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Abstract: The present article is related to a nonparametric fixed-width confi-
dence interval estimation of the parameterθ = P (X < Y ) =

∫
F (y)dG(y),

whereF andG are two unknown continuous distribution functions. The esti-
mation procedure is based on a sample obtained under some non-iid adaptive
situation. We provide various asymptotic results related to the proposed pro-
cedure and compare it with a non-adaptive procedure.

Zusammenfassung:Dieser Artikel bezieht sich auf eine nicht-parametrische
fixed-width Konfidenzintervall Scḧatzung des Parametersθ = P (X < Y ) =∫

F (y)dG(y), wobeiF und G zwei unbekannte stetige Verteilungsfunktio-
nen sind. Die Scḧatzprozedur basiert auf eine Stichprobe, welche unter einer
non-iid adaptiven Situation erhalten wurde. Wir liefern verschiedene asymp-
totische Resultate bezüglich der vorgeschlagenen Prozedur und vergleichen
diese mit einer nicht-adaptiven Prozedur.

Keywords: Standard Brownian Motion Process, Martingale Difference Ar-
ray, Asymptotic Power.

1 Introduction

Suppose a clinical trial is conducted for comparing two competing treatments, sayA
andB. Here each entering patient (subject) is to receive one of the treatments once by
using a data-dependent adaptive allocation design. Such an allocation is sequential in
nature. It can be seen that the design is balanced when the two treatment effects are
identical, and it becomes skewed if there is a treatment difference and a larger number of
patients is expected to be treated by the better treatment in course of this allocation. Let
Zi be the response of thei-th entering patient. We assume thatZi ∼ F or G according
as thei-th patient receives treatmentA or B using the adaptive design, whereF and
G are two unknown continuous distribution functions (d.f.’s). Obviously, theZi’s are
neither independently nor identically distributed. Here, using a data dependent adaptive
allocation design, we consider a fixed-width confidence interval estimation ofθ = P (X <
Y ) =

∫
F (y)dG(y). Here, this type of inference would be worthwhile to compare the

remission times by the two drugsA andB. Specifically, it is intended to make an inference
about the probability of requiring lower remission time by one drug than the other. This
type of inference is, however, very common in clinical trial setting.

With increasing popularity of adaptive designs in phase III clinical trials, the real life
applications of such designs are gradually increasing (see e.g. Bartlett et al., 1985, Tamura
et al., 1994, Ware, 1989, Rout et al., 1993, Muller and Schafer, 2001, and Biswas and De-
wanji, 2004). In order to have a better understanding, different theoretical properties of
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such designs were studied and examined by a number of research workers. These are
mostly on binary responses. But our present work is related to continuous response adap-
tive design. In an adaptive design, we have a sequence of indicator variablesδ1, δ2, . . . ,
such thatδi = 0 or 1 according asA or B is used to treat thei-th entering patient, andδn+1

is allowed to depend on{(δi, Zi), i = 1, 2, . . . , n} or {δi, i = 1, 2, . . . , n}. The present
framework is related to the first case only. We write

Zi = (1− δi)Xi + δiYi

so that

δi =

{
0 ⇒ Zi = Xi ∼ F ,
1 ⇒ Zi = Yi ∼ G .

We setδ1 = 1, δ2 = 0 and, for eachn ≥ 2, we find, respectively, the numbers of patients
treated byA andB up to then-th stage as

NAn =
n∑

i=1

(1− δi) and NBn =
n∑

i=1

δi ,

and

Tn =
n∑

i=1

n∑
j=1

u(Zi, Zj)

counting the number of times anX-observation is smaller than aY -observation up to the
n-th stage, where

u(Zi, Zj) =

{
1 if Zi < Zj andδi < δj ,
0 otherwise.

We note that for anyn
NAn + NBn = n .

Then an appropriate estimator ofθ is given by

θ̂n =
Tn

NAnNBn

. (1)

Supposêθn is strongly consistent forθ. Then, for givend > 0 there exists a stopping
variable (finite with probability one) defined by

Na(d) = sup{n ≥ 1 : |θ̂n − θ| ≥ d} (2)

which can easily be related to a sequential fixed-width confidence interval ofθ based on
θ̂n.

Many researchers worked on the variables of the type (2) under various non-adaptive
situations. These are e.g. Hjort and Fenstad (1992) and Ghosh et al. (1997). In the present
situation, assuming continuous responses, our work is also related to (2) by considering an
adaptive design which allowsδn to depend on all the previous allocations and observations
in order to achieve some ethical gain in terms of a larger proportion of allocation to the
better treatment. In this connection, one can also go through the work by Rosenberger and
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Sriram (1997) for an application of adaptive design to the variable of the type (2) using
binary responses.

The rest of the paper is organized as follows. In Section 2, we describe our adaptive
allocation rule along with some results. Some asymptotics related to the random vari-
ableNa(d) are studied in Section 3. In Section 4, we briefly discuss some asymptotics
related to the variable of the type (2) under non-adaptive equal allocation scheme. Two
natural sequential fixed-width confidence intervals are constructed in Section 5. Section
6 contains some numerical computations for comparing the two schemes. Finally some
concluding remarks are given in Section 7.

