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Abstract: This paper provides the estimation of the scale parameter of the
exponential distribution under multiply type-1l censoring. Using generalized
non-informative prior and natural conjugate prior, Bayes estimator and ap-
proximate Bayes estimators of the scale parameter have been obtained under
square error loss function. The proposed Bayes estimators and approximate
Bayes estimators are compared with the estimators proposed by Singh et al.
(2005) and Balasubramanian and Balakrishnan (1992) on the basis of their
simulated risks under square error loss function of 1000 randomly generated
Monte Carlo samples.

Zusammenfassung: Dieser Aufsatz bietet Sélizer des Skalenparameters
der Exponentialverteilung unter multipler Type-Il Zensierung an. Unter Ver-
wendung eines generalisierten nicht-informativen wie auch einéslichen
konjugierten Priors et man Bayes- und approximative Bayes-&zier des
Skalenparameters unter quadratischer Verlustfunktion. Die vorgeschlagenen
Schatzer werden bemlich ihrer simulierten Risken unter quadratischer Ver-
lustfunktion von 1000 zlig generierten Monte Carlo Stichproben mit den
Schatzern aus Singh et al. (2005) und Balasubramanian and Balakrishnan
(1992) verglichen.

Keywords: Exponential Distribution, Maximum Likelihood Estimation, Non-
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1 Introduction

In life testing experiments, the experimenter may not be always in a position to observe
the life times of all items put on test because of time limitations and other restrictions on
the data collection. Let us suppose that out aiems only the first have been observed

and those of the remaining — /) components are unobserved or missing. This type of
censoring is known as right type-1l censoring. Another way to get censored data is to
observe the largest life times. In this case the life times of the fifst—m) components

are missing. Such censoring is known as a left type-Il censoring scheme. Moreover, if left
and right censoring appears together, this is known as doubly type-Il censoring. A reverse
situation to doubly type-Il censoring is mid censoring where the data on two extremes
are available but some middle observations are censored. Furthermore, if mid censoring
arises amongst the doubly censored observations, the scheme is known as a multiply
type-Il censoring scheme. Balakrishnan (1990) discussed a more general version of this
censoring scheme where thgh, roth, ... rith, 1 < r; < 11 < n) failure times are

only available.
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Under classical inference, procedures are available to deal with the complete and with
certain censored samples. It is noted that under multiply type-Il censoring even the likeli-
hood estimator for a one parameter exponential distribution does not exist in closed form.
Balasubramanian and Balakrishnan (1992) proposed certain approximations to solve the
likelihood equations and, thus, proposed an approximate likelihood estimator for the pa-
rameter of an exponential distribution under multiply type-ll censoring. For the same
situation Singh et al. (2005) proposed to approximate the likelihood function to obtain an
approximate likelihood estimator in closed form.

In a separate study Singh and Kumar (2005a) assumed that a point guess about the
parameter is available. They proposed the use of shrinkage estimators for multiply type-
Il censored samples. A basic question against the use of such a shrinkage estimator is
that as soon as we say that we have a point gaes$ 6 with confidencex (known or
unknown), inherently we assume that the valué atther tharnd, is also possible with
confidencd — «. Thus, the very basic assumption of the shrinkage technique justifies the
random character of the parameter. Moreover, summarizing all prior information in form
of a single point guess has also been questioned by various authors. Alternatively it seems
more reasonable to consider the problem under a Bayesian set-up. No doubt the choice
of a prior distribution is our next concern. In fact, it is no serious problem, because when
very little or no information ord is priori available, the use of a non-informative prior for
has been suggested by Singh and Kumar (2005b). Among the informative priors, the most
widely used and perhaps the most convenient one is the natural conjugate prior. This class
of priors has a number of optimal properties, most important being mathematical tractable
and rich, see Martz and Waller (1982). The aim of this paper is to find the Bayes estimator
for the exponential distribution using a non-informative and a natural conjugate prior for
multiply type-1l censored samples. It also aims to use the approximate likelihood function
obtained by Singh et al. (2005) to find approximate Bayes estimators and then compare
these with the exact Bayes estimators (although not available in closed form and thus
evaluated only numerically).

