
AUSTRIAN JOURNAL OF STATISTICS

Volume 36 (2007), Number 2, 105–114

Decomposition of Measure for Marginal Homogeneity
in Square Contingency Tables with Ordered Categories

Kouji Yamamoto and Sadao Tomizawa
Tokyo University of Science, Japan

Abstract: For the analysis of square contingency tables with ordered cate-
gories, Tomizawa et al. (2003) considered a measure to represent the degree
of departure from marginal homogeneity (MH). Tomizawa (1993) considered
an extended marginal homogeneity (EMH) model. This paper (i) proposes a
measure to represent the degree of departure from EMH, (ii) proposes a mea-
sure from equality of marginal means (E), and (iii) gives a theorem that the
value of measure for MH is equal to the sum of the value of measure for EMH
and that for E.

Zusammenfassung: Für die Analyse von quadratischen Kontingenztafeln
mit geordneten Kategorien betrachtete Tomizawa et al. (2003) ein Maß,
um den Grad der Abweichung von der marginalen Homogenität (MH) zu
beschreiben. Tomizawa (1993) betrachtete ein erweitertes marginales Ho-
mogeniätsmodel (EMH). Dieser Artikel (i) schlägt ein Maß vor, um den Grad
der Abweichung von EMH zu repräsentieren, (ii) schlägt eine Distanz von der
Gleichheit von marginalen Mitteln (E) vor, und (iii) liefert einen Satz über die
Gleichheit des Wertes von MH und der Summe der Werte von EMH und von
E.

Keywords: Extended Marginal Homogeneity, Kullback-Leibler Information,
Marginal Mean.

1 Introduction
Consider an r× r square contingency table with the same row and column classifications.
Let pij denote the probability that an observation will fall in the ith row and jth column
of the table (i = 1, . . . , r, j = 1, . . . , r).

Consider the marginal homogeneity (MH) model defined by

pi• = p•i for i = 1, . . . , r ,

where

pi• =
r∑

k=1

pik , p•i =
r∑

k=1

pki ;

see, e.g., Stuart (1955) and Bishop, Fienberg, and Holland (1975, p.282). Let

G1(i) =
i∑

s=1

r∑

t=i+1

pst and G2(i) =
r∑

s=i+1

i∑

t=1

pst

for i = 1, . . . , r − 1. By considering the difference between the cumulative marginal
probabilities, the MH model may be expressed as

G1(i) = G2(i) for i = 1, . . . , r − 1 .
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This states that the cumulative probability that an observation will fall in row category i
or below and column category i + 1 or above is equal to the cumulative probability that
the observation falls in column category i or below and row category i + 1 or above.

Consider the extended marginal homogeneity (EMH) model (Tomizawa, 1993) de-
fined by

G1(i) = δG2(i) for i = 1, . . . , r − 1 .

Let X and Y denote the row and column variables, respectively. Consider the model
of equality of marginal means (E) defined by

r∑

i=1

ipi• =
r∑

i=1

ip•i [i.e., E(X) = E(Y )] .

Tomizawa (1991) pointed out that the MH model holds if and only if both the EMH and
the E models hold.

Tomizawa (1995) and Tomizawa and Makii (2001) considered the measures to repre-
sent the degree of departure from MH for the data on a nominal scale, and Tomizawa et al.
(2003) considered them for the data on an ordinal scale; see Appendix for the Kullback-
Leibler (KL) information type measure ΓMH proposed in Tomizawa et al. (2003).

When we want to see the degree of departure from EMH, we cannot use the measure
ΓMH because ΓMH can measure the degree of departure from MH, however it cannot
measure it from EMH. Therefore, for the data on an ordinal scale, we are interested in a
measure to represent what degree the departure from EMH is.

