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Abstract: In some point estimation problems, we may confront imprecise
(fuzzy) concepts. One important case is a situation where all observations
are fuzzy rather than crisp. In this paper, using fuzzy set theory, we define a
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1 Introduction

Point estimation in the traditional statistical inference is based on crispness of data, ran-
dom variables, and so on. As there are many difficult situations in which the above as-
sumptions are rather unrealistic, there have been some attempts to analyze theses situa-
tions with fuzzy set theory proposed by Zadeh (1965).

Fuzzy set theory is a powerful and known tool for formulation and analysis of impre-
cise and subjective situations where exact analysis is either difficult or impossible.

Some methods in descriptive statistics with vague data and some aspects of statistical
inference is proposed in Kruse and Meyer (1987). Fuzzy random variables were intro-
duced by Kwakernaak (1978), Puri and Ralescu (1986) as a generalization of compact
random sets, Kruse and Meyer (1987) and were developed by others such as Juninig and
Wang (1989), Ralescu (1995), López-Dı́az and Gil (1997), M. López-Dı́az (1998), and
Liu (2004). Some aspects of point estimation problems with fuzzy data are discussed in
Yao and Hwang (1996), Buckley (1985), Coral and Gil (1984), Gertner and Zhu (1996),
Gil, Corral, and Gil (1985), Kruse (1984), Kruse and Meyer (1987), and Okuda (1987).
For more details about ordinary point estimation problems (with crisp data), see Casella
and Berger (2002), Freund (1992), Hogg and Craig (1995), Lehmann and Casella (1998),
Mood, Graybill, and Boes (1974), and Shao (1998).

In this paper, because of our main purpose, statistical inference about a parametric
population with fuzzy data, we only consider and discuss fuzzy random variables which
associate with an ordinary random variable (fuzzy-valued random variable).

This paper is organized in the following way. In Section 2, we provide some defini-
tions and preliminaries. A fuzzy unbiased estimator is defined in Section 3. The fuzzy
exponential family is introduced in Section 4 and the Cramér-Rao lower bound is given
in Section 5. Finally some applied examples are given in Section 6.
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2 Preliminaries
Let (Ω,F , P ) be a probability space. A random variable (henceforth RV) X is a measur-
able function from (Ω,F , P ) to (R,B, PX), where PX is the probability measure induced
by X and is called the distribution of the RV X , i.e.,

PX(A) = P (X ∈ A) =

∫

X∈A

dP , A ∈ B .

Using “the change of variable rule”, (see e.g. Billingsley, 1995, pp. 215-216 or Shao,
1998, p. 13), we have

PX(A) =

∫

A

dPoX−1(x) =

∫

A

dPX(x) , A ∈ B .

If PX is dominated by a σ-finite measure ν, i.e., PX << ν, then using the Radon-Nikodym
theorem, (see for e.g. Billingsley, 1995, pp. 422-423 or Shao, 1998, p. 14), we have

PX(A) =

∫

A

f(x)dν(x) ,

where f(x) is the Radon-Nikodym derivative of PX with respect to ν and is called the
probability density function (henceforth PDF) of X with respect to ν.

In statistical texts, the measure ν usually is a “counting measure” or a “Lebesgue
measure”. Hence PX(A) is calculated as

∑
x∈A f(x) or

∫
A

f(x)dx, respectively. Let
X = {x ∈ R|f(x) > 0}. The set X is usually called “support” or “sample space” of X .

Definition 2.1. X = (X1, . . . , Xn) is a random sample of size n from a population with
PDF f(x), if the Xi’s are independent and their PDF is f(x) (i.e. the Xi’s are identically
distributed). In this case we have

f(x) = f(x1) · · · f(xn) , ∀xi ∈ R ,

where x = (x1, . . . , xn) is an observed value of X.
We now present two definitions from Casals et al. (1986), but in a slightly different

way.