2 The Design and The Related Results

There are several adaptive designs primarily for phase III clinical trials. These are, e.g.,
play-the-winner rule (Zelen, 1969), biased coin design (Efron, 1971), randomized play-
the-winner rule (Wei and Durham, 1978), generalized Polya’s urn design (Wei, 1979),
and the success driven design (Durham et al., 1998). Also Hu and Zhang (2004) worked
with the doubly adaptive biased coin design. These designs are for binary responses of
the study variables. The binary response trials are also used by Rosenberger et al. (2001)
in connection with an adaptive design. The designs by Rosenberger (1993, 2002) and
Bandyopadhyay and Biswas (2004) are for continuous responses of the study variables.
In the present study, we work with the allocation rule described by Bandyopadhyay and
Biswas (2004). The rule is a generalization of randomized play-the-winner (RPW) rule
for continuous responses. We describe the rule in the following.
The Rule: Suppose we have a sequential chain of study subjects and we are to allocate
them to either of the treatmentsA andB. We start with allocating the treatmentB to the
first incoming subject and the treatmentA to the second incoming subject such thatδ1 = 1
andδ2 = 0. At the n-th (n > 2) allocation we make use of an urn which has generated
α + βTn andα + β(NAnNBn − Tn) balls of kindsB andA, respectively, yielding a total
of 2α + βNAnNBn balls in the urn, whereα andβ are some positive integers. We draw
a ball from the urn and allocate the entering subject by the treatment identified by the
drawn ball. Then we addβ(Tn+1 − Tn) andβ(NAn+1NBn+1 − NAnNBn − Tn+1 + Tn)
balls of kindsB andA to the urn. This process is continued, and hence, the conditional
probability of{δn+1 = 1} given the earlier data is

π̂n+1 = P
(
δn+1 = 1|Z(n) , δ(n)

)
=

α + βTn

2α + βNAnNBn

, n > 2 , (3)

whereZ(n) = (Z1, . . . , Zn)′ andδ(n) = (δ1, . . . , δn)′. More formally, denotingI{.} as an
indicator function, we have

δn+1 = I{Un+1 < π̂n+1} ,

whereUn, n ≥ 1, are independently and identically distributed according to the uni-
form(0, 1) distribution and are independent of(Xn, Yn), n ≥ 1. Now we prove some
propositions related to the above adaptive allocation design.
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Proposition 2.1: Asn →∞, almost surely,

Nkn →∞ , k = A,B .

Proof: We establish the result fork = B only and the other follows in a similar way. For
this we note that, for anyn > 2, Tn ≥ 0, NAn + NBn = n, NAnNBn ≤ n2/2,

{NBndoes not tend to∞} =
∞⋃

m=1

{NBn = NBm for all n > m}

P{NBn = NBm for all n > m} = P{Un+1 ≥ π̂n+1 for all n ≥ m} .

Also, for everym, we find under the event{NBn = NBm for all n > m}

π̂n+1 =
α + βTn

2α + βNBm(NAm + n−m)

≥ α{2α + βNAmNBm + βnNBm}−1

≥ α

{
2α +

βm2

4
+ βmn

}−1

= un(m) ,

say. Then we have

P{NBn does not tend to∞} ≤
∞∑

m=1

P{Un+1 ≥ un(m) for all n ≥ m} .

It is easy to see that, for everym,
∑∞

n=1 un(m) is divergent. Hence, using the same
technique as in the proof of the Borel-Cantelli lemma (see Laha and Rohatgi, 1979, p.72),
we get the required result.

Proposition 2.2: Let, for eachn > 2 and under the proposed adaptive set-up,FNAn
(x)

be the sample d.f. based onX-observations. Then, writing

D(NAn) = sup
x
|FNAn

(x)− F (x)| , (4)

we have, for anyε > 0,
lim

ν→∞
P{sup

n≥ν
D(NAn) > ε} = 0 .

Proof: Suppose, for eachn, there are fixed positive integersnk(n) = nk, k = A, B with
the properties

(i) nA + nB = n,

(ii) nk (k = A, B) is non-decreasing, and

(iii) nk →∞ asn →∞, k = A,B.
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Then, by Glivenko-Cantelli’s lemma, we can find, for givenε, δ > 0, a positive integerM
such that

P

{
sup

n:nA≥M
D∗(nA) > ε

}
<

δ

2
, (5)

whereD∗(nA) is given by (4) under a non-adaptive set-up using the fixed pairs(nA, nB).
By virtue of (ii) and (iii), we can also find, for givenM , a positive integerν0 such that
nA(ν0) = M andnA(ν) ≥ M for all ν > ν0. Hence, (5) implies

P

{
sup
n≥ν0

D∗(nA) > ε

}
<

δ

2
. (6)

By Proposition 2.1 we can find, for givenM andδ, a positive integerν1 = ν1(M, δ) such
that

P{NAν1 < M} <
δ

2
. (7)

Now

P

{
sup
n≥ν

D(NAn) > ε

}
≤ P

{
sup
n≥ν

D(NAn) > ε, NAν ≥ M

}
+ P (NAν < M)

≤ P

{
sup
n≥ν0

D∗(nA) > ε

}
+ P (NAn < M)

which by (5) and (6) is less than or equal toδ for all ν exceedingν∗ = max{ν0, ν1} and
hence the required result follows.

