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Abstract: The present article is related to a nonparametric fixed-width confi-
dence interval estimation of the parameter P(X <Y) = [ F(y)dG(y),
whereF andG are two unknown continuous distribution functions. The esti-
mation procedure is based on a sample obtained under some non-iid adaptive
situation. We provide various asymptotic results related to the proposed pro-
cedure and compare it with a non-adaptive procedure.

ZusammenfassungDieser Artikel bezieht sich auf eine nicht-parametrische
fixed-width Konfidenzintervall Scitzung des Parametets= P(X <Y) =

| F(y)dG(y), wobei F und G zwei unbekannte stetige Verteilungsfunktio-
nen sind. Die Scitzprozedur basiert auf eine Stichprobe, welche unter einer
non-iid adaptiven Situation erhalten wurde. Wir liefern verschiedene asymp-
totische Resultate béglich der vorgeschlagenen Prozedur und vergleichen
diese mit einer nicht-adaptiven Prozedur.

Keywords: Standard Brownian Motion Process, Martingale Difference Ar-
ray, Asymptotic Power.

1 Introduction

Suppose a clinical trial is conducted for comparing two competing treatments4 say
and B. Here each entering patient (subject) is to receive one of the treatments once by
using a data-dependent adaptive allocation design. Such an allocation is sequential in
nature. It can be seen that the design is balanced when the two treatment effects are
identical, and it becomes skewed if there is a treatment difference and a larger number of
patients is expected to be treated by the better treatment in course of this allocation. Let
Z; be the response of theth entering patient. We assume that~ F or GG according

as thei-th patient receives treatmert or B using the adaptive design, whefeand

G are two unknown continuous distribution functions (d.f.'s). Obviously, Zhe are
neither independently nor identically distributed. Here, using a data dependent adaptive
allocation design, we consider a fixed-width confidence interval estimatibra-oP (X <

Y) = [ F(y)dG(y). Here, this type of inference would be worthwhile to compare the
remission times by the two drugsandB. Specifically, itis intended to make an inference
about the probability of requiring lower remission time by one drug than the other. This
type of inference is, however, very common in clinical trial setting.

With increasing popularity of adaptive designs in phase Il clinical trials, the real life
applications of such designs are gradually increasing (see e.g. Bartlett et al., 1985, Tamura
etal., 1994, Ware, 1989, Rout et al., 1993, Muller and Schafer, 2001, and Biswas and De-
waniji, 2004). In order to have a better understanding, different theoretical properties of
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such designs were studied and examined by a number of research workers. These are
mostly on binary responses. But our present work is related to continuous response adap-
tive design. In an adaptive design, we have a sequence of indicator vadables . .,

such that; = 0 or 1 according asl or B is used to treat theth entering patient, ant,, ;

is allowed to depend of\(d;, Z;),i = 1,2,...,n} or{d;,i = 1,2,...,n}. The present
framework is related to the first case only. We write

so that

We setd; = 1,9, = 0 and, for eacm > 2, we find, respectively, the numbers of patients
treated byA and B up to then-th stage as

n

Nan=» (1-4) and Ng,= ia
i=1 =1

and

n n

T=2.> ulZZ)
i=1 j=1

counting the number of times a\-observation is smaller thanYa-observation up to the
n-th stage, where

. 1if ZZ-<Zjand(5,-<5j,

w(Zi, ;) = {O otherwise.
We note that for any.
NAn + NBTL =n.

Then an appropriate estimatoris given by

. T,
o = NanNpn @)
Supposd,, is strongly consistent fof. Then, for givend > 0 there exists a stopping
variable (finite with probability one) defined by

N,(d) =sup{n >1:16, — 0| > d} 2)

which can easily be related to a sequential fixed-width confidence intergabased on
0.

Many researchers worked on the variables of the type (2) under various non-adaptive
situations. These are e.g. Hjort and Fenstad (1992) and Ghosh et al. (1997). In the present
situation, assuming continuous responses, our work is also related to (2) by considering an
adaptive design which allows to depend on all the previous allocations and observations
in order to achieve some ethical gain in terms of a larger proportion of allocation to the
better treatment. In this connection, one can also go through the work by Rosenberger and
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Sriram (1997) for an application of adaptive design to the variable of the type (2) using
binary responses.