Definition 2.2. A fuzzy sample space X̃ is a fuzzy partition (Ruspini partition) of X , i.e.,
a set of fuzzy subsets of X whose membership functions are Borel measurable and satisfy
the orthogonality constraint

∑
x̃∈X̃ µx̃(x) = 1 for each x ∈ X .

Definition 2.3. A fuzzy-valued random sample (henceforth FVRS) X̃ = (X̃1, . . . , X̃n) of
size n associated with PDF f(x) is a measurable function from Ω to X̃ n, whose PDF is
given by

f̃(x̃1, . . . , x̃n) = P̃ (X̃ = x̃) =

∫

Xn

n∏
i=1

µx̃i
(xi)f(xi)dν(xi) .

The above definition accords to Zadeh (1968). Note that using Fubini’s theorem (see
Billingsley, 1995, pp. 233-234), we obtain independency of X̃i’s, i.e.,

f̃(x̃1, . . . , x̃n) = f̃(x̃1) · · · f̃(x̃n) , ∀x̃i ∈ X̃ ,
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where

f̃(x̃i) =

∫

X
µx̃i

(xi)f(xi)dν(xi) ,

and f̃(x̃i) is the PDF of the fuzzy-valued random variable (henceforth FVRV) X̃i for each
i = 1, . . . , n. The f̃(x̃i) forms a PDF on X̃ , because by orthogonality of the µx̃i

’s we have

∑

x̃i∈X̃
f̃(x̃i) =

∑

x̃i∈X̃

∫

X
µx̃i

(xi)f(xi)dν(xi)

=

∫

X
f(xi)

∑

x̃i∈X̃
µx̃i

(xi)dν(xi)

=

∫

X
f(xi)dν(xi) = 1 .

Theorem 2.1. If g is a measurable function from X̃ n to R, then Y = g(X̃) is an ordinary
random variable.
Proof. The FVRS X̃ is a measurable function from Ω to X̃ n and g is a measurable
function from X̃ n to R. Hence g(X̃(ω)) = goX̃(ω) is a composition of two measurable
functions, and therefore it is measurable from Ω to R (see Billingsley, 1995, p. 182).

Note that using this theorem, we can define and use all related concepts of ordinary
random variables, such as expectation, variance, etc.

Theorem 2.2. Let X̃ be a FVRS with fuzzy sample space X̃ n and g a measurable function
from X̃ n to R. The expectation of g(X̃) is calculated by

E
[
g(X̃)

]
=

∑

x̃∈X̃n

g(x̃)f̃(x̃) .

Proof. Using the change of variable rule and the Radon-Nikodym theorem, we have

E
[
g(X̃)

]
=

∫

Ω

g(X̃(ω))dP (ω)

=

∫

X̃n

g(x̃)dPoX̃−1(x̃)

=
∑

x̃∈X̃n

g(x̃)f̃(x̃) .

For further details about the properties of ordinary RV’s and their moments see Ash
and Doleans-Dade (2000), Billingsley (1995), Chung (2000), Feller (1968), Ross (2002),
and Shao (1998).

In this paper we suppose that the PDF of the population is known but has an unknown
parameter θ ∈ Θ. In this case, we index f̃ by θ and write f̃(x̃; θ).

Example 2.1. Let X be a Bernoulli variable with parameter θ, i.e.,

f(x; θ) = θx(1− θ)1−x , x =∈ {0, 1} , 0 < θ < 1 .



474 Austrian Journal of Statistics, Vol. 35 (2006), No. 4, 471–482

We haveX = {0, 1}. Let x̃1 and x̃2 be two fuzzy subsets ofX with membership functions

µx̃1(x) =

{
0.9 , x = 0
0.1 , x = 1

and µx̃2(x) =

{
0.1 , x = 0
0.9 , x = 1 .