In the next section this paper describes a Bayesian estimation procedure for the param-
eter of an exponential distribution based on a multiply type-Il censored sample assuming
a non-informative and a natural conjugate prior. The Bayes estimator has been obtained
for both exact likelihood and approximate likelihood given by Singh et al. (2005). Ap-
proximate maximum likelihood estimates (MLES) are also mentioned and compared with
Bayes estimators. The Bayes estimates and likelihood estimates for an example from
Lawless (1982) has been obtained in Section 3 for various values of the hyper parameters.
This has been done for illustration of the proposed procedure only. Finally, the proposed
estimators are compared with approximate MLEs for their risks on the basis of a Monte
Carlo simulation study. A brief conclusion is given at the end.

2 Bayes Estimation

Consider a one parameter exponential distribution with probability density function

Felh) = gexp(~a/6), +20,6>0, (1)
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and cumulative distribution function
F(z|0) =1 —exp(—z/0), x>0,0>0.

Here,d is the expected life-time.

Suppose: items, the life times of which follow an exponential distribution, are placed
on test and theth, roth, ..., r.th failure times are recorded. Let thgh failure time
X,,.n» be denoted by;. Thus,Y = (Y3,...,Y}) is the multiply type-1l censored sample
available from (1). The likelihood function for such a sample is

k—l
n! t N
sit! H g 11
wheres =n — 1y, t =1 — Lug =141 — 1 — 1, andSy = Y0 Y+ (n — 1p,) Vi

2.1 Non-Informative Prior
A generalized non-informative prior for the paramefefsee Martz and Waller, 1982)
may be taken as

g(@)oc%, c>0. (3)
This contains Jeffery’s non-informative prior as a special case when.

The posterior distribution af can be obtained by combining the prior distribution and
the likelihood via Bayes’ theorem. This can be written as

L(Y]0)g(0)
POY) = —= (4)
Joo L(Y10)g(0)do
On solving (4) with help of (2) and (3), we have
g—(k+e) (1 _ o= Y1/0\ TTFL (o Yi/0 _ o=Yir1/0)" o—Si/0
P1(9|Y> ( ) Hz—l ( ) Ae ) (5)
J" G—(k+c) (1 — e—Yl/G) H o ( =Yi/0 _ o— i+1/9)“2 e—Sk/940

It is well known that the Bayes estimator éfunder squared error loss is the posterior
mean

0= / OP(6]Y)do . (6)
SubstitutingP; (8]Y") from (5) in (6), it reduce to

Ji22 0= Ure1) (1 — e M/OY T (7Yl — e=Yira/0)" =St/ g

=1

fooo f—(k+c) (1 — 6_Y1/9)t Hf;ll (e—Yz‘/@ — e z‘+1/9)“i e—Sk/0d0

(7)

01p =

It may be noted here that equations (5) and (7) do not simplify to nice closed forms, due
to the complex form of the likelihood function given in (2). Therefore, we propose to use
a numerical integration method (namely the Gauss-Laguerre formula) for the evaluation
of the integrals involved in these expressions.
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We have seen that neither the posterior distribution nor the Bayes estimate simplify
to a closed form. However, while obtaining the MLE @fit was noted by Singh et al.
(2005) that using the approximate likelihood

| P, P, k—1
L(Y|9) X %9—(14%&—0— f:l ui)e—l/é(sk—i- le Yiui)yvlt H (}/;4-1 . Y;)ul (8)
s, w P

instead of (2) added mathematical ease in further calculations and, in turn, provided a
closed form for the approximate MLE. Tempted by this thought, we therefore propose to
use (8) instead of (2) to find an approximate posterior and consequently an approximate
Bayes estimator. On solving (4) with help of (5) and (8), we get

g (rertr il ) =1/0(sit 1] Vi)

R (0lY) = f(k+c+t71+Pl.“_1u-) - )
( k=1v, i=1 % _ k-1
SubstitutingP,(6]Y") from (9) in (6), we get the approximate Bayes estimatat aé
k—1
A Skt Qi Yil
thap = B D in (10)

ket -2+ u

Needless to mention thé{AB IS non-negative and linear in thé's.