The purpose of this paper is (i) to propose a measure which represents the degree of
departure from EMH (denoted by ΓEMH), (ii) to propose that from E (denoted by ΓE),
and (iii) to give the theorem that the value of ΓMH is equal to the sum of the value of
ΓEMH and the value of ΓE. We emphasize that the measure ΓEMH proposed in this paper
is entirely different from the measures which represent the degree of departure from MH
in Tomizawa (1995), Tomizawa and Makii (2001), and Tomizawa et al. (2003).

2 Measures

2.1 Measure for Extended Marginal Homogeneity
We shall consider the measure to represent the degree of departure from EMH. Let

∆ =
r−1∑

i=1

(
G1(i) + G2(i)

)
(> 0) , G∗

1(i) =
G1(i)

∆
, G∗

2(i) =
G2(i)

∆
,

∆∗
U =

r−1∑

i=1

G∗
1(i) , ∆∗

L =
r−1∑

i=1

G∗
2(i) .

Assuming that ∆∗
U > 0, ∆∗

L > 0, and {G1(i) + G2(i) > 0}, consider a measure defined by

ΓEMH =
1

log 2
I

({
G∗

1(i), G
∗
2(i)

}
;

{
GEMH

1(i) , GEMH
2(i)

})
, (1)
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where

I(·; ·) =
r−1∑

i=1



G∗

1(i) log


 G∗

1(i)

GEMH
1(i)


 + G∗

2(i) log


 G∗

2(i)

GEMH
2(i)






 ,

GEMH
1(i) = ∆∗

U

(
G∗

1(i) + G∗
2(i)

)
, GEMH

2(i) = ∆∗
L

(
G∗

1(i) + G∗
2(i)

)
.

Note that I(·; ·) is the KL information between {G∗
1(i), G

∗
2(i)} and {GEMH

1(i) , GEMH
2(i) }.

We see that (i) 0 ≤ ΓEMH ≤ 1, (ii) ΓEMH = 0 if and only if the EMH model holds,
and (iii) ΓEMH = 1 if and only if the degree of departure from EMH is the largest in a
sense that G1(i) = 0 (then G2(i) > 0) or G2(i) = 0 (then G1(i) > 0), i = 1, . . . , r − 1 and
∆∗

U = ∆∗
L = 1/2.

According to the KL information, ΓEMH represents the degree of departure from EMH,
and the degree increases as the value of ΓEMH increases.

2.2 Measure for the Equality of Marginal Means

We shall consider the measure to represent the degree of departure from the E model.
We note that E(X) = E(Y ) is equivalent to

∑r−1
i=1 G1(i) =

∑r−1
i=1 G2(i) (i.e., ∆∗

U = ∆∗
L),

although the details are omitted here. Assuming that ∆∗
U ≥ 0 and ∆∗

L ≥ 0, consider a
measure defined by

ΓE =
1

log 2
I

(
{∆∗

U , ∆∗
L} ;

{
1

2
,
1

2

})
, (2)

where

I(·; ·) = ∆∗
U log

(
∆∗

U

1/2

)
+ ∆∗

L log

(
∆∗

L

1/2

)
.

This may be expressed as

ΓE = 1− 1

log 2
H ({∆∗

U , ∆∗
L}) ,

where
H(·) = −∆∗

U log ∆∗
U −∆∗

L log ∆∗
L , [0 log 0 = 0] .

Thus, essentially, ΓE represents the Shannon entropy H({∆∗
U , ∆∗

L}).
We see that H({∆∗

U , ∆∗
L}) must lie between 0 (when ∆∗

U = 0 then ∆∗
L = 1, or when

∆∗
L = 0 then ∆∗

U = 1) and log 2 (when ∆∗
U = ∆∗

L = 1/2), and therefore ΓE must lie
between 0 and 1. We also see that (i) ΓE = 0 if and only if there is a structure of E
in the r × r table, and (ii) ΓE = 1 if and only if the degree of departure from E is the
largest in a sense that ∆∗

U = 0 (then ∆∗
L = 1) or ∆∗

L = 0 (then ∆∗
U = 1). Namely, (i)