Note that x̃1 and x̃2 can be regarded as “approximately zero” and “approximately one”,
respectively. In this example, the support of X̃ is X̃ = {x̃1, x̃2} and using Definition 2.3
for n = 1, the PDF of X̃ is

f̃(x̃; θ) =
∑
X

µx̃1(x)f(x; θ) =

{
0.9(1− θ) + 0.1θ = 0.9− 0.8θ , x̃ = x̃1

0.1(1− θ) + 0.9θ = 0.1 + 0.8θ , x̃ = x̃2 .

Now, e.g., consider

Y =

{
0.1 , x̃ = x̃1

0.9 , x̃ = x̃2 .

Note that Y is a measurable function from X̃ to R and therefore an ordinary RV. In the
following we explain how to calculate the mean and variance of Y . The PDF of Y is

fY (y) =

{
0.9− 0.8θ , y = 0.1
0.1 + 0.8θ , y = 0.9 .

Therefore, the mean and the variance of Y are calculated as

E[Y ] = 0.1(0.9− 0.8θ) + 0.9(0.1 + 0.8θ) = 0.18 + 0.64θ

and

E[Y 2] = 0.01(0.9− 0.8θ) + 0.81(0.1 + 0.8θ) = 0.09 + 0.64θ

var[Y ] = 0.09 + 0.64θ − (0.18 + 0.64θ)2 = 0.0576 + 0.4096θ − 0.4096θ2 .

3 Fuzzy Unbiased Estimator
Let X̃ = (X̃1, . . . , X̃n) be a FVRS with the common PDF f̃(x̃; θ), where θ ∈ Θ ⊂ R.
Assume that x̃ = (x̃1, . . . , x̃n) is an observation of X̃, i.e., x̃ ∈ X̃ n.

Definition 3.1. Every real-valued measurable function of X̃, say T (X̃), which is inde-
pendent of the unknown parameter is a fuzzy estimator for θ. We say T (x̃) is a fuzzy
estimate for θ.

Definition 3.2. A fuzzy estimator T (X̃) is a fuzzy unbiased estimator for γ(θ), if

E[T (X̃)] = γ(θ) , ∀θ ∈ Θ .

Definition 3.3. If there exists an unbiased estimator T (X̃) of γ(θ), then γ(θ) is called an
estimable parameter (or U-estimable).

Definition 3.4. A fuzzy unbiased estimator T (X̃) of γ(θ) is called the uniformly mini-
mum variance unbiased estimator (henceforth UMVUE), if var[T (X̃)] ≤ var[T ∗(X̃)] for
any θ ∈ Θ and any other fuzzy unbiased estimator T ∗(X̃) of γ(θ).
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Example 3.1. Let X̃1, . . . , X̃n be a sample from the distribution of the FVRV X̃ of
Example 2.1 with substituting x̃1 and x̃2 with x̃I and x̃II , respectively. We saw that

f̃(x̃; θ) =

{
0.9− 0.8θ , x̃ = x̃I

0.1 + 0.8θ , x̃ = x̃II .

Using Definition 3.2 in case n = 1, the fuzzy estimator T (X̃) is a fuzzy unbiased estima-
tor for θ, if

E[T (X̃)] = T (x̃I)f̃(x̃I ; θ) + T (x̃II)f̃(x̃II ; θ) = θ , ∀θ ∈ Θ = (0, 1) .

Hence, we must solve the system

0.9T (x̃I) + 0.1T (x̃II) = 0

0.1T (x̃I) + 0.9T (x̃II) = 1 .

But its unique solution is

T (X̃) =

{−1/8 , X̃ = x̃I

9/8 , X̃ = x̃II .

Thus, for n = 1, T (X̃) is a fuzzy unbiased estimator. Note that with crisp data (X =
{0, 1}), the unique unbiased estimator is X . Hence, this result approximately coincides
with the classical one. But the main disadvantage of this fuzzy estimator is that it is not
“range preserve”, i.e., T (X̃) 6∈ Θ. Of course this problem occurs in some classical cases,
e.g., let Θ = (0, 1) then neither 0 nor 1 belongs to Θ. Now consider fuzzy estimator
S(X̃) =

∑n
i=1 T (X̃i)/n. The fuzzy estimator S(X̃) is the sample mean of−1/8 and 9/8,

therefore it slightly obviates this problem. Using Theorem 2.2, S(X̃) is a fuzzy unbiased
estimator for θ.