2.2 Natural Conjugate Prior

A natural conjugate prior for the paramefiesf the exponential distribution is well known
to be an inverted gamma prior, given as

g(0) < §=e=a? g b >0, (11)

where the hyper parameter&ndb are chosen to reflect our beliefs. It may also be noted
that (11) is a proper prior for a suitable choice of constants of proportionality provided
a > 0. Fora = 0, (11) reduce to a general class of improper (quasi) priors. Moreover, if
botha andb are taken equal to zero, it reduces to the well known Jeffrey’s non-informative
prior.

Substitutingg(#) from (11) andL(Y'|#) from (2), we get the posterior distribution
under conjugate prior as

g (D) (1 — e—Yl/e)t 1) (e7Yi/? — e—ml/e)“i o—(a+5k)/0

B0)Y) = — i — . (12)
fo G~ (k+b+1) (1 _ efyl/e) Hi:l (e*Yi/9 — e*YiJrl/g) i e—(a+Sk)/0]0

Therefore, the Bayes estimator for conjugate prior can be obtained by substiRytiy )
from (12) in (6), which reduces after simplification to

fo‘x’ @—(k+b+1) (1 — e—Yl/O)t Hfgll (e_Yz‘/G — e i+1/9)ui o—(a+5K)/049

(13)
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Once again, we see that due to the complex form of the exact likelihood, the posterior
distribution and the Bayes estimator do not reduce in nice closed forms and, therefore,
for solving (12) and (13), one can make use numerical of integration methods. On other
hand, if one uses the approximate likelihood given in (8) instead of the exact likelihood
given in (2), closed form expressions for the approximate posterior distribution and for
the Bayes estimator are obtained.

To get the approximate posterior for a conjugate prior, we substit{ited) from (8)
andg(#) from (11) in (4). After simplification, it reduces to

9_(k+b+t+1+P§;11 uZ) 6_1/9(a+5k+P§;11 quz)
P(0)Y) = P

1 (kb Ebu) '
<a+sk—|—z Yiu ) F<k+b+t+zllul>

To obtain the approximate Bayes estimator for a conjugate prior under squared error loss,
we substitute the approximate posterior given in (6) and, after simplification, the approx-
imate Bayes estimator is

A a+3k+z Yul
Ooap = -

(14)
éQAB is a linear function of thé&’;’s and its non-negativity is obvious. The approximate
MLE based on the approximate likelihood (8) as obtained by Singh et al. (2005) is

i s;ﬁ—Zf*ll Yiu;
kt+3 0

UA —

The approximate MLE of as proposed by Balasubramanian and Balakrishnan (1992) is

Zf:_ol@ Yi+(1 5Z)Yz‘+1)ui + Sk
k=30 i

whererg = 0,Yy = 0,p; =73/(n+ 1), ¢ = 1 — pi, 0s = ¢/ (@ — @iv1) — (0:i11) /(@ —
Gi+1)?10g(qi/(giv1)) andy; = (giy110g giy1 — gilog Ch‘)/(f]i - gh'+1)jL 0;log ¢ + (1—
0i)log qis1, fori = 0,1,...,k — 1. It may be noted thad 4, 051, 0145, andb,,p are
linear functions of the’;’s and the non-negativity of all estimators is evident.

GBL =

?

3 lllustrative Example

Consider the following multiply type-Il censored data, which represents failure times in

minutes for a specific type of electrical insulation in an experiment in which the insulation

was subjected to a continuously increasing voltage stress (see Lawless, 1982, pp.138):
12.3,21.8, —,28.6,43.2,46.9, —,75.3,95.5,98.1, 138.6, —

Here, twelve items were placed on a life-testing experiment and the third and seventh
observations are censored since the experimenter fail to observe their failure times. The
last observation is also censored since the experimentation was stopped as soon as the
eleventh failure occurred.



