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Abstract: In this paper the distribution and moments of the ratio of indepen-
dent inverted gamma variates have been considered. Unbiased estimators of
the parameter involved in the distribution have been proposed. As a particular
case, the ratio of independent Levy variates have been studied.

Zusammenfassung: In diesem Aufsatz werden die Verteilung und Momente
vom Quotient unabhängiger invertierter Gammavariablen betrachtet. Unverz-
errte Schätzer für den Parameter in der Verteilung werden vorgeschlagen.
Als ein spezieller Fall wird der Quotient unabhängiger Levy-Variablen unter-
sucht.
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1 Introduction
The distribution of the ratio of random variables are of interest in problems in biological
and physical sciences, econometrics, classification, and ranking and selection. Exam-
ples of the use of the ratio of random variables include Mendelian inheritance ratios in
genetics, mass to energy ratios in nuclear physics, target to control precipitation in mete-
orology, and inventory ratios in economics. The distribution of ratio of random variables
have been studied by several authors like Marsaglia (1965) and Korhonen and Narula
(1989) for normal family, Press (1969) for student’s t family, Basu and Lochner (1979)
for Weibull family, Provost (1989) for gamma family, Pham-Gia (2000) for beta family,
among others. The distribution of the ratio of independent gamma variates with shape pa-
rameters equal to 1 was studied by Bowman, Shenton, and Gailey (1998). Recently, Ali,
Woo, and Pal (2006) obtained the distribution of the ratio of generalized uniform variates.

In this paper we derive the distribution of the ratio V = X/(X + Y ), where X and Y
are independent inverted gamma variates, each with two parameters. An inverted gamma
distribution IG(p, σ) is given by

f(x; p, σ) =
σp

Γ(p)
x−p−1e−σ/x , x > 0 , σ > 0 , p > 0 ,

where p is the shape parameter and σ the scale parameter.
The moments of the distribution of the ratio have been obtained. As a particular case,

the ratio of independent Levy variables has been considered. The Levy distribution is
one of the few distributions that are stable and that have probability density functions
that are analytically expressible. Moments of the Levy distribution do not exist. But the
distribution is found to be very useful in analysis of stock prices and also in Physics for
the study of dielectric susceptibility (see Jurlewicz and Weron, 1993).
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2 Distribution of the Ratio of Inverted Gamma Variables
Let X and Y be independent random variables distributed as IG(p, σx) and IG(q, σy), re-
spectively. Then U = 1/X and W = 1/Y are independently distributed as Gamma(p, σx)
and Gamma(q, σy), respectively. We note that V = X/(X + Y ) = W/(U + W ). Let
T = U + W . Then V and T are jointly distributed with pdf

fV,T (v, t) =
σp

xσ
q
y

Γ(p)Γ(q)
e−t{σx+(σy−σx)v}tp+q−1vq−1(1− v)p−1 , 0 < v < 1 , t > 0 .

Hence the marginal pdf of V is given by

fV (v) =
vq−1(1− v)p−1

ρqB(q, p)

(
1 +

1− ρ

ρ
v

)−p−q

, 0 < v < 1 , ρ =
σx

σy

> 0 . (1)

After some algebraic manipulation, and using formula 8.391 in Gradshteyn and Ryhzik
(1965), the cumulative distribution function (cdf) of V is obtained as

FV (v) =
{1 + ρ(1− v)/v}−q

qB(q, p)
2F1(q, 1− p; q + 1; {1 + ρ(1− v)/v}−1) , 0 < v < 1 ,

where

2F1(a, b; c; x) =
∞∑
i=0

(a)i(b)i

(c)ii!
xi , (a)i = a · (a + 1) · . . . · (a + i− 1) , (a)0 = 1 ,

is the Gauss hypergeometric series.
Using formula 3.197(3) in Gradshteyn and Ryhzik (1965), formulas 15.3.3 and 15.3.5

in Abramowitz and Stegtun (1970), and the density (1), we obtain the moments of the
ratio V = X/(X + Y ) as

E(V k) =





B(q + k, p)

B(q, p)
2F1(k, p; p + q + k; (ρ− 1)/ρ) , if ρ > 1 ,

ρk B(q + k, p)

B(q, p)
2F1(k, q + k; p + q + k; 1− ρ) , if 0 < ρ < 1 .