Theorem 2.1:For everyε > 0,

lim
ν→∞

P

{
sup
n≥ν

|θ̂n − θ| > ε

}
= 0 .

Proof: Let 1 ≤ α1 < α2 < · · · < αNAn
≤ n and1 ≤ β1 < β2 < · · · < βNBn

≤ n
be two sets of positive, increasing, integer valued, almost surely finite random variables
with P (αi = βj) = 0 for all i, j. Then, we have{(δi, Zi), i = 1, . . . , n} = {Xαi

, i =
1, . . . , NAn}

⋃{Yβj
, j = 1, . . . , NBn}. Hence, using Theorem 2.1 of Melfi and Page

(2000),Xαi
’s are iid with d.f.F and are independent ofYβj

’s, which are iid with d.f.G.
Thus, we can re-writêθn as

θ̂n =
1

NAnNBn

NAn∑
i=1

NBn∑
j=1

u(Xαi
, Yβj

) =
1

NBn

NBn∑
j=1

FNAn
(Yβj

) .

Now, definingVj = F (Yβj
)− θ, for j ≥ 1, we have

|θ̂n − θ| ≤ 1

NBn

NBn∑
j=1

|FNAn
(Yβj

)− F (Yβj
)|+

∣∣∣∣∣
1

NBn

NBn∑
j=1

Vj

∣∣∣∣∣

≤ D(NAn) +

∣∣∣∣∣
1

NBn

NBn∑
j=1

Vj

∣∣∣∣∣ .
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So, for every positiveε,

P

{
sup
n≥ν

|θ̂n − θ|
}
≤ P

{
sup
n≥ν

D(NAn) >
ε

2

}
+ P

{
sup
n≥ν

| 1

NBn

NBn∑
j=1

Vj| > ε

2

}
. (8)

The random variablesV1, V2, . . . are iid with mean 0 and finite variance. Hence, using
Theorem 3.1 of Melfi and Page (2000), the second term of the right hand member of (8)
converges to zero asn → ∞. Then, by applying Proposition 2.2, the required result
follows.

Note: From (3) we write

π̂n =
α + βTn

2α + βNAnNBn

=

(
2α

NAnNBn

+ β

)−1 (
α

NAnNBn

+ βθ̂n

)
,

which by Proposition 2.1 and Theorem 2.1 tends toθ almost surely asn →∞.
Theorem 2.2:Asn →∞, almost surely,

NBn

n
→ θ .

The proof, using the above note, directly follows from Theorem 1 of Melfi, Page, and
Geraldes (2001).

3 Asymptotic Results Related ToNa(d)

In this section we study asymptotic behaviors ofNa(d). For this we have for everyυ > 0

P{d2Na(d) ≥ υ} = P{Na(d) ≥ r}
= P{√r sup

n≥r
|θ̂n − θ| ≥ √

υ0} , (9)

wherer is the smallest integer larger or equalυ/d2, andυ0 = rd2 satisfiesυ0− d2 < υ ≤
υ0. Thus, we have to study the limiting distribution of

√
r supn≥r |θ̂n−θ|. Let θ̃n be given

by (1) under a non-adaptive set-up using the fixed pairs(nA, nB) as defined in the proof
of Proposition 2.2. Then, as in Sen (1981), we have

√
n[(θ̃n − θ)− 1

nA

nA∑
i=1

(Ḡ(Xαi
)− θ)− 1

nB

nB∑
j=1

(F (Yβj
)− θ)] → 0 (10)

almost surely asn → ∞, where(α1, α2, . . . , αnA
) and(β1, β2, . . . , βnB

) are defined in
Section 2, andḠ(x) = 1 − G(x). Hence, by the same technique as in the proof of
Proposition 2.2, it follows that

Dn =
√

n[(θ̂n− θ)− 1

NAn

n∑
i=1

(1− δi)(Ḡ(Zi)− θ)− 1

NBn

n∑
i=1

δi(F (Zi)− θ)] → 0 (11)
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almost surely. But

√
r

∣∣∣∣∣sup
n≥r

|θ̂n − θ| − sup
n≥r

{∣∣∣∣∣
1

NAn

n∑
i=1

(1− δi)(Ḡ(Zi)− θ) +
1

NBn

n∑
i=1

δi(F (Zi)− θ)

∣∣∣∣∣

}∣∣∣∣∣
≤ sup

n≥r
|Dn| (12)

and
√

r sup
n≥r

∣∣∣∣∣
1

NAn

n∑
i=1

(1− δi)(Ḡ(Zi)− θ) +
1

NBn

n∑
i=1

δi(F (Zi)− θ)

− 1

n(1− θ)

n∑
i=1

(1− δi)(Ḡ(Zi)− θ)− 1

nθ

n∑
i=1

δi(F (Zi)− θ)