The variance of T (X̃) is

var[T (X̃)] =
1

64
(0.9− 0.8θ) +

81

64
(0.1 + 0.8θ)− θ2 =

9

64
+ θ − θ2 .

Because of the independency of the X̃i’s, and thus by the independency of the T (X̃i)’s,
we have var[S(X̃)] = (9/64 + θ − θ2)/n.

Example 3.2. Let X1, . . . , Xn be a sample from the Beta(θ, 1) population, i.e.,

f(x; θ) = θxθ−1 , 0 < x < 1 , θ > 0 .

Let X̃ take two fuzzy subsets x̃I and x̃II , whose membership functions are

µx̃I
= x , 0 < x < 1 , µx̃II

= 1− x , 0 < x < 1 .

Note that x̃I and x̃II can be regarded as “near to one” and “near to zero”, respectively.
We have

f̃(x̃; θ) =

∫ 1

0

µx̃(x)θxθ−1 =





θ

θ + 1
, x̃ = x̃I

1− θ

θ + 1
, x̃ = x̃II .
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For n = 1, T (X̃) is a fuzzy unbiased estimator of θ, if

E[T (X̃)] = T (x̃I)f̃(x̃I ; θ) + T (x̃II)f̃(x̃II ; θ) = θ , ∀θ ∈ Θ = (0, +∞) .

Therefore, we must have θ2 + θ(1− T (x̃I))− T (x̃I) = 0, ∀θ > 0. But this is impossible.
Hence, in this case there does not exist any fuzzy unbiased estimator for θ, i.e., θ is not an
estimable parameter.

Now, suppose that we want to find a fuzzy unbiased estimator for θ/(θ + 1). We
can use the fuzzy estimator I{x̃I}(X̃); since E[I{x̃I}(X̃)] = P̃ (X̃ = x̃I) = θ/(θ + 1),
S(X̃) =

∑n
i=1 I{x̃I}(X̃i)/n is a fuzzy unbiased estimator for θ. Because var[I{x̃I}(X̃)] =

θ/(θ + 1)2 and because the X̃i’s are independent, we have

var[S(X̃)] =
θ

n(θ + 1)2
.

4 Fuzzy Exponential Family
In this section we introduce the fuzzy exponential family.

Definition 4.1. A fuzzy parametric family {f̃(x̃; θ), θ ∈ Θ} of fuzzy density functions is
said to form an s-dimensional fuzzy exponential family, if

f̃(x̃; θ) = a(θ)b(x̃) exp

{
s∑

i=1

ci(θ)di(x̃)

}
,

where a(θ) and ci(θ), i = 1, . . . , s, are real-valued functions of the parameter and b(x̃)
and di(x̃) are Borel measurable functions of x̃, x̃ ∈ X̃ . Also a(θ) > 0 for all θ ∈ Θ and
b(x̃) > 0 for all x̃ ∈ X̃ .

Theorem 4.1. Let X̃ be a FVRV (associated with the RV X) with PDF f̃(x̃; θ), θ ∈ Θ,
and let its support be independent of θ and be a finite m-set of fuzzy observation, i.e.,
X̃ = {x̃1, . . . , x̃m}. Then the PDF f̃(x̃; θ) belongs to the fuzzy exponential family.
Proof. Using Definition 2.3, we have

f̃(x̃; θ) =

∫

X
µx̃(x)f(x; θ)dν(x) , x̃ = x̃1, . . . , x̃m .

Let pi(θ) =
∫
X µx̃i

(x)f(x; θ)dν(x). Hence,

f̃(x̃; θ) =





p1(θ) , x̃ = x̃1
...