ΓE = 0 if and only if E(X) = E(Y ), i.e.,
∑r−1

i=1 G1(i) =
∑r−1

i=1 G2(i), and (ii) ΓE = 1 if
and only if

∑ ∑
i<j pij = 0 (

∑ ∑
i>j pij 6= 0) or

∑ ∑
i>j pij = 0 (

∑ ∑
i<j pij 6= 0) (i.e.,

Pr(X < Y ) = 0, Pr(X > Y ) 6= 0, or Pr(X > Y ) = 0, Pr(X < Y ) 6= 0).
According to the KL information or the Shannon entropy, ΓE represents the degree of

departure from E model, and the degree increases as the value of ΓE increases.
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2.3 Relationships between the Measures
Assume that ∆∗

U > 0, ∆∗
L > 0, and {G1(i) + G2(i) > 0}. Then we obtain the following

theorem.

Theorem 1. The value of ΓMH equals the sum of the value of ΓEMH and the value of ΓE.
Proof. It is easily seen that the right term of equation (1) plus the right term of equation
(2) equals the right term of equation (3) in the Appendix. Thus, the proof is completed.

From Theorem 1, ΓEMH is expressed as ΓEMH = ΓMH − ΓE. Therefore, the measure
ΓEMH also would indicate the degree of departure from MH excluding the influence of
degree of departure from E.

From (1) we see that ΓEMH ≥ 0. Thus we obtain the next theorem.

Theorem 2. The value of ΓMH is greater than or equal to the value of ΓE. The equality
holds if and only if there is a structure of EMH in the r × r table.

From 0 ≤ ΓMH ≤ 1, 0 ≤ ΓE < 1 (note that ΓE 6= 1 because ∆∗
U > 0 and ∆∗

L > 0
being the assumption), and Theorems 1 and 2, we see that 0 ≤ ΓEMH ≤ 1. From ΓEMH =
ΓMH − ΓE, we see that (i) ΓEMH = 0 if and only if ΓMH = ΓE; namely, the degree of
departure from the equality of G1(i) and G2(i) for i = 1, . . . , r − 1, is equal to the degree
of departure from the equality of

∑r−1
i=1 G1(i) and

∑r−1
i=1 G2(i). This seems natural when the

EMH model holds (i.e., ΓEMH = 0).
We also see that (ii) ΓEMH = 1 if and only if ΓMH = 1 and ΓE = 0; namely, G1(i) = 0

(then G2(i) > 0) or G2(i) = 0 (then G1(i) > 0) for i = 1, . . . , r − 1, and E(X) = E(Y ).
Namely ΓEMH = 1 indicates that G1(i)/G2(i) = ∞ for some i and G1(i)/G2(i) = 0 for
the other i, and E(X) = E(Y ) (i.e.,

∑r−1
i=1 G1(i) =

∑r−1
i=1 G2(i)). It seems appropriate to

consider that then the degree of departure from EMH is largest.

3 Approximate Confidence Intervals for the Measures
Let nij denote the observed frequency in the ith row and jth column of the r × r square
table (i = 1, . . . , r, j = 1, . . . , r). Assuming that the {nij} result from a full multino-
mial sampling, we consider the approximate standard errors and large-sample confidence
intervals for ΓEMH and ΓE using the delta method as described by Bishop et al. (1975,
Sec.14.6) and Agresti (1990, Sec.12.1). The sample version of ΓEMH, i.e., Γ̂EMH, is given
by ΓEMH with {pij} replaced by {p̂ij}, where p̂ij = nij/n and n =

∑ ∑
nij . Similarly,

Γ̂E is given. Using the delta method,
√

n(Γ̂EMH− ΓEMH) has asymptotically (as n →∞)
a normal distribution with mean zero and variance,

var[ΓEMH] =
1

∆2

r−1∑

k=1

r∑

l=k+1

(pklw
2
kl + plkv

2
lk) ,

where

wkl =
1

log 2





l−1∑

i=k

log


 G∗

1(i)

GEMH
1(i)


− (l − k)ΓEMH log 2



 ,

vlk =
1

log 2





l−1∑

i=k

log


 G∗

2(i)