∣∣∣∣∣

≤ sup
n≥r

∣∣∣∣
n

NAn

− 1

1− θ

∣∣∣∣ · sup
n≥r

√
r

NAn

∣∣∣∣∣
n∑

i=1

(1− δi)(Ḡ(Zi)− θ)

∣∣∣∣∣

+ sup
n≥r

∣∣∣∣
n

NBn

− 1

θ

∣∣∣∣ · sup
n≥r

√
r

NBn

∣∣∣∣∣
n∑

i=1

δi(F (Zi)− θ)

∣∣∣∣∣ . (13)

Thus, the right hand member of (13) converges to zero in probability, provided the random
variables

sup
n≥r

{ √
r

NAn

n∑
i=1

δi(F (Zi)− θ)

}
and sup

n≥r

{ √
r

NBn

n∑
i=1

(1− δi)(Ḡ(Zi)− θ)

}

are bounded with probability 1. Hence, writing

θ∗n =
1

n(1− θ)

n∑
i=1

(1− δi)(Ḡ(Zi)− θ) +
1

nθ

n∑
i=1

δi(F (Zi)− θ) ,

and using (10), (11), and (12), we get thatsupn≥r{
√

r|θ̂n − θ|} andsupn≥r{
√

r|θ∗n − θ|}
asymptotically behave the same.

To study the asymptotic distribution ofsupn≥r{
√

r|θ∗n − θ|}, we follow Hjort and
Fenstad (1990) under martingale set-up. For this, we set for each real(c1, c2),

Za
k = c1(1− δk)(Ḡ(Zk)− θ) + c2δk(F (Zk)− θ)

and

Sa
k =

k∑
i=1

Za
k , k ≥ 1 .

Also for eachc > 1 we define the stochastic processW a
rc = {W a

rc(t), 1 ≤ t ≤ c} as

W a
rc(t) =

1√
r
Sa

[rt] , 1 ≤ t ≤ c

which belongs toD[1, c] equipped with the Skorokhod topology.
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Theorem 3.1:LetW = {W (t), t ≥ 0} be a standard Brownian motion process. Then

sup
n≥r
{√r|θ∗n − θ|} →

(
σ2

1

1− θ
+

σ2
2

θ

)1/2

sup
0≤t≤1

|W (t)|

in distribution asr →∞, where

σ2
1 =

∫ ∞

−∞
Ḡ2(x)dF (x)− θ2 and σ2

2 =

∫ ∞

−∞
F 2(y)dG(y)− θ2 .

The proof of Theorem 3.1 depends on the following propositions.
Proposition 3.1: For any1 ≤ t1 ≤ t2 ≤ · · · ≤ td ≤ c, asr →∞,

(W a
rc(t1), . . . , W

a
rc(td))

′ → γθ(W (t1), . . . ,W (td))
′

in distribution, where
γ2

θ = c2
1σ

2
1(1− θ) + c2

2σ
2
2θ .

Proof: For any real vectorl = (l1, l2, . . . , ld)
′, we consider

T a
r =

d∑

k=1

lkW
a
rc(tk) =

1√
r

d∑

k=1

lk

[rtk]∑
i=1

Za
i =

[rtd]∑
i=1

Z̄a
i ,

say, where

Z̄a
i =

(
1√
r

d∑

k=j

lk

)
Za

i , [rtj−1] + 1 ≤ i ≤ [rtj] , j = 1, . . . , d

with t0 = 0. Then it can be easily shown that{Z̄a
i , 1 ≤ i ≤ [rtd], r ≥ 1} form a

martingale difference array from a zero-mean-square-integrable martingale. Hence, as in
Wei et al. (1990) (see also Theorems 3.13 and 2.13 of Hall and Heyde (1980), we have
after some routine calculations

T a
r → N (0, η2)

in distribution, where(T a
r )2 converges in probability to

η2 =




(
d∑

k=1

lk

)2

t1 +

(
d∑

k=2

lk

)2

(t2 − t1) + · · ·+ l2d(td − td−1)


 γ2

θ

=

[
d∑

k=1

l2ktk + 2
∑

1≤k<k′≤d

lklk′tk

]
γ2

θ ,

asr → ∞. HereN (µ, σ2) represents a random variable having normal distribution with
meanµ and varianceσ2. Hence, by Cramer-Wold device the required result follows.
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Proposition 3.2: The sequence{W a
rc} is tight.

Proof: Take any1 ≤ s ≤ t ≤ u ≤ c. Then, using the martingale theory as used in the
proof of Proposition 3.1, we have

E
[
(W a

rc(t)−W a
rc(s))

2(W a
rc(u)−W a

rc(t))
2
]

= r−2E







[rt]∑

i=[rs]+1

Za
i




2 


[ru]∑

i=[rt]+1

Za
i




2


= r−2



c2

1σ
2
1

[rt]∑

i=[rs]+1

P (δi = 0) + c2
2σ

2
2

[rt]∑

i=[rs]+1

P (δi = 1)





·


c2

1σ
2
1

[ru]∑

i=[rt]+1

P (δi = 0) + c2
2σ

2
2

[ru]∑

i=[rt]+1

P (δi = 1)





≤ r−2γ4
1([rt]− [rs])([ru]− [rt])

≤ r−2γ4
1 ([ru]− [rs])2 ,

whereγ2
1 = c2

1σ
2
1 + c2

2σ
2
2. Hence, by using Theorem 15.6 of Billingsley (1968), the

required result follows.