(2)

In order to estimate ρ, we make use of the following lemma.

Lemma 2.1: Let R = V/(1− V ). Then

(a) R is distributed as the ratio of two independent random variables with distributions
Gamma(q, σy) and Gamma(p, σx).

(b) E(Rk) = ρkB(q + k, p− k)/B(q, p), provided p > k.

Proof: We have R = V/(1−V ) = X/Y = Y −1/X−1. Since X and Y are independently
distributed as IG(p, σx) and IG(q, σy), respectively, (a) easily follows.

The distribution of R is therefore defined by the pdf

fR(r) =
1

ρqB(q, p)

rq−1

(1 + r/ρ)p+q
, r > 0 .
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Hence, the k-th moment of R comes out to be

E(Rk) =
B(q + k, p− k)

B(q, p)
ρk , provided p > k .

From the lemma, for p > 1, we have

E(R) = E

(
V

1− V

)
=

q

p− 1
ρ (3)

so that E(R) · (p − 1)/q = ρ. Thus, for a random sample V1, . . . , Vn of size n from the
distribution of V , an unbiased estimator of ρ will be given by

ρ̂ =
p− 1

nq

n∑
i=1

Vi

1− Vi

, if p > 1 .

The variance of this estimator is

var(ρ̂) =
p + q − 1

nq(p− 2)
ρ2 , for p > 2 .

On the basis of independent random samples X1, . . . , Xn1 and Y1, . . . , Yn2 drawn from
the distributions of X and Y , respectively, the maximum likelihood estimator (MLE) of
ρ is ρ̃ = σ̃x/σ̃y, where σ̃x and σ̃y are the MLEs of σx and σy given by

σ̃x =
n1p

n1∑
i=1

(1/Xi)
, σ̃y =

n2q
n2∑
i=1

(1/Yi)
.

Noting that U =
∑n1

i=1(1/Xi) and W =
∑n2

i=1(1/Yi) are independently distributed as
Gamma(n1p, σx) and Gamma(n2q, σy), respectively, Z = (1/U)/(1/U + 1/W ) is dis-
tributed with pdf given by (1) where p and q are replaced by n1p and n2q, respectively.
Also,

ρ̃ =
n1p

n2q

Z

1− Z
,

such that, from (3),
E(ρ̃) =

n1p

n1p− 1
ρ .

Hence,
˜̃ρ =

n1p− 1

n1p
ρ̃ (4)

is an unbiased estimator of ρ with

var(˜̃ρ) =
n1p + n2q − 1

n2q(n1p− 2)
ρ2 . (5)

It can be easily seen that for n1 = n2 = n we get var(ρ̂) > var(˜̃ρ).
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Figure 1: Plots of the pdf (6) for ρ = 1, 2, 5.

3 Distribution of the Ratio of Levy Variables
For p = q = 1/2, X and Y are two independent Levy variables with scale parameters σx

and σy, respectively. The pdf and cdf of V then reduces to

fV (v) =
1

π
√

ρ
v−1/2(1− v)−1/2

(
1 +

1− ρ

ρ
v

)−1

, (6)

=

√
ρ

π
v−3/2(1− v)−1/2

(
1 + ρ

1− v

v

)−1

, 0 < v < 1 , ρ =
σx

σy

> 0

and

FV (v) =
2

π

(
1 + ρ

1− v

v

)−1/2

2F1(1/2, 1/2; 3/2; (1 + ρ(1− v)/v)−1)

=
2
√

ρ

π

√
1− v

v

(
1 + ρ

1− v

v

)−1

2F1(1, 1; 3/2; (1 + ρ(1− v)/v)−1) (7)

=
2

π
sin−1 1√

1 + ρ1−v
v

, 0 < v < 1 . (8)

The expression (7) of the cdf is obtained using formulas 3.381(3) and 6.455(1) in Grad-
shteyn and Ryhzik (1965), and expression (8) follows from formula 15.1.6 in Abramowitz
and Stegtun (1970).