232 Austrian Journal of Statistics, Vol. 36 (2007), No. 3, 227-238

Table 1: MLEs and Bayes estimates using a non-informative prior
OBL O a 01B t14B
71.3462 69.7818 76.76 81.0454
71.3462 69.7818 69.7818 72.2881
71.3462 69.7818 63.9667 65.5515
71.3462 69.7818 59.0462 60.0841
71.3462 69.7818 54.8286 55.5301
6 71.3462 69.7818 51.1733 51.6995

ga s WNPFP-O

Table 2: MLEs and Bayes estimates using a natural conjugate prior
a b Opg O a o OoaB
71.3462 69.7818 69.8727 72.3791
71.3462 69.7818 64.05 65.6343
71.3462 69.7818 59.1231 60.1603
71.3462 69.7818 54.9 55.6007
71.3462 69.7818 51.24 51.7655
71.3462 69.7818 48.0375 48.5247
71.3462 69.7818 69.9636 72.4702
71.3462 69.7818 64.1333 65.7172
71.3462 69.7818 59.2 60.2364
71.3462 69.7818 54.9714 55.6713
71.3462 69.7818 51.3067 51.8315
71.3462 69.7818 48.1 48.5869
71.3462 69.7818 70.1455 72.6523
71.3462 69.7818 64.3 65.8829
71.3462 69.7818 59.3538 60.3887
71.3462 69.7818 55.1143 55.8124
71.3462 69.7818 51.44 51.9635
71.3462 69.7818 48.225 48.7112

=

N
OO, WNRPFPOOPRAWNREROOOGMAMWN

Based on this sample, we calculated the exact Bayes estir?n@tgiven in (7) using
Gauss-Laguerre quadrature formula for various values of the hyper parameters. The ap-
proximate Bayes estimatér . given in (10) has also been calculated. The estimates are
shown in Table 1 along with the approximate likelihood estimates discussed by Singh et
al. (2005).

For the multiply type-ll censored sample mentioned above and considering a con-
jugate prior, we calculated the exact Bayes estiméigsgiven in (13) using Gauss-
Laguerre quadrature for various values of the hyper parameters. The approximate Bayes
estimatords 4 given in (14) has also been calculated for the same values of the hyper
parameters. The results have been summarized in Table 2 along with the approximate
likelihood estimates as given by Singh et al. (2005).

However, on the basis of a single sample, one should not conclude about the proper
choice of hyper parameters to be used for the estimates. And, therefore, for the complete
study of the performances of these estimators, we propose to study the estimators for their
long run use on the basis of their risks (expected loss over whole sample space) and the
same is given in the next section.
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4 Monte Carlo Simulation Study

It may be noted from the previous section that the approximate Bayes estirfiatgrs

and HQAB are in closed forms and their risks can easily be calculated. The exact Bayes
estimatord, ; andd, involve integral expressions and their risks can not be obtained in
closed forms. Therefore, we propose to study the behavior of the estimators on the basis of
their simulated risks. For this purpose, a Monte Carlo study of 1000 samples each of sizes
10, 20 and 30 was conducted fdr= 0.5(0.5)10. To cover different censoring fractions,

we assigned different values toand to ther;’s (e.g., fork = 3, r; is assigned td, 2, 3;

1,3,5; 6,7,8; and2, 4,7, respectively, whereas fdr = 5, r; is chosen ag,2,5,6,8;
3,4,7,8,9;1,2,3,4,5; and6, 7, 8,9, 10, respectively, when = 10).

4.1 Comparison of Risks Using a Non-Informative Prior

The simulated risks under squared error loss for the Bayes estiéigtandémB have

been obtained for a number of values of the hyper paramefdre values considered for
carel,2,3,4,5,6. The curves for the risk of the estimators were traced for the variation
in the values of: keepingn, 6, k, andr; fixed. It was noted that the shapes of the risks
curves remains more or less same for the variation in the valuesidld. Therefore the
curves of risks are only partially shown in Figure 1 foe= 10, 6 = 5, andr; assigned to
1,2,3,4,5;1,2,5,6,8; 3,4,7,8,9; and6, 7,8, 9, 10, respectively. It may be noted from
these figures that if early failures constitute the observed values, for a wide range of values
of ¢, the Bayes estimator has smaller risks than MLEs. As more and more high order
failures are included in the observed values (keeping the total number of observations
fixed), this range of decreases. It is noted from an extensive study for various choice of
n, #, andr; that most often the Bayes estimators have smallest rigksiiclose to 3 for

0,45 and 2 ford, 5. It is also noted from the results that the risks of Bayes estimators are
less than those of the approximate MLEs if early failures are observed. Contrary to it, if
only high order failures are observed, there may not be any gain or may be marginal gain
in the sense of reduction in risk due to the use of Bayes estimators even with a proper
choice of hyper parameter It may be interesting to note here that if high order failures
constitute the observations, the approximate Bayes estimator has smaller risk than that
of the exact Bayes estimator. On the other hand, if early failures are included in the
observations, the exact Bayes estimator has smaller risk for small valueghefeas for

large values of, the approximate Bayes estimator has smaller risk.