Proposition 3.3: For everyε > 0

lim
c→∞

lim sup
r→∞

P

{
sup
n≥rc

∣∣∣∣
Sa

n

n

∣∣∣∣ >
ε√
r

}
= 0 .

Proof: Let us write

Pr(c) = P

{
sup
n≥rc

∣∣∣∣
Sa

n

n

∣∣∣∣ >
ε√
r

}
.

Then, for every fixedc ≥ 1 there exists a non-negative integerk such that2k ≤ c ≤ 2k+1,
and hence

Pr(c) ≤
∞∑

i=k

P

{
sup

r2i≤n≤r2i+1

|Sa
n − Sa

r2i| > ε

2
2i
√

r

}
+

∞∑

i=k

P

{
sup

r2i≤n≤r2i+1

|Sa
r2i| > ε

2
2i
√

r

}
.

(14)
The second member of the right hand side (r.h.s.) of (14) equals

∞∑

i=k

P

{ |Sa
r2i|√
r2i

>
ε

2
2i/2

}
,

which by the same technique as in Wei et al. (1990) tends to

∞∑

i=k

P

{
|N (0, 1)| > ε

2γθ

2i/2

}
≤

∞∑

i=k

4γ2
1

ε2

1

2i
=

8γ2
1

2kε2
≤ 8γ2

1

cε2
. (15)
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Using Hall and Heyde (1980, p.22) the first member on the r.h.s. of (14) is for someK > 0

≤
∞∑

i=k

4

ε2

K

r22i


c2

1σ
2
1

r2i+1∑

k=r2i

P (δk = 0) + c2
2σ

2
2

r2i+1∑

k=r2i

P (δk = 1)




→ 4γ2
1K

ε2

∞∑

i=k

1

2i
=

8γ2
1K

2kε2
≤ 8γ2

1K

cε2
. (16)

So, combining (15) and (16) we get

lim sup
r→∞

Pr(c) ≤ 8γ2
1

cε2
(K + 1) → 0 as c →∞ .

Hence we get the required result.

Proof of Theorem 3.1:Using Propositions 3.1 and 3.2 we get onD[1, c]

W a
rc → γθ{W (t), t ∈ [1, c]}

in distribution asr →∞, and hence

{√
rSa

[rt]

[rt]
, t ∈ [1, c]

}
→ γθ

{
W (t)

t
, t ∈ [1, c]

}

in distribution onD[1, c]. This implies

√
r sup

r≤n≤rc

|Sa
n|

n
→ γθ sup

1≤t≤c

|W (t)|
t

(17)

in distribution and since the distribution of

sup
1≤t≤c

|t−1W (t)| = sup
c−1≤s≤1

|sW (s−1)|

is the same as that ofsupc−1≤t≤1 |W (t)|, we get by using Proposition 3.3, as in Theorem
4.1 of Billingsley (1968),

√
r sup

n≥r

|Sa
n|

n
→ γθ sup

0≤t≤1
|W (t)|

in distribution. Now, takingc1 = 1/(1− θ) andc2 = 1/θ, we get

γ2
θ =

σ2
1

1− θ
+

σ2
2

θ
.

Hence the required result follows.
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4 Asymptotic Results in Non-adaptive Equal Allocation
Design

In connection with the fixed-width interval estimation ofθ, it would be quite natural
to compare the adaptive allocation design with a non-adaptive equal allocation design,
where the treatmentsA andB are equally randomized to the experimental units. For
this, we briefly describe the non-adaptive 50:50 allocation rule along with the related
asymptotic results. Suppose, the allocation indicatorsδi’s are iid Bernoulli variables with
success probability1/2. Then the resulting design becomes non-adaptive equal allocation.
Hence, we have the observations{δi, Zi = (1− δi)Xi + δiYi, i ≥ 1} as before. Having
n observations we set

θ̄n =

{
n∑

i=1

δi

}−1 {
n∑

i=1

(1− δi)

}−1 n∑
i=1

n∑
j=1

(1− δi)δju(Zi, Zj) , (18)

which is a strongly consistent estimator ofθ. Using θ̄n we can also define a stopping
variableNe(d), say, as in (2), which also admits expression (9) after replacingθ̄n in place
of θ̂n. Now, setting

Ze
i = 2(1− δi)(Ḡ(Zi)− θ) + 2δi(F (Zi)− θ) and Se

k =
k∑

i=1

Ze
i , k = 1, 2, . . . ,

we introduce for everyc > 0 and integerr > 0 a stochastic processW e
rc = {W e

rc(t), 1 ≤
t ≤ c} defined by

W e
rc(t) =

1√
r
Se

[rt] .

