk of estimators forn = 10, if ri = 1, 2, 3, 4, 5 or 1, 2, 5, 6, 8 (above), and
ri =3, 4, 7, 8, 9 or 6, 7, 8, 9, 10 (below).
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as before. However, the following discussion is based on the extensive simulation study
as mentioned in the beginning of this section. An obvious finding was noted by us that
asθ increases the risk of all the estimators increase but the rate of increase varies from
estimator to estimator. It is further noted that the risk of the approximate Bayes estimate
with c = 3 is often quite close the risk of the approximate MLEθ̂UA. If more early failures
are observed in the sample, the risk of the approximate Bayes estimate is slightly smaller
than the risk of̂θUA. However, if high order failures are observed the situation is reversed.
It is also noted that if more early failures constitute the observations, the exact Bayes
estimate withc = 2 has smaller risk than those of the approximate Bayes estimator and
the approximate MLE. But this trend is changed if some or more of high order failures
were taken in the observations, keeping the total number of observations fixed.

4.2 Comparison of Risks Using a Natural Conjugate Prior

It is obvious that the risk of Bayes estimators using a conjugate prior will depend on the
choice of the hyper parametersa andb in addition to the parametersn, k, andri. The risk
of the estimators has been simulated for various choices of the parameters. The values
considered for simulating the risks are0.5, 1(1)8.0 for botha andb. It is noted from the
results that a change in the values ofn andk does not effect the relative position of the
risk curves for fixed values of other parameters and hyper parameters, although the risk,
in general, decreases asn andk increase. Therefore, the curves have been shown for
n = 10 andk = 5 only. As seen in the previous subsection the relative position of the
risk curves is affected by the type of observations (early or high order failures) included
in the observed sample. Thus, we have consideredri as before, for showing the behavior
of the risk curves. Figure 3 show the variation in the risks with respect to a change in the
value ofθ = 2, 5, 10 for fixed values of the other parameters. Herea andb both are set to
4. It can be seen that asθ increases the risk of all estimators increases. Fora = b = 4 the
risk of θ̂2AB is smaller than that of̂θ2B in almost all cases. It is also seen that if high order
failures are included, the risk of all estimators decreases but the rate of decrease varies
from estimator to estimator. A faster decrease is noticed for the approximate MLE than
for the Bayes estimators. Among the Bayes estimators the rate of decrease is larger for
θ̂2AB than forθ̂2B. If most of the observations are high order failure times,θ̂UA has risk
either close to or smaller than the risk ofθ̂2AB.

To study the effect of the hyper parametersa andb on the risks, we traced the risk for
various values of a hyper parameter keeping the other parameters fixed. For variation in
the values ofb, the risk curves are shown partially in Figure 4. The values ofn, θ, anda
are fixed arbitrarily at 10, 5, and 4, respectively, andb = 0.5(1)5. It may be seen from
these figures that asb increases, the risk of Bayes estimators decrease first, attains minima
and then increase. It may also be seen that except for small values ofb, the risk of the exact
Bayes estimator is always larger than that of the approximate Bayes estimator, although
for large values ofb, the risk of the approximate Bayes estimator becomes greater than the
risk of θ̂UA. On the other hand, to study the effect of the hyper parametera on the risk of
Bayes estimators, we traced the risk for various values ofa keeping the other parameters
fixed. Such risk curves are partially summarized in Figure 5 forn = 10, b = 4, andθ = 5.
It is noted from the risk curves that in the considered range of variation ofa (i.e., 1 to 10)
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Figure 3: Risk of estimators forn=10, a=b=4, if ri =1, 2, 3, 4, 5 or 1, 2, 5, 6, 8 (above),
andri = 3, 4, 7, 8, 9 or 6, 7, 8, 9, 10 (below). θ̂BL and θ̂UA shown as dotted and dashed
lines; θ̂2AB andθ̂2B as solid lines with triangle and box symbols, respectively.

Figure 4: Risk of estimators forn = 10, a = 4, θ = 5, if ri = 1, 2, 3, 4, 5 or 1, 2, 5, 6, 8
(above), andri = 3, 4, 7, 8, 9 or 6, 7, 8, 9, 10 (below). θ̂BL and θ̂UA shown as dotted and
dashed lines;̂θ2AB andθ̂2B as solid lines with triangle and box symbols, respectively.
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Figure 5: Risk of estimators forn = 10, b = 4, θ = 5, if ri = 1, 2, 3, 4, 5 or 1, 2, 5, 6, 8
(above), andri = 3, 4, 7, 8, 9 or 6, 7, 8, 9, 10 (below). θ̂BL and θ̂UA shown as dotted and
dashed lines;̂θ2AB andθ̂2B as solid lines with triangle and box symbols, respectively.

the risk of the Bayes estimators decreases asa increases, though the rate of decrease in
the risk is more when the sample consists of more early failure times. It may be worth
to mention here that the decreasing trend of the risk of Bayes estimator continues up to
moderately larger values ofa. However, ifa further increases (quite often greater than
20), the risk of the Bayes estimators start increasing. It is also noted from the detailed
study that the value ofa, from where the decreasing trend of risk of Bayes estimators
changes to increasing trend, is smaller when the observed sample values include more
early failure times than those situations where sample observation contain more of higher
order failure times. It may be worth to mention that ifθ is small the risks of all estimators
are small in the magnitude but for small choices of the values ofa andb, the risk of the
Bayes estimators can be made smaller than that of the approximate MLE. On the other
hand, ifθ is moderate or large, a moderate value of1 < b < 3 and for a wide range of
large values of5 < a < 20, the risk of the approximate Bayes estimator is smaller than
the risk of the other estimators.

5 Conclusion
From the above discussion it is clear that under the classical criterion of the comparison
(i.e., risk defined as the average loss over whole sample space), the Bayes estimators pro-
posed here provide a flexible estimator in the sense that by a proper choice of the hyper
parameter, the Bayes estimators may have smaller risk than the approximate MLE. If one
is interested in using only the sample information, thenθ̂1AB with c = 3 is recommended
to be used because it is based on a non-informative prior and provides small risk. This
recommendation is valid only if the sample does not contain mostly higher ordered failure
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times. If sample observations are left type-II censored, the use ofθ̂UA is recommended. It
is also mentioned here that the Bayes estimator for conjugate prior offers a larger flexibil-
ity. It is observed that ifθ is small, small values ofa andb provide a reduction in risk due
to the use of the Bayes estimators whereas ifθ is large, moderate value ofa andb may be
required. The risk of the approximate Bayes estimate, however, improves for a wide range
of a andb between 2 and 3, particularly when the sample includes mainly early failures.
Therefore, one can recommend to useθ̂2AB with 2 < b < 3 and6 < a < 14. If the sample
includes early failures andθ is not small, comparatively small values ofa are going to be
profitable. However, if sample includes higher order failure times, approximate Bayes
estimates with largea and a moderate value ofb can be used or in such situation use of
θ̂UA can be also recommended.
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