GEMH
2(i)


− (l − k)ΓEMH log 2



 .
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Table 1: Occupational status for Japanese father-son pairs

(a) examined in 1955
Son’s status

Father’s status (1) (2) (3) (4) (5) (6) (7) (8) Total
(1) 36 4 14 7 8 2 3 8 82
(2) 20 20 27 24 11 11 2 11 126
(3) 9 6 23 12 9 5 3 16 83
(4) 15 14 39 81 17 16 11 15 208
(5) 6 7 22 13 72 20 6 13 159
(6) 3 2 5 12 18 19 9 7 75
(7) 5 3 10 11 21 15 38 25 128
(8) 39 30 76 80 69 52 45 614 1005

Total 133 86 216 240 225 140 117 709 1866

(b) examined in 1975
Son’s status

Father’s status (1) (2) (3) (4) (5) (6) (7) (8) Total
(1) 44 18 28 8 6 8 1 5 118
(2) 15 50 45 20 18 17 4 7 176
(3) 18 25 47 30 24 18 5 7 174
(4) 16 27 53 77 40 29 9 6 257
(5) 18 25 42 31 122 43 17 13 311
(6) 12 15 21 15 36 33 3 8 143
(7) 3 5 8 7 26 21 9 3 82
(8) 44 65 114 92 184 195 58 325 1077

Total 170 230 358 280 456 364 106 374 2338

Status: professional (1) managers (2) clerical (3) sales (4) skilled manual (5) semiskilled manual (6) unskilled manual (7) farmers (8)

Similarly,
√

n(Γ̂E − ΓE) has asymptotically a normal distribution with mean zero and
variance

var(ΓE) =
1

∆2

r−1∑

k=1

r∑

l=k+1

(
pklα

2
kl + plkβ

2
lk

)
,

where

αkl =
l − k

log 2
{log(2∆∗

U)− ΓE log 2} , βlk =
l − k

log 2
{log(2∆∗

L)− ΓE log 2} .

Let v̂ar(Γ) denote var(Γ) with {pij} replaced by {p̂ij}. Then v̂ar1/2[Γ]/
√

n is the esti-
mated approximate standard error for Γ̂, giving a confidence interval for Γ.

4 Examples
Example 1. The data in Table 1 taken from Tominaga (1979, p.131) describe the cross-
classification of father’s and son’s occupational status categories in Japan which were
examined in 1955 and 1975.
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Table 2: Estimates of ΓEMH, its approximate standard error, and 95% confidence interval

Applied Estimated Standard Confidence
data measure error interval

Table 1a 0.023 0.005 (0.013, 0.034)
Table 1b 0.055 0.007 (0.042, 0.068)

Since the confidence interval for ΓEMH applied to each of Tables 1a and 1b does not
include zero (see Table 2), this would indicate that there is not a structure of EMH in each
table. Let G2 denote the likelihood ratio chi-squared statistic for testing goodness-of-fit
of the model. The values of G2 for the EMH model are 116.76 for Table 1a and 280.73
for Table 1b with r − 2 = 6 degrees of freedom (df). Therefore the EMH model fits each
of these data poorly.

We compare the degree of departure from EMH between these tables using Γ̂EMH. We
can see from Γ̂EMH that (i) for Table 1a, the degree of departure from EMH is estimated
to be 0.023 times the maximum degree of departure from EMH, and (ii) for Table 1b, it is
estimated to be 0.055 times the maximum degree of departure from EMH.

When the degrees of departure from EMH in Tables 1a and 1b are compared using the
confidence interval for ΓEMH, it would be greater in Table 1b than in Table 1a.