From (2) the moments of the distribution are

E(V k) =





B(k + 1/2, 1/2)

π
2F1(k, 1/2; 1 + k; (ρ− 1)/ρ) if ρ > 1

ρkB(k + 1/2, 1/2)

π
2F1(k, k + 1/2; 1 + k; 1− ρ) if 0 < ρ < 1 .
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From Abramowitz and Stegtun (1970), we have the following useful relations for the
hypergeometric function 2F1(a, b; c; z):

Lemma 3.1:

(i) (Formula 15.2.2)

∂n

∂zn 2F1(a, b; c; z) =
(a)n(b)n

(c)n
2F1(a + n, b + n; c + n; z)

(ii) (Formula 15.1.13)

2F1(a, a + 1/2; 1 + 2a; z) =
22a

(1 +
√

1− z)2a

(iii) (Formula 15.1.14)

2F1(a, a + 1/2; 2a; z) =
22a−1

√
1− z(1 +

√
1− z)2a−1

(iv) (Formula 15.3.5)

2F1(a, b; c; z) = (1− z)−b
2F1(b, c− a; c; z/(z − 1)) .

From Lemma 3.1 we get the following lemmas:

Lemma 3.2:

(a)

2F1(1, 3/2; 2; z) =
2√

1− z(1 +
√

(1− z))

(b)

2F1(2, 5/2, 3; z) =
4

3

1 + 2
√

1− z

(1− z)3/2(1 +
√

1− z)2
.

Proof: (a) follows from Lemma 3.1(iii) by substituting a = 1. By Lemma 3.1(i) we get

2F1(2, 5/2; 3; z) =
4

3

∂

∂z
2F1(1, 3/2; 2; z) .

Hence, using (a), we have (b).

Lemma 3.3:

(a)

2F1(1/2, 1; 2; (ρ− 1)/ρ) =
2
√

ρ

1 +
√

ρ
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(b)

2F1(1/2, 2; 3; (ρ− 1)/ρ) = ρ2
2F1(2, 5/2; 3; 1− ρ) =

4

3

√
ρ(1 + 2

√
ρ)

(1 +
√

ρ)2
.

Proof: (a) follows from Lemma 3.1(ii) by substituting a = 1/2, z = (ρ − 1)/ρ, and (b)
follows from Lemma 3.1(iv) and Lemma 3.2(b) by taking a = 1/2, b = 2, c = 3, and
z = (ρ− 1)/ρ.

Using Lemmas 3.2 and 3.3 we have

E(V ) =

√
ρ

1 +
√

ρ
, E(V 2) =

√
ρ(1 + 2

√
ρ)

2(1 +
√

ρ)2
, (9)

such that

var(V ) =

√
ρ

2(1 +
√

ρ)2
. (10)

If ρ̃ denotes the MLE of ρ based on independent random samples X1, . . . , Xn1 and
Y1, . . . , Yn2 from the distributions of X and Y , then, from (4) and (5), an unbiased esti-
mator of ρ and its variance are given by

˜̃ρ =
n1 − 2

n1

ρ̃

var(˜̃ρ) =

(
n1 − 2

n1

)2
2(n1 + n2 − 2)

n2(n1 − 4)
ρ2 , for n1 > 4 .

Since ρ∗ =
√

ρ/(1 +
√

ρ) is a monotone increasing and bounded function of ρ, inference
on ρ∗ will be equivalent to inference on ρ. Hence, from any estimator of ρ∗ we can obtain
an estimator of ρ by a one-to-one transformation.

From (9) and (10), for a random sample V1, . . . , Vn of size n from the distribution
(6), an unbiased estimator of ρ∗ is V̄ = n−1

∑n
i=1 Vi with variance ρ∗(1 − ρ∗)/2n. The

corresponding estimator of ρ is ˆ̂ρ = (V̄ /(1 − V̄ ))2 with asymptotic variance 2ρ3/2(1 +√
ρ)2/n.
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