...
pm(θ) , x̃ = x̃m

=

[
m−1∏
i=1

pi(θ)
I{x̃i}(x̃)

]
× pm(θ)1−Pm−1

i=1 I{x̃i}(x̃)

= pm(θ) exp

{
m−1∑
i=1

I{x̃i}(x̃) [log(pi(θ))− log(pm(θ))]

}
.
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Thus, f̃(x̃; θ) belongs to the (m − 1)-dimensional fuzzy exponential family with a(θ) =
pm(θ), b(x̃) = 1, ci(θ) = log(pi(θ))− log(pm(θ), and di(x̃) = I{x̃i}(x̃).

Note that in Theorem 4.1, the dimension is at most m − 1, because some of the pi’s
may be equal; see Example 6.3.

5 Cramér-Rao Lower Bound
In this section, we state and prove a new version of Cramér-Rao lower bound for FVRV’s;
see Lehmann and Casella (1998, p. 120) or Shao (1998, pp. 135-136) for ordinary RV’s.

Theorem 5.1. (Cramér-Rao lower bound for FVRV’s) Let X̃ be a FVRS from the PDF
f̃(x̃; θ), θ ∈ Θ, where Θ is the parameter space and be an open interval of the real line. If
f̃(x̃; θ) is differentiable as a function of θ and satisfies

∂

∂θ

∑

X̃n

h(x̃)f̃(x̃; θ) =
∑

X̃n

h(x̃)
∂

∂θ
f̃(x̃; θ) (1)

for both, h(x̃) = 1 and h(x̃) = T (x̃), and γ(θ) = E[T (X̃)] is a differentiable function of
θ, then the variance of each fuzzy estimator of the form T (X̃) satisfies

var[T (X̃)] ≥ [γ′(θ)]2

E
[

∂
∂θ

log f̃(X̃; θ)
]2 , ∀θ ∈ Θ .

Proof. Let Y = ∂ log f̃(X̃; θ)/∂θ, then Y and T (X̃) are ordinary RV’s. Hence from
the Cauchy-Schwartz inequality, we only need to show that E[Y 2] = var[Y ] and γ′(θ) =
cov(T (X̃), Y ). But these two results are consequences of condition (1).

Note that in Theorem 5.1, if X̃ is a finite fuzzy partition of X , then the condition (1)
is satisfied.

The right hand side of the inequality of Theorem 5.1, is called the Cramér-Rao lower
bound (henceforth CRLB). If the variance of a fuzzy estimator equals the CRLB, we say
that this fuzzy estimator (or its variance) attains the CRLB. In this case it is a UMVUE for
its expectation. Note that the UMVUE is a fuzzy unbiased estimator with minimum vari-
ance, not necessarily a fuzzy unbiased estimator where its variance attains the CRLB. We
will illustrate that this inequality is sometimes sharp, i.e., there is no unbiased estimator
whose variance equals the CRLB, see Example 6.3 for more details.

We call E[∂ log f̃(X̃; θ)/∂θ]2 the fuzzy information of X̃ and denote it by ĨX̃(θ). Note
that ĨX̃(θ) is the amount of information that X̃ contain about the parameter θ.

Theorem 5.2. (Attainment) Suppose that the assumptions of Theorem 5.1 are satisfied.
Then

var[T (X̃)] =
[γ′(θ)]2

E
[

∂
∂θ

log f̃(X̃; θ)
]2 , ∀θ ∈ Θ ,

if and only if there is a continuously differentiable function c(θ) such that

f̃(x̃; θ) = a(θ)b(x̃)ec(θ)d(x̃) ,
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is a density function for suitably chosen a(θ) and b(x̃), i.e., f̃(x̃; θ) constitutes an expo-
nential family. Moreover d(x̃) and γ(θ) satisfy

d(x̃) =

[
γ′(θ)

ĨX̃(θ)

]
∂

∂θ
log f̃(x̃; θ)) + γ(θ) , γ(θ) = −a′(θ)

a(θ)
c′(θ) , (2)

and ĨX̃(θ) = c′(θ)γ′(θ).
Note that the function d(x̃) specified in (2) may depend on θ. In such a case, d(X̃) is

not a fuzzy estimator, and there is no estimator that attains the Cramér-Rao lower bound.
Proof. See Shao (1998) for the proof of ordinary RV’s. Using Theorem 2.2, substitute X
by X̃, for completing the proof.