Then by the same technique as used in Section 3 it is easy to show that

W e
rc(t) → {2(σ2

1 + σ2
2)}1/2W (t) , 1 ≤ t ≤ c

in distribution asr →∞. Hence we have

sup
n≥r

{√
r|θ̄n − θ|} → {2(σ2

1 + σ2
2)}1/2 sup

0≤t≤1
|W (t)| (19)

in distribution asr →∞.

5 Fixed-Width Confidence Intervals

Now we construct two sequences of fixed-width confidence intervals ofθ based on the
asymptotic results derived in Sections 3 and 4. These intervals are determined in the
following way.

In an adaptive allocation design, we have

P{d2Na(d) ≤ υ} = P{√r sup
n≥r

|θ̂n − θ| ≤ √
υ0} ,
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which by (9) and Theorem 3.1 tends to

ψs(wa) = P

{
sup

0≤t≤1
|W (t)| ≤ wa

}
(20)

asr →∞, where

wa =
√

υ

(
σ2

1

1− θ
+

σ2
2

θ

)−1/2

.

From Sen (1981, p.42) (see also Anderson, 1960)ψs(wa) can be computed as

ψs(wa) =
∞∑

k=−∞
(−1)k [Φ((2k + 1)wa)− Φ((2k − 1)wa)] ,

whereΦ(x) represents the d.f. of a standard normal random variable. Similarly, in case
of equal allocation design it is easy to find that

lim
r→∞

P (d2Ne(d) ≤ υ) = ψs(we) ,

wherewe is given by

we =

√
υ

2

(
σ2

1 + σ2
2

)−1/2
.

Let aα be such thatψs(aα) = 1− α for given0 < α < 1. Then, for given(α, d) we find
the following stopping rules corresponding to the adaptive and equal allocation designs,
respectively

ν̂a = min

{
n : n ≥ a2

α

d2

(
σ̂2

1n

1− θ̂n

+
σ̂2

2n

θ̂n

)}
(21)

ν̂e = min

{
n : n ≥ 2a2

α

d2

(
σ̄2

1n + σ̄2
2n

)}
, (22)

whereσ̂kn andσ̄kn, k = 1, 2, are the consistent estimators ofσ1 andσ2 in adaptive and
equal allocation designs, respectively. The forms of the estimators are

σ̂2
1n =

(
n∑

i=1

(1− δi)

)−1(∑n
i=1 δi

2

)−1 n∑
i=1

∑

1≤j<j′≤n

(1− δi)δjδj′u(Zi, Zj)u(Zi, Zj′)−θ̂2
n

σ̂2
2n =

(∑n
i=1(1− δi)

2

)−1
(

n∑
i=1

δi

)−1∑

1≤i<i′≤n

n∑
j=1

(1− δi)(1− δi′)δju(Zi, Zj)u(Zi′ , Zj)−θ̂2
n .

The estimators̄σ2
kn, k = 1, 2, have similar forms, and hence are omitted. Using martingale

convergence concept it can be checked by laborious but straightforward computations that

sup
n≥r

∣∣∣∣
σ̂kn

σk

− 1

∣∣∣∣ → 0 and sup
n≥r

∣∣∣∣
σ̄kn

σk

− 1

∣∣∣∣ → 0 , k = 1, 2
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in probability asr →∞. Again, sinceψs(·) is a continuous function of(σ1, σ2), we have
as in the previous section

lim
r→∞

P (Nk(d) < ν̂k) = 1− α , k = a, e .

Hence, the sequences of fixed-width confidence intervals forθ of length2d with con-
fidence coefficient1 − α are (θ̂n − d, θ̂n + d), n ≥ ν̂a, in the adaptive design, and
(θ̄n − d, θ̄n + d), n ≥ ν̂e in the equal allocation design. In the next section we carry
out various numerical computations to judge the performance of the adaptive allocation
relative to that of the equal allocation.

6 Numerical Study

Here we give a numerical comparison between the adaptive allocation design and its non-
adaptive counterpart in terms of the minimum sample sizes required to obtain the fixed
width confidence intervals ofθ. The true values of these minimum sample sizes are,
respectively, given by

νa =
a2

α

d2

(
σ2

1

1− θ
+

σ2
2

θ

)
and νe =

2a2
α

d2

(
σ2

1 + σ2
2

)
.

So we computeνa andνe at different choices of(F, G, d). In case of the adaptive design
we also compute the proportion of allocation of the observations to the better treatment.
Here we takeF ≡ N (0, 1) and consider the following choices ofG:

(i) N (δ, τ 2)
(ii) C(δ, τ), a Cauchy distribution with locationδ and scaleτ
(iii) contaminated normal having d.f.