Table 3: Cross-classification of Merino ewes according to number of lambs born in con-
secutive years

Number of Lambs 1952
Number of Lambs 1953 0 1 2 Total

0 58 52 1 111
1 26 58 3 87
2 8 12 9 29

Total 92 122 13 227

Table 4: Estimates of ΓEMH, ΓE, and ΓMH, their approximate standard errors and 95%
confidence intervals, applied to Table 3

Measures Estimated Standard Confidence
measures errors intervals

ΓEMH 0.102 0.043 ( 0.018, 0.187)
ΓE 0.001 0.004 (-0.007, 0.008)
ΓMH 0.103 0.043 ( 0.018, 0.188)

Example 2. The data in Table 3 taken from Tallis (1962) describe the cross-classification
of Merino ewes according to the number of lambs born in consecutive years, 1952 and
1953 (also see Bishop et al., 1975, p.288).

Since the confidence intervals for ΓMH and ΓEMH do not include zero (see Table 4),
these would indicate that there is not each structure of MH and EMH in the table. How-
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ever, since the confidence interval for ΓE includes zero (see Table 4), this would indicate
that there is a structure of E in the table. Also, the degree of departure from EMH is larger
than the degree of departure from E. Therefore we can state from Theorem 1 that the lack
of structure of the MH model is caused by the lack of structure of the EMH model rather
than that of the E model.

Table 5: Average doses of conjugated oestrogen used by cases and matched controls: Los
Angeles endometrial cancer study

Average dose Average dose for control (mg/day)
for case 0 0.1-0.299 0.3-0.625 0.626+ Total

(mg/day) (1) (2) (3) (4)
0 (1) 6 2 3 1 12

0.1-0.299 (2) 9 4 2 1 16
0.3-0.625 (3) 9 2 3 1 15

0.626+ (4) 12 1 2 1 16
Total 36 9 10 4 59

Table 6: Estimates of ΓEMH, ΓE, and ΓMH, their approximate standard errors and 95%
confidence intervals, applied to Table 5

Measures Estimated Standard Confidence
measures errors intervals

ΓEMH 0.004 0.006 (-0.009, 0.016)
ΓE 0.302 0.125 ( 0.057, 0.548)

ΓMH 0.306 0.124 ( 0.062, 0.550)

Example 3. Table 5 taken directly from Breslow and Day (1980, p.185) is the data
from the Los Angeles study of endometrial cancer. These data are obtained from the 59
matched pairs using four dose levels of conjugated oestrogen, (1) none, (2) 0.1–0.299mg,
(3) 0.3–0.625mg, and (4) 0.626+mg. Since the confidence intervals for ΓMH and ΓE do
not include zero (see Table 6), these would indicate that there is not each structure of MH
and E in the table. While, since the confidence interval for ΓEMH includes zero (see Table
6), this would indicate that there is a structure of EMH in the table. In addition, the degree
of departure from E is larger than the degree of departure from EMH. Therefore we can
state from Theorem 1 that the lack of structure of the MH model is caused by the lack of
structure of the E model rather than that of the EMH model. This is contrast to the case
of Example 2.

5 Concluding Remarks

The measures Γ̂EMH and Γ̂E always range between 0 and 1 independent of the dimension r
and sample size n. So, Γ̂EMH and Γ̂E may be useful for comparing the degree of departure
from EMH and E, respectively, in several tables.
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Table 7: Artificial data with Ĝ1(i)/Ĝ2(i) (i = 1, 2, 3), Γ̂EMH, and G2 for the EMH model

(a) n = 2611 (sample size)
511 216 9 45
27 304 63 90
18 198 497 90
54 36 90 363

(b) n = 2106
604 81 18 8

9 326 45 4
13 120 455 3
6 4 2 408

(c) n = 2419
604 162 36 16
18 326 90 8
26 240 455 6
12 8 4 408

(d) {Ĝ1(i)/Ĝ2(i)}, Γ̂EMH, and G2 for EMH
i = 1 2 3 Γ̂EMH G2

Table 7a 2.73 0.68 1.25 0.054 154.17
Table 7b 3.82 0.52 1.25 0.134 99.75
Table 7c 3.82 0.52 1.25 0.134 199.50

Note: Ĝ1(i)/Ĝ2(i) indicates G1(i)/G2(i) with {pst} replaced by {p̂st = nst/n}.