Note that if T (X̃) is an unbiased estimator for θ, then under the assumptions of The-
orem 5.1, we have

var[T (X̃)] ≥ 1

E
[

∂
∂θ

log f̃(X̃; θ)
]2 .

Theorem 5.3. If in Theorem 5.1, X̃ is a FVRS from the PDF f̃(x̃; θ), then

ĨX̃(θ) = nĨX̃(θ) .

Proof. We have

ĨX̃(θ) = E

[
n∑

i=1

∂

∂θ
log f̃(X̃i; θ)

]2

=
n∑

i=1

n∑
j=1

E

[
∂

∂θ
log f̃(X̃i; θ)× ∂

∂θ
log f̃(X̃j; θ)

]
.

But by independency of X̃i’s, we get

E

[(
∂

∂θ
log f̃(X̃i; θ)

)
×

(
∂

∂θ
log f̃(X̃j; θ)

)]
=

{
IX̃i

(θ) , i = j
0 , i 6= j .

Theorem 5.4. Suppose that X̃ has PDF f̃(x̃; θ), which is twice differentiable in θ and
condition (1) holds with h(x̃) = 1 and f̃(x̃; θ) replaced by ∂f̃(x̃; θ)/∂θ, then

IX̃(θ) = −E

[
∂2

∂θ2
log f̃(X̃; θ)

]
.

Proof. The theorem follows from the equality

∂2

∂θ2
log f̃(X̃; θ) =

1

f̃(X̃; θ)

[
∂2

∂θ2
f̃(X̃; θ)

]
−

(
∂

∂θ
log f̃(X̃; θ)

)2

.
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6 Some Examples
Example 6.1. Remember Example 3.1. It was mentioned that the fuzzy estimator S(X̃) =∑n

i=1 T (X̃i)/n is a fuzzy unbiased estimator for θ with var[S(x̃)] = (9/64 + θ − θ2)/n,
where

T (X̃i) =

{−1/8 , X̃i = x̃I

9/8 , X̃i = x̃II .

We want to prove that this fuzzy estimator attains the CRLB, i.e.,

var[S(X̃)] =
1

nE
[

∂
∂θ

log f̃(X̃; θ)
]2 .

We offer two proofs:
Proof (1): By Theorem 5.2, this family belongs to the fuzzy exponential family, because

f̃(x̃; θ) = (0.1 + 0.8θ) exp

{
I{x̃I}(x̃) log

0.9− 0.8θ

0.1 + 0.8θ

}
, x̃ = x̃I , x̃II .

Take a(θ) = 0.1 + 0.8θ, b(x̃) = 1, c(θ) = log(0.9 − 0.8θ)/(0.1 + 0.8θ), and d(x̃) =
I{x̃I}(x̃). Then using Theorem 5.2, the variance of T ∗(X̃) = I{x̃I}(X̃) attains the CRLB
for the parameter E[T ∗(X̃)] = 0.9 − 0.8θ. Hence, (0.9 − T ∗(X̃))/0.8 is an unbiased
estimator of θ; but T (X̃) = (0.9−T ∗(X̃))/0.8. Because of the linear relationship between
T ∗(X̃) and T (X̃), using Theorem 5.2, the claim is proved.

Proof (2): (direct) We have

∂

∂θ
log f̃(X̃; θ) =

{
∂
∂θ

log(0.9− 0.8θ) = −0.8
0.9−0.8

, X̃ = x̃I
∂
∂θ

log(0.1 + 0.8θ) = 0.8
0.1+0.8

, X̃ = x̃II .