G(x) = pΦ

(
x− δ

τ

)
+ (1− p)Φ

(
x− δ

5τ

)

with 0 < p < 1 as the mixing proportion.
The value ofτ is varied to see the effect of different shapes in the behaviors ofνa and

νe. In particular, we takeτ = 0.5, 1, 2, δ = 0.25, 0.5, 1, d = 0.05, 0.1, andp = 0.8, 0.9.
Here, treatmentB is better for the above choices ofδ. Denoting the proportion of the
observations on treatmentB by propB, we see that the true value ofpropB is equal toθ.
So we computepropB for the above parametric combinations. The whole computation
is done by takingα = 0.05 for which we note thataα = 2.242. The results are reported
in Table 1. There it is observed that for given(δ, τ) the sample sizeνa for the adaptive
design is larger than the sample sizeνe corresponding to a non-adaptive equal allocation
design. Also the proportion of allocationpropB to the better treatment for the adaptive
design always exceeds1/2 which is the value of the proportion corresponding to a 50:50
allocation design. In an adaptive design it is also noted that for anyτ , propB increases
with δ. That means, the larger the deviation in the locations ofF andG, the higher is
the ethical gain measured in terms of the proportion of allocations to the better treatment.
The sampling becomes skewed in the presence of ethical gain. However, the skewness is
inversely proportional to the value ofτ .
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Table 1: Sample sizesνa, νe, and proportion of allocation to treatmentB for d = 0.05, 0.1
(F, G) ≡ (Normal, Cauchy)

δ = 1/4 δ = 1/2 δ = 1
τ νa νe propB νa νe propB νa νe propB

1/2 678 664 0.569 671 625 0.636 614 504 0.751
170 166 168 157 154 126

1 659 656 0.552 624 616 0.602 544 547 0.694
165 162 156 147 136 130

2 726 714 0.534 686 656 0.567 649 625 0.629
182 191 171 169 152 141

(F, G) ≡ (Normal, Normal)
δ = 1/4 δ = 1/2 δ = 1

τ νa νe propB νa νe propB νa νe propB

1/2 700 695 0.589 715 621 0.673 729 501 0.815
200 174 216 157 236 110

1 667 653 0.570 656 606 0.638 614 498 0.760
167 163 164 152 154 112

2 679 675 0.545 636 635 0.589 546 521 0.673
170 179 159 174 137 156

(F,G) ≡ (Normal, contaminated Normal withp = 0.9)
δ = 1/4 δ = 1/2 δ = 1

τ νa νe propB νa νe propB νa νe propB

1/2 695 680 0.583 710 617 0.663 717 670 0.797
189 170 199 154 204 106

1 657 658 0.565 636 619 0.628 575 588 0.742
164 165 159 157 144 122

2 692 630 0.541 688 673 0.582 659 652 0.659
143 148 162 158 150 143

(F, G) ≡ (Normal, contaminated Normal withp = 0.8)
δ = 1/4 δ = 1/2 δ = 1

τ νa νe propB νa νe propB νa νe propB

1/2 699 669 0.578 708 616 0.652 720 679 0.781
180 167 184 154 180 113

1 653 646 0.560 635 624 0.619 551 528 0.724
163 157 156 154 138 132

2 706 705 0.538 663 631 0.574 656 621 0.646
177 176 166 163 144 141

In each of the cells corresponding toνa andνe, there are two values. The upper values correspond to

d = 0.05 and the lower ones tod = 0.1.



U. Bandyopadhyay and R. Das 203

Table 1 shows that asτ becomes larger the differenceνa − νe becomes insignificant
along with the gradual decrease ofpropB. It indicates that the adaptive design performs
equivalently with the equal allocation design. But for smaller values ofτ the sample size
νa of the adaptive design is slightly larger than the sample sizeνe of 50:50 allocation
design. Simultaneously, the proportion of allocations to the better treatment takes the
higher values. At the cost of drawing extraνa − νe (which is very small except very
few cases) observations, a considerable amount of ethical gain can be achieved by using
the proposed adaptive design in place of the non-adaptive equal allocation design while
constructing the fixed width confidence intervals ofθ.

7 Concluding Remarks

The efficiency of the proposed adaptive allocation design relative to the non-adaptive
50:50 allocation design can also be assessed by

E∗
r = lim

d→0

E(Na(d))

E(Ne(d))
=

limd→0 E(d2Na(d))

limd→0 E(d2Ne(d))

provided the expectations converge. Now, from the convergence ofd2Na(d) ared2Ne(d)
in distributions discussed in Sections 3 and 4, respectively, we expect that asd → 0

E(d2Na(d)) →
(

σ2
1

1− θ
+

σ2
2

θ

)
E(W 2

max)

E(d2Ne(d)) → 2
(
σ2

1 + σ2
2

)
E(W 2

max) ,

whereWmax = sup0≤t≤1 |W (t)|. Hence, we get

E∗
r =

θσ2
1 + (1− θ)σ2

2

2θ(1− θ)(σ2
1 + σ2

2)
.

Thus, one can easily determine the value ofE∗
r for givenF andG. But such a derivation

depends on the conditions related to the uniform integrability ofd2Na(d) andd2Ne(d).
Techniques from Hjort and Fenstad (1992) would be appropriate, but we are not going to
pursue this.

Acknowledgements

The authors like to thank the editor and the referee for their valuable comments and sug-
gestions. The second author also like to thank the authority of Bankura Sammilani Col-
lege for their kind co-operation in pursuing this research work.

References

Anderson, T. W. (1960). A modification of the sequential probability ratio test to reduce
the sample size.Annals of Mathematical Statistics, 31, 163-197.