The rest of the paper is organized as follows. In Section 2, we describe our adaptive
allocation rule along with some results. Some asymptotics related to the random vari-
able N, (d) are studied in Section 3. In Section 4, we briefly discuss some asymptotics
related to the variable of the type (2) under non-adaptive equal allocation scheme. Two
natural sequential fixed-width confidence intervals are constructed in Section 5. Section
6 contains some numerical computations for comparing the two schemes. Finally some
concluding remarks are given in Section 7.

2 The Design and The Related Results

There are several adaptive designs primarily for phase 11l clinical trials. These are, e.g.,
play-the-winner rule (Zelen, 1969), biased coin design (Efron, 1971), randomized play-
the-winner rule (Wei and Durham, 1978), generalized Polya’s urn design (Wei, 1979),
and the success driven design (Durham et al., 1998). Also Hu and Zhang (2004) worked
with the doubly adaptive biased coin design. These designs are for binary responses of
the study variables. The binary response trials are also used by Rosenberger et al. (2001)
in connection with an adaptive design. The designs by Rosenberger (1993, 2002) and
Bandyopadhyay and Biswas (2004) are for continuous responses of the study variables.
In the present study, we work with the allocation rule described by Bandyopadhyay and
Biswas (2004). The rule is a generalization of randomized play-the-winner (RPW) rule
for continuous responses. We describe the rule in the following.

The Rule: Suppose we have a sequential chain of study subjects and we are to allocate
them to either of the treatmentsand B. We start with allocating the treatmeftto the
firstincoming subject and the treatmehto the second incoming subject such that 1

andj, = 0. At then-th (n > 2) allocation we make use of an urn which has generated
a+ BT, anda + 3(Na,Ng, — T,) balls of kindsB and A, respectively, yielding a total

of 2a + BN 4, Ng, balls in the urn, wherer and g are some positive integers. We draw

a ball from the urn and allocate the entering subject by the treatment identified by the
drawn ball. Then we ad@(7,,,1 — 7,,) and3(Nan+1NBni1 — NanNpn — Triq + 1)

balls of kindsB and A to the urn. This process is continued, and hence, the conditional
probability of{4,..; = 1} given the earlier data is

B a+ BT,
B 2a + ﬁNAnNBn ’

ﬁn+1 =P ((5n+1 = HZ(n) ,5(n)) n > 2, (3)

whereZ .,y = (71, ..., Z,) andéyy = (01, ...,0,)". More formally, denoting {.} as an
indicator function, we have

6n+1 = I{Un+1 < 7%n-l—l} s

whereU,,, n > 1, are independently and identically distributed according to the uni-
form(0, 1) distribution and are independent(df,,,Y,,), n > 1. Now we prove some
propositions related to the above adaptive allocation design.
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Proposition 2.1: Asn — oo, almost surely,

N]m—>OO, k:A,B

Proof: We establish the result far= B only and the other follows in a similar way. For
this we note that, for any > 2, T}, > 0, N, + Np, = n, NanNp, < n?/2,

o0

{Np,does not tend toc} = U {Ng, = Ng,, foralln > m}
m=1

P{Npg, = Ng,, foralln >m} = P{U, 41 > 7,41 foralln > m}.

Also, for everym, we find under the evedtNg,, = Np,, foralln > m}

o+ 6Tn
20 + BNy (Nam +n —m)
> a{20 + BNamNpm + BnNpy} !

2 —1
+ ﬁmn} = u,(m),

Tp+1 =

> {2@ + pm
say. Then we have
P{Np, does nottend toc} < Y~ P{U,11 > u,(m) foralln > m} .

m=1

It is easy to see that, for every, > u,(m) is divergent. Hence, using the same
technique as in the proof of the Borel-Cantelli lemma (see Laha and Rohatgi, 1979, p.72),
we get the required result. ]

Proposition 2.2: Let, for eachn > 2 and under the proposed adaptive set-éifa,, ()
be the sample d.f. based anobservations. Then, writing

D(Nan) = sup | Fy,, (z) = F(z)] (4)

we have, for any > 0,
lim P{sup D(Nga,) > €} =0.