The curves for the risk of the estimators were also traced for variation in the values
of 6§ keeping the other parameters fixed. It is noted from the figures that the relative
positions of the risk curves for various estimators remain the same for variation in
although the risks decrease in magnitude axreases. However, the type of observation
(early failures or high order failures) in the sample effects the relative position of the risk
curves more than the number of observations. It has also been noted above that the choice
of ¢ does effect the behavior of risks but the values ofose to 3 provide smaller risk
for Bayes estimators and for large and small values, dhe risk of Bayes estimators
become larger than the risk of approximate MLEs. Therefore, in Figure 2 we have shown
the risk of the estimators only for = 10, ¢ = 1,3,6; 0 = 2,5,10; k = 5, andr; set
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Figure 1: Risk of estimators for=10, =5, if r;=1,2,3,4,50r1, 2, 5,6, 8 (above), and
r;=3,4,7,8,90r6,7,8,9,10 (below). 01, andby 4 shown as dotted and dashed lines;
01,43 and@lB as solid lines with triangle and box symbols, respectively.
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Figure 2: Risk of estimators fat = 10, if »;, = 1,2,3,4,5 or 1,2,5,6,8 (above), and
ri=3,4,7,8,90r6,7,8,9,10 (below).
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as before. However, the following discussion is based on the extensive simulation study
as mentioned in the beginning of this section. An obvious finding was noted by us that
asf increases the risk of all the estimators increase but the rate of increase varies from
estimator to estimator. It is further noted that the risk of the approximate Bayes estimate
with ¢ = 3 is often quite close the risk of the approximate M&E,. If more early failures

are observed in the sample, the risk of the approximate Bayes estimate is slightly smaller
than the risk of);; . However, if high order failures are observed the situation is reversed.

It is also noted that if more early failures constitute the observations, the exact Bayes
estimate withc = 2 has smaller risk than those of the approximate Bayes estimator and
the approximate MLE. But this trend is changed if some or more of high order failures
were taken in the observations, keeping the total number of observations fixed.

4.2 Comparison of Risks Using a Natural Conjugate Prior

It is obvious that the risk of Bayes estimators using a conjugate prior will depend on the
choice of the hyper parameterandb in addition to the parameters k, andr;. The risk

of the estimators has been simulated for various choices of the parameters. The values
considered for simulating the risks &, 1(1)8.0 for botha andb. It is noted from the
results that a change in the valuesnohnd . does not effect the relative position of the

risk curves for fixed values of other parameters and hyper parameters, although the risk,
in general, decreases asand k increase. Therefore, the curves have been shown for

n = 10 andk = 5 only. As seen in the previous subsection the relative position of the
risk curves is affected by the type of observations (early or high order failures) included
in the observed sample. Thus, we have considered before, for showing the behavior

of the risk curves. Figure 3 show the variation in the risks with respect to a change in the
value ofd = 2, 5, 10 for fixed values of the other parameters. He@ndb both are set to

4. It can be seen that 4sncreases the risk of all estimators increases.a~erb = 4 the

risk of .45 is smaller than that of,; in almost all cases. It is also seen that if high order
failures are included, the risk of all estimators decreases but the rate of decrease varies
from estimator to estimator. A faster decrease is noticed for the approximate MLE than
for the Bayes estimators. Among the Bayes estimators the rate of decrease is larger for
02,43 than foregB If most of the observations are high order failure tmﬂ@&l has risk

either close to or smaller than the riskéf, 5.