204 Austrian Journal of Statistics, Vol. 36 (2007), No. 3, 189–205

Bandyopadhyay, U., and Biswas, A. (2004). An adaptive allocation for continuous re-
sponse using Wilcoxon-Mann-Whitney score.Journal of Statistical Planning and
Inference, 123, 207-224.

Bartlett, H. R., Roloff, D. W., Cornell, R. G., Andrew, A. F., Dillon, P. W., and Zwisches-
berger, J. B. (1985). Extracorporeal circulation in neonatal respiratory failure: A
prospective randomized trial.Pediatrics, 76, 479-487.

Billingsley, P. (1968).Convergence of Probability Measures. New York: John Wiley.
Biswas, A., and Dewanji, A. (2004). Sequential adaptive designs for clinical trials with

longitudinal response. In N. Mukhopadhyay, S. Chattopadhyay, and S. Datta (Eds.),
Applied Sequential Methodologies.New York: Marcel Dekker.

Durham, S. D., Flournoy, N., and Li, W. (1998). A sequential design for maximizing the
probability of a favourable response.Canadian Journal of Statistics, 26, 479-495.

Efron, B. (1971). Forcing a sequential experiment to be balanced.Biometrika, 58, 403-
417.

Ghosh, M., Mukhopadhyay, N., and Sen, P. K. (1997).Sequential Estimation. New York:
John Wiely.

Hall, P., and Heyde, C. C. (1980).Martingale Limit Theory and its Application. New
York: Academic Press.

Hjort, N. L., and Fenstad, G. (1990).On the lastn where|θ̂n − θ| ≥ ε (Tech. Rep.).
University of Oslo, Norway: Institute of Mathematics.

Hjort, N. L., and Fenstad, G. (1992). On the lastn and the number of times an estimator
is more thanε from its largest value.Annals of Statistics, 20, 469-489.

Hu, F., and Zhang, L. X. (2004). Asymptotic properties of doubly adaptive biased coin
design for multi-treatment clinical trials.Annals of Statistics, 32, 268-301.

Laha, R. G., and Rohatgi, V. K. (1979).Probability Theory. New York: John Wiley.
Melfi, V., and Page, C. (2000). Estimation after adaptive allocation.Journal of Statistical

Planning and Inference, 87, 353-363.
Melfi, V., Page, C., and Geraldes, M. (2001). An adaptive randomized design with

application to estimation.Canadian Journal of Statistics, 29, 107-116.
Muller, H. H., and Schafer, H. (2001). Adaptive group sequential designs for clinical trials

combining the advantages of adaptive and of classical group sequential approaches.
Biometrics, 57, 886-891.

Rosenberger, W. F. (1993). Asymptotic inference with response-adaptive treatment allo-
cation design.Annals of Statistics, 21, 2098-2107.

Rosenberger, W. F. (2002). Randomised urn models and sequential design.Sequential
Analysis, 21, 1-28.

Rosenberger, W. F., and Sriram, T. N. (1997). Estimation for an adaptive allocation
design.Journal of Statistical Planning and Inference, 59, 309-319.

Rosenberger, W. F., Stallard, N., Ivanova, A. V., Harper, C. N., and Ricks, M. L. (2001).
Optimal adaptive designs for binary response trials.Biometrics, 57, 909-913.

Rout, C. C., Rocke, D. A., Levin, J., Gouws, E., and Reddy, D. (1993). A reevaluation
of the role of crystalloid preload in the prevention of hypotension associated with
spinal anesthesia for elective cesarean section.Anesthesiology, 79, 262-269.

Sen, P. K. (1981).Sequential Nonparametrics: Invariance Principles and Statistical
Inference. New York: John Wiley.



U. Bandyopadhyay and R. Das 205

Tamura, R. N., Faries, D. E., Andersen, J. S., and Heiligenstein, J. H. (1994). A case
study of an adaptive clinical trials in the treatment of out-patients with depressive
disorder.Journal of the American Statistical Association, 89, 768-776.

Ware, J. H. (1989). Investigating therapies of potentially great benefit: ECMO.Statistical
Science, 4, 298-340.

Wei, L. J. (1979). The generalised Polya’s urn for sequential medical trials.Annals of
Statistics, 7, 291-296.

Wei, L. J., and Durham, S. (1978). The randomized play-the-winner rule in medical trials.
Journal of the American Statistical Association, 73, 838-843.

Wei, L. J., Smythe, R. T., Lin, D. Y., and Park, T. S. (1990). Statistical inference with
data-dependent treatment allocation rules.Journal of the American Statistical As-
sociation, 85, 156-162.

Zelen, M. (1969). Play-the-winner rule and the controlled clinical trial.Journal of the
American Statistical Association, 64, 131-146.

Authors’ addresses:

Uttam Bandyopadhyay
Department of Statistics
University of Calcutta
35, Ballygunge Circular Road, Kolkata-19
India
E-mail: ubandyopadhyay@yahoo.com

Radhakanta Das
Department of Statistics
Bankura Sammilani College
Bankura, West Bengal
India