V—00 n>v

Proof: Suppose, for each, there are fixed positive integetig(n) = ng, & = A, B with
the properties

() na+np=n,
(i) nx (k= A, B) is non-decreasing, and

(i) np — occasn — 0o, k= A, B.
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Then, by Glivenko-Cantelli’'s lemma, we can find, for given > 0, a positive integef/
such that

P{ sup D*(na) > e} < é, (5)

n:n>M 2

whereD*(n 4) is given by (4) under a non-adaptive set-up using the fixed paijrsns).
By virtue of (ii) and (iii), we can also find, for given/, a positive integer, such that
na(vy) = M andny(v) > M for all v > 1. Hence, (5) implies

P{sup D*(nA)>6} <é. (6)

n>vo 2
By Proposition 2.1 we can find, for giveW andd, a positive integer, = v, (M, §) such
that 5

P{Na,, <M}<§. (7)

Now

P{SupD(NAn) > e} < P{SupD(NAn) >¢€, Ny, > M} + P(Na, < M)

n>v n>v

< P{sup D*(ny) > 6} + P(Na, < M)

n>vy

which by (5) and (6) is less than or equalitéor all v exceeding* = max{vy, 1} and
hence the required result follows. O

Theorem 2.1: For everye > 0,

lim P{sup|én—9| >€}=O.

V—00 n>v

Proof: Letl < oy < as < --- < an,, <nandl < ) < fs < -+ < By, < n

be two sets of positive, increasing, integer valued, almost surely finite random variables
with P(o; = 3;) = 0 for all 4, j. Then, we have(d;, Z;),i = 1,...,n} = {X,,,i =
L...,Nan}U{Y3,,5 = 1,...,Ngn}. Hence, using Theorem 2.1 of Melfi and Page
(2000), X,,,'s are iid with d.f. " and are independent &f;,’s, which are iid with d.f.G.

Thus, we can re-writé,, as

Nan NBn Npn

On NAnNBn Z Z u(Xa;, YﬁJ Z Fny YBJ

i=1 j=1
Now, definingV; = F(Yj3,) — 0, for j > 1, we have

NBn
- 1
On =0 < D 1FNa, (Ys) = F(Yg)| +

1
A&%LEEI‘G

J=1
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So, for every positive,

Npn
. € 1 €
P{sup|6’n—9|}SP{SupD(NAn)>§}+P{sup| ngl\/j|>§} . (8)

n>v n>v n>v NBn

The random variableg;, V5, ... are iid with mean 0 and finite variance. Hence, using
Theorem 3.1 of Melfi and Page (2000), the second term of the right hand member of (8)
converges to zero as — oo. Then, by applying Proposition 2.2, the required result
follows. O

Note: From (3) we write

. a+ 0T,
Tp =
2 + ﬁNAnNBn

2x -1 18] ~
- )
(NAnNBn +6) (NAnNBn +ﬁ n) ’
which by Proposition 2.1 and Theorem 2.1 tend8 &dmost surely as — oo.

Theorem 2.2: Asn — oo, almost surely,

NBn
n

— 0.

The proof, using the above note, directly follows from Theorem 1 of Melfi, Page, and
Geraldes (2001).

3 Asymptotic Results Related TaV,(d)

In this section we study asymptotic behaviors\af(d). For this we have for every > 0

P{d2Na(d) > v} = P{N,(d) > r}
= P{v/rsup 10, — 6] > /oo} (9)

wherer is the smallest integer larger or equali?, andv, = rd? satisfiesyy — d*> < v <
vo. Thus, we have to study the limiting distribution @F sup, - |6, —6|. Let6, be given
by (1) under a non-adaptive set-up using the fixed pairs nz) as defined in the proof
of Proposition 2.2. Then, as in Sen (1981), we have