To study the effect of the hyper parameterandb on the risks, we traced the risk for
various values of a hyper parameter keeping the other parameters fixed. For variation in
the values ob, the risk curves are shown patrtially in Figure 4. The values,®f, anda
are fixed arbitrarily at 10, 5, and 4, respectively, &ng 0.5(1)5. It may be seen from
these figures that égncreases, the risk of Bayes estimators decrease first, attains minima
and then increase. It may also be seen that except for small valbigberisk of the exact
Bayes estimator is always larger than that of the approximate Bayes estimator, although
for large values ob, the risk of the approximate Bayes estimator becomes greater than the
risk of ;4. On the other hand, to study the effect of the hyper parameterthe risk of
Bayes estimators, we traced the risk for various valueskaeping the other parameters
fixed. Such risk curves are partially summarized in Figure mfer 10, b = 4, andf = 5.

It is noted from the risk curves that in the considered range of variatior(icf., 1 to 10)



236 Austrian Journal of Statistics, Vol. 36 (2007), No. 3, 227-238

Risk

Figure 3: Risk of estimators for=10, a=b=4, if r;=1,2,3,4,50r1,2,5, 6,8 (above),
andr; = 3,4,7, 8,90r6,7,8,9,10 (below). 0, and QUA shown as dotted and dashed
lines; 02,43 andé’gB as solid lines with triangle and box symbols, respectively.

20 A 3.5 1

Risk
Risk
&

Figure 4: Risk of estimators for = 10, a =4, 0 =5, if r; =1,2,3,4,50r 1,2,5,6,8
(above), and; = 3,4,7,8,9 0r 6,7,8,9,10 (below). 6, andfy 4 shown as dotted and
dashed lines), 45 andd, g as solid lines with triangle and box symbols, respectively.
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0,5 25 45 6.5 8.5 05 25 45 65 8.5
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Figure 5: Risk of estimators fat = 10, b =4, 0 = 5, if r; =1,2,3,4,50r1,2,5,6,8
(above), and-; = 3,4,7,8,9 0r 6,7,8,9, 10 (below). 05, andf;4 shown as dotted and
dashed lines}, 45 andé, g as solid lines with triangle and box symbols, respectively.

the risk of the Bayes estimators decreases m&reases, though the rate of decrease in
the risk is more when the sample consists of more early failure times. It may be worth
to mention here that the decreasing trend of the risk of Bayes estimator continues up to
moderately larger values af However, ifa further increases (quite often greater than
20), the risk of the Bayes estimators start increasing. It is also noted from the detailed
study that the value af, from where the decreasing trend of risk of Bayes estimators
changes to increasing trend, is smaller when the observed sample values include more
early failure times than those situations where sample observation contain more of higher
order failure times. It may be worth to mention that it small the risks of all estimators

are small in the magnitude but for small choices of the valuesafdb, the risk of the
Bayes estimators can be made smaller than that of the approximate MLE. On the other
hand, ifé is moderate or large, a moderate value of b < 3 and for a wide range of

large values o < a < 20, the risk of the approximate Bayes estimator is smaller than
the risk of the other estimators.

5 Conclusion

From the above discussion it is clear that under the classical criterion of the comparison
(i.e., risk defined as the average loss over whole sample space), the Bayes estimators pro-
posed here provide a flexible estimator in the sense that by a proper choice of the hyper
parameter, the Bayes estimators may have smaller risk than the approximate MLE. If one
is interested in using only the sample information, then; with ¢ = 3 is recommended

to be used because it is based on a non-informative prior and provides small risk. This
recommendation is valid only if the sample does not contain mostly higher ordered failure
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times. If sample observations are left type-Il censored, the uée .0t recommended. It

is also mentioned here that the Bayes estimator for conjugate prior offers a larger flexibil-
ity. It is observed that it is small, small values af andb provide a reduction in risk due

to the use of the Bayes estimators whereddsflarge, moderate value afandb may be
required. The risk of the approximate Bayes estimate, however, improves for a wide range
of a andb between 2 and 3, particularly when the sample includes mainly early failures.
Therefore, one can recommend to dsgs with 2 < b < 3and6 < a < 14. If the sample
includes early failures anllis not small, comparatively small valuesoére going to be
profitable. However, if sample includes higher order failure times, approximate Bayes
estimates with large and a moderate value éfcan be used or in such situation use of
éUA can be also recommended.
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