Consider the artificial data in Table 7. From the values of G2 (with 2 df) for the
EMH model (see Table 7d), we see that the EMH model fits the data in Table 7a worse
than the data in Table 7b. In contrast, the value of Γ̂EMH is less for Table 7a than for
Table 7b (see Table 7d). In terms of {Ĝ1(i)/Ĝ2(i)}, i = 1, 2, 3 (see Table 7d), it seems
natural to conclude that the degree of departure from EMH is less for Table 7a than for
Table 7b. Therefore Γ̂EMH may be preferable to G2 for comparing the degree of departure
from EMH in several tables. (By the similar reason, Γ̂EMH may also be preferable to the
P -values for comparing them.)

It may seem, to many readers, that G2/n is also a reasonable measure for represent-
ing the degree of departure from EMH. However, it does not seem to us that G2/n is a
reasonable measure. For example, consider the artificial data in Tables 7b and 7c. The
values of G2/n are 0.05 for Table 7b, and 0.08 for Table 7c. Therefore the value of G2/n
is less for Table 7b than for Table 7c. However, the value of Γ̂EMH for Table 7b is theo-
retically identical to that for Table 7c because {Ĝ1(i)/Ĝ2(i)}, i = 1, 2, 3, for Table 7b is
identical to those for Table 7c (see Table 7d). It seems natural to conclude that the degree
of departure from EMH for Table 7b is equal to that for Table 7c. Therefore Γ̂EMH may
also be preferable to G2/n for comparing the degree of departure from EMH in several
tables.

The Γ̂EMH would be useful when we want to see what degree the departure from EMH
is toward the maximum departure from EMH. Note that we cannot use the G2 and Γ̂MH

when we want to see it.

We observe that (i) the measure ΓEMH should be applied to contingency tables with
ordered categories, (ii) the asymptotic normal distribution of

√
n(Γ̂EMH − ΓEMH) may be

not applicable when ΓEMH = 0 and ΓEMH = 1 because then var[ΓEMH] = 0, and (iii)
Γ̂EMH cannot be used for testing goodness-of-fit of EMH (although G2 can be used for it).
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Table 8: Artificial data

n = 1169 (sample size)
100 54 50 46
8 120 250 104
8 20 150 50
4 13 12 180

6 Discussion

Consider the artificial data in Table 8. The values of G2 for the MH and EMH models are
389.17 with 3 df and 4.91 with 2 df, respectively. Therefore, these would indicate that for
these data, there is not the structure of MH, however, there is the structure of EMH. Then
the estimated value of measure ΓMH is 0.517 and the estimated value of measure ΓEMH is
0.002. Thus, when we want to see the degree of departure from EMH, the measure ΓEMH

would be useful although the measure ΓMH is not useful.
We emphasize that the measure ΓEMH proposed in this paper is entirely different from

the measures which represent the degree of departure from MH as the measure ΓMH al-
though the form may be similar.

Finally we note that Tomizawa et al. (2003) also gave the power-divergence type mea-
sure to represent the degree of departure from MH; however, using the power-divergence,
we cannot obtain the similar result to Theorem 1.
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Appendix

The KL information type measure ΓMH, which represents the degree of departure from
MH for the data on an ordinal scale, proposed in Tomizawa et al. (2003), is given as
follows: assuming that {G1(i) + G2(i) > 0},

ΓMH =
1

log 2
I

(
{G∗

1(i), G
∗
2(i)} ; {Q∗

i , Q
∗
i }

)
, (3)

where

I(·; ·) =
r−1∑

i=1

{
G∗

1(i) log

(
G∗

1(i)

Q∗
i

)
+ G∗

2(i) log

(
G∗

2(i)

Q∗
i

)}
,

Q∗
i =

1

2
(G∗

1(i) + G∗
2(i)) .

Note that 0 ≤ ΓMH ≤ 1, and ΓMH = 0 if and only if the MH model holds.
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