_ 1 na 1 ngB
VilOn = 0) = =3 (G(Xa) =0) == (F(¥p) =0 =0 (10)
i=1 j=1
almost surely as. — oo, where(ay, ag, ..., ay,) and (B, Be, . .., By, ) are defined in

Section 2, and7(z) = 1 — G(z). Hence, by the same technique as in the proof of
Proposition 2.2, it follows that

n

LS (1-6)(G(2)—0) -

An i=1

S 6(F(Z) —6)] — 0 (1)

i=1

1
NBn

RN
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almost surely. But

. 1 <& _ 1 <
VT igfr) 0, — 6] — ilg) {‘NAW, zZl(l —8)(G(Z;) —0)+ Ny ZZI 0;(F(Z;) —0) }
< sup | D,| (12)
n>r
and
n _ 1 n
/T sup Z(l —6)(G(Z;) —0) + N Z5Z(F(Zz) —0)
n>r An i—1 Bn i—1
1 < . 1
) S EE) )~ S () o)
n 1 VT | A
< . _ 5 _
sSSP\ g P ;(1 0:)(G(Z;) = 0)
1 VT e
+it§: N T § ilg? N ;@(F(Zi) —0)| . (13)

Thus, the right hand member of (13) converges to zero in probability, provided the random
variables

sw{WEWW%%m} and m{ﬁ;<vm@mwm}

n>r NAn .
=1

are bounded with probability 1. Hence, writing
I S . 1 o

i=1 =1

and using (10), (11), and (12), we get thap, -, {/7|0, — 0|} andsup, -, {/7|07 — 6|}
asymptotically behave the same. - -

To study the asymptotic distribution efip,,~,.{+/r|0% — 6|}, we follow Hjort and
Fenstad (1990) under martingale set-up. For this, we set for eacfryeal),

Z;: = 61(1 - 5k)(G(Zk) - 9) + 025k(F(Zk) - 0)
and

S,‘j:ZZ;j, k>1.

Also for eachc > 1 we define the stochastic procd$s, = {IWW2(t), 1 <t < c} as

1
We(t) = —=S¢ 1<t<ec

NG [rt] »
which belongs td)[1, ¢| equipped with the Skorokhod topology.
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Theorem 3.1:LetWW = {W(t), t > 0} be a standard Brownian motion process. Then

o7 o2\'?
sup{ 7l — 0]} — ( +—) sup [W(0)

-0 0 0<t<1

in distribution asr — oo, where

o2 = / G2x)dF(z)— 02  and  o? = / F2(y)dG(y) — 67
The proof of Theorem 3.1 depends on the following propositions.
Proposition 3.1: Foranyl <t; <ty <.-- <ty <¢,asr — oo,
(Wre(tr), - . Wi(ta)) = %W (t), ..., W (ta))

in distribution, where
% = ciot(1 —0) + c3030.

Proof: For any real vectot = (I3, s, ...,l)’, we consider

Ttg]
ZlkW‘l tk Z ZZQIZZZ?,

say, where

d
- 1
70 = — Iy | 22, rt, 4] +1<i<[rt;], j=1,...,d
(FEv)z J

with t; = 0. Then it can be easily shown thaZ?, 1 < i < [rty], » > 1} form a
martingale difference array from a zero-mean-square-integrable martingale. Hence, as in
Wei et al. (1990) (see also Theorems 3.13 and 2.13 of Hall and Heyde (1980), we have
after some routine calculations

T — N(0,7%)

in distribution, wherg7,%)? converges in probability to

[/ a4
772 = (Z lk> tl + <Z lk) tg — tl + 4 l?{(td — tdfl) ’)/92
= Z l2tk + 2 Z lklk/tk] ’)/9 3

1<k<k’<d

asr — oo. Here N (u, o) represents a random variable having normal distribution with
meanu and variance2. Hence, by Cramer-Wold device the required result followss
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Proposition 3.2: The sequencélV2 } is tight.
Proof: Takeanyl < s <t <u g c. Then, using the martingale theory as used in the
proof of Proposition 3.1, we have

E [(Wr(t) = Wi(s))*(Wii(u) — W(t))?]

[rt] 2 [ru] 2
| (S| (3 #
i=[rs]+1 i=[rt]+1

[rt] [rt]

=r2Qcio} Y PE:i=0)+co3 Y P@=1)

i=[rs]+1 i=[rs]+1
[ru] [ru]
Fo? P(5;=0)+co3 > Pi=1)

i=[rt]+1 i=[rt]+1
[

<
<17 (fra] = [rs))”

where+? = cio? + c305. Hence, by using Theorem 15.6 of Billingsley (1968), the
required result follows. O

Proposition 3.3: For everye > 0

%>i—0
n N

lim lim sup P {sup

€—00 r—oo n>rc

Proof: Let us write

P.(c)=P {sup Z"

n>rc

€
> — 5.
a3
Then, for every fixed > 1 there exists a non-negative integesuch tha* < ¢ < 2++1,
and hence

gZP{ osup Sy — ST
i=k

r2i<n<r2it+l r2i<n<r2it+l

> %2%/7} .
(14)

> 2z }—i—ZP{ osup | ST
The second member of the right hand side (r.h.s.) of (14) equals
ZP { ’ST‘QZ 27,/2} ,

which by the same technique as in Wei et al. (1990) tends to

4421 8y 82
i/2 1 1 1
E:P{U\/Ol 2/}_§j—€2 5 T RE S 3 (15)

i=k
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Using Hall and Heyde (1980, p.22) the first member on the r.h.s. of (14) is for Bomeé)

o0 r2itl roitl
4K
<Y G A Y PO=0)+ e Y P =1)
i=k k=r2t k=r2t
AIPE N1 8K 8K
2 < : 16
- €2 Py 2 2ke2 T (€2 (16)

So, combining (15) and (16) we get

8 2
limsupPT(c)Sizl(K—f—l)—N) as c¢— o0.
r—00 ce

Hence we get the required result. |

Proof of Theorem 3.1: Using Propositions 3.1 and 3.2 we get D, ¢|
Wrac - VQ{W(t% te {17 C]}
in distribution as" — oo, and hence

VIS O QLU
{ ] ,tE[LC]} ")/9{ ; , tell, ]}

in distribution onDI1, ¢|. This implies

a t
VT sup 5], Yo sup m (17)

r<n<re T 1<t<c
in distribution and since the distribution of

sup [t W ()| = sup [sW (s

1<t<c c1<s<1

is the same as that efip,-. ., [W(t)|, we get by using Proposition 3.3, as in Theorem
4.1 of Billingsley (1968),
| a

/T sup i — g sup |[W(t)|

n>r T 0<t<1

in distribution. Now, taking; = 1/(1 — #) andc, = 1/6, we get

2 2
2 01 I3
=19

Hence the required result follows. O
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4  Asymptotic Results in Non-adaptive Equal Allocation
Design

In connection with the fixed-width interval estimation @&f it would be quite natural

to compare the adaptive allocation design with a non-adaptive equal allocation design,
where the treatmentd and B are equally randomized to the experimental units. For
this, we briefly describe the non-adaptive 50:50 allocation rule along with the related
asymptotic results. Suppose, the allocation indicatgssare iid Bernoulli variables with
success probability/2. Then the resulting design becomes non-adaptive equal allocation.
Hence, we have the observatiofs, Z; = (1 — §;)X; + ¢;Y;, ¢ > 1} as before. Having

n observations we set

en:{i@}_ {i } 221— Vo,u(Zs, Z;) (18)

which is a strongly consistent estimator éf Using §,, we can also define a stopping
varjabIeNe(d), say, as in (2), which also admits expression (9) after replatimg place
of 8,,. Now, setting

Z¢ =201 —06,)(G(Z) —0) +20,(F(Z)—6) and sk_ZZe, =1,2,...,

we introduce for every > 0 and integer > 0 a stochastic proced®c. = {W-.(t), 1
t < ¢} defined by
€ 1 €
Wrc(t) = W [rt] -

Then by the same technique as used in Section 3 it is easy to show that
Wr(t) = {2007 + )} /2 W (t), 1<t<c
in distribution as" — oo. Hence we have

Sup{\fI@ — 0} — {2(07 + 03)}'/? sup [W(t)| (19)

0<t<1

in distribution as" — oo.

5 Fixed-Width Confidence Intervals

Now we construct two sequences of fixed-width confidence intervadsbafsed on the
asymptotic results derived in Sections 3 and 4. These intervals are determined in the
following way.

In an adaptive allocation design, we have

P{d*N,(d) < v} = P{\/rsup|f, — 0] < /To},
n>r
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which by (9) and Theorem 3.1 tends to

uwn) = P{ sup (0] < w, (20)

0<t<1

asr — oo, where

1—-6 6
From Sen (1981, p.42) (see also Anderson, 1960Q),) can be computed as

—1/2
wvi(i2 )

o0

Us(wa) = Y (1N [@((2k + Dwa) — S((2k — Dw,)] ,

k=—o00

where®(z) represents the d.f. of a standard normal random variable. Similarly, in case
of equal allocation design it is easy to find that

lim P(d*N,(d) < v) = 1, (w,),

r—00

vy

Let a,, be such thats(a,) = 1 — « for given0 < a < 1. Then, for given/a, d) we find
the following stopping rules corresponding to the adaptive and equal allocation designs,
respectively

wherew, is given by

a? ( 0% 05 )}
UV, =minsn: n> — n 4+ = 21
. . 2a2
Ve =minqn: n > —= - 2 (57, 4 03, ¢ (22)

wheres;,, anday,, k = 1,2, are the consistent estimatorsafando, in adaptive and
equal allocation designs, respectively. The forms of the estimators are

6 = (iu - 51»)) _1( )_1i > (1= 6)6;0u(Z;, Zy)u( Zi, Zyr) 07

=1 =1 1<j<j’'<n

63,;(271 ) (Za) > 21— 06:)0u(Zi, ZYu( Zyr, Z;) — 62 .

1<i<i’<nj=1

The estimators?, , k = 1,2, have similar forms, and hence are omitted. Using martingale
convergence concept it can be checked by laborious but straightforward computations that

A

o
1l =0 and sup
O n>r

%—1‘—>0, k=1,2

Ok

sup
n>r




U. Bandyopadhyay and R. Das 201

in probability as- — oco. Again, sincey),(+) is a continuous function dir, 02 ), we have
as in the previous section

lim P(Ng(d) <in)=1—a, k=a,ce.
Hence, the sequences of fixed-width confidence intervalg fofr length 2d with con-
fidence coefficient — « are 6, — d,0, +d), n > p,, in the adaptive design, and
0, —d,0, + d), n > v, in the equal allocation design. In the next section we carry
out various numerical computations to judge the performance of the adaptive allocation
relative to that of the equal allocation.

6 Numerical Study

Here we give a numerical comparison between the adaptive allocation design and its non-
adaptive counterpart in terms of the minimum sample sizes required to obtain the fixed
width confidence intervals of. The true values of these minimum sample sizes are,
respectively, given by

2

2 2 2
Gy, 01 0y _2aa 2 2
”a—ﬁ(l_ew) and v =5t (o1 4 0) -

So we compute, andv, at different choices ofF, G, d). In case of the adaptive design
we also compute the proportion of allocation of the observations to the better treatment.
Here we take” = N (0, 1) and consider the following choices 6f

(i) N(5,72%)

(ii) C(6, 7), a Cauchy distribution with locatiohand scale-

(iif) contaminated normal having d.f.

G(z) = pd (x - 5) +(1-p)d (:::5—75)

with 0 < p < 1 as the mixing proportion.

The value ofr is varied to see the effect of different shapes in the behaviarg afd
v.. In particular, we take = 0.5,1,2, 6 = 0.25,0.5,1, d = 0.05,0.1, andp = 0.8,0.9.
Here, treatmenf3 is better for the above choices & Denoting the proportion of the
observations on treatmemt by propg, we see that the true value pfopp is equal tod.
So we computeropp for the above parametric combinations. The whole computation
is done by takingy = 0.05 for which we note that,, = 2.242. The results are reported
in Table 1. There it is observed that for givenr) the sample size, for the adaptive
design is larger than the sample sizecorresponding to a non-adaptive equal allocation
design. Also the proportion of allocatignopg to the better treatment for the adaptive
design always exceedg2 which is the value of the proportion corresponding to a 50:50
allocation design. In an adaptive design it is also noted that forrapyopp increases
with §. That means, the larger the deviation in the locationg'@nd GG, the higher is
the ethical gain measured in terms of the proportion of allocations to the better treatment.
The sampling becomes skewed in the presence of ethical gain. However, the skewness is
inversely proportional to the value of
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Table 1: Sample sizes, v., and proportion of allocation to treatmefitfor d = 0.05, 0.1
(F,G) = (Normal, Cauchy)

d=1/4 d=1/2 o=1
T Vg Ve PTopp Vg Ve DPropp Vq Ve DPTOpB
1/2 678 664 0.569 671 625 0.636 614 504 0.751
170 166 168 157 154 126
1 659 656 0552 624 616 0.602 544 547 0.694
165 162 156 147 136 130
2 726 714 0534 686 656 0.567 649 625 0.629
182 191 171 169 152 141
(F,G) = (Normal, Normal)
§=1/4 6=1/2 §=1
T Vg Ve PTopp Vg Ve Propp Vg Ve PTOpB
1/2 700 695 0.589 715 621 0.673 729 501 0.815
200 174 216 157 236 110
1 667 653 0570 656 606 0.638 614 498 0.760
167 163 164 152 154 112
2 679 675 0545 636 635 0589 546 521 0.673
170 179 159 174 137 156
(F,G) = (Normal, contaminated Normal wigh= 0.9)
§=1/4 §=1/2 §=1
T Vs Ve DPropp Vg Ve Propg Vs Ve Propp
1/2 695 680 0.583 710 617 0.663 717 670 0.797
189 170 199 154 204 106
1 657 658 0565 636 619 0.628 575 588 0.742
164 165 159 157 144 122
2 692 630 0541 688 673 0.582 659 652 0.659
143 148 162 158 150 143
(F,G) = (Normal, contaminated Normal wih= 0.8)
§=1/4 §=1/2 §=1
T Vq Ve Propp Vg Ve PTopB Vg Ve Propp
1/2 699 669 0.578 708 616 0.652 720 679 0.781
180 167 184 154 180 113
1 653 646 0560 635 624 0.619 551 528 0.724
163 157 156 154 138 132
2 706 705 0538 663 631 0574 656 621 0.646
177 176 166 163 144 141

In each of the cells corresponding:tg andv,, there are two values. The upper values correspond to

d = 0.05 and the lower ones td = 0.1.
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Table 1 shows that asbecomes larger the differencg — v, becomes insignificant
along with the gradual decreasebpg. It indicates that the adaptive design performs
equivalently with the equal allocation design. But for smaller valuestbe sample size
v, Of the adaptive design is slightly larger than the sample sizef 50:50 allocation
design. Simultaneously, the proportion of allocations to the better treatment takes the
higher values. At the cost of drawing extra — v, (which is very small except very
few cases) observations, a considerable amount of ethical gain can be achieved by using
the proposed adaptive design in place of the non-adaptive equal allocation design while
constructing the fixed width confidence intervalglof

7 Concluding Remarks

The efficiency of the proposed adaptive allocation design relative to the non-adaptive
50:50 allocation design can also be assessed by

provided the expectations converge. Now, from the convergené¢&\of(d) ared* N, (d)
in distributions discussed in Sections 3 and 4, respectively, we expect tthat-ds

E(d*N,(d)) — <1an9 + %§> E(Wphax)

E(dzNe(d)) - 2 (U% + U%) E(Wr?’lax) )
whereW ., = supy<,<; |W(t)|. Hence, we get

P 0o? + (1 — 0)o3
" 20(1—0) (0 +03)°

Thus, one can easily determine the valugpffor given £ andG. But such a derivation
depends on the conditions related to the uniform integrability’df, (d) andd?N.(d).
Techniques from Hjort and Fenstad (1992) would be appropriate, but we are not going to
pursue this.
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