Hence

E

[
∂

∂θ
log f̃(X̃; θ)

]2

=
0.64

0.9− 0.8θ
+

0.64

0.1 + 0.8θ
.

Therefore,

CRLB =
1

n
(

0.64
0.9−0.8θ

+ 0.64
0.1+0.8θ

) =
9

64
+ θ − θ2

n
.

Thus, the fuzzy estimator S(X̃) attains the CRLB, i.e., S(X̃) is the UMVUE of θ.

Example 6.2. Consider again Example 3.2. We have seen that S(X̃) =
∑n

i=1 T (X̃i)/n is
a fuzzy unbiased estimator with var[S(X̃)] = θ/(n(θ + 1)2), where

T (X̃i) = I{x̃I}(X̃i) .

Let λ = θ/(θ + 1). We want to prove that this fuzzy estimator attains the CRLB, i.e.,

var[S(X̃)] =
1

E
[

∂
∂λ

log f̃(X̃; θ)
]2 .
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We offer two proofs:
Proof (1): By Theorem 5.2 this family belongs to the fuzzy exponential family, because

f̃(x̃; θ) =
1

θ + 1
exp{I{x̃I}(x̃) log(θ)} , x̃ = x̃I , x̃II .

Take a(θ) = 1/(θ + 1), b(x̃) = 1, c(θ) = log(θ), and d(x̃) = I{x̃I}(x̃). Therefore, using
Theorem 5.2, the variance of the fuzzy estimator T (X̃) = I{x̃I}(x̃) attains the CRLB for
the parameter E[T (X̃)] = θ/(θ + 1) = λ.
Proof (2) (direct) We have

∂

∂λ
log f̃(X̃; θ) =

{
∂
∂λ

log λ = 1
λ

, X̃ = x̃I
∂
∂λ

log(1− λ) = − 1
1−λ

, X̃ = x̃II .

Hence

E

[
∂

∂θ
log f̃(X̃; θ)

]2

=
1

λ
+

1

1− λ
=

1

λ(1− λ)
.

Therefore,

CRLB =
λ(1− λ)

n
.

Thus, the fuzzy estimator S(X̃) attains the CRLB, i.e., S(X̃) is the UMVUE of λ =
θ/(θ + 1).

Example 6.3. Let X ∼ N(0, θ2), θ > 0. We have X = R. Assume that its observation is
as three fuzzy data x̃I , x̃II , and x̃III , whose membership functions are

µx̃I
(x) =

{
1− exp{−x2/2} , x < 0
0 , x ≥ 0 ,

µx̃II
(x) = exp{−x2/2} , x ∈ R ,

and

µx̃III
(x) =

{
0 , x < 0
1− exp{−x2/2} , x ≥ 0 .

Note that x̃I , x̃II , and x̃III can be stated as “small and negative”, “more or less zero”, and
“large and positive”, respectively.

We have

f̃(x̃; θ) =





1/2− 1/[2
√

θ2 + 1] , x̃ = x̃I

1/
√

θ2 + 1 , x̃ = x̃II

1/2− 1/[2
√

θ2 + 1] , x̃ = x̃III

=
(
1/
√

θ2 + 1
)I{x̃II}(x̃) (

1/2− 1/(2
√

θ2 + 1)
)1−I{x̃II}(x̃)

=
1

2

(
1− 1/

√
θ2 + 1

)
exp

{
I{x̃II}(x̃) log

2√
θ2 + 1− 1

}
.

Hence, the family belongs to the fuzzy exponential family with a(θ) = (1−1/
√

θ2 + 1)/2,
b(x̃) = 1, c(θ) = log(2/(

√
θ2 + 1−1), and d(x̃) = I{x̃II}(x̃). Therefore, with a sample of
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size n, the variance of the fuzzy estimator S(X̃) =
∑n

i=1 I{x̃II}(X̃i)/n attains the CRLB
for its expectation 1/

√
θ2 + 1, i.e., T (X̃) is the UMVUE of 1/

√
θ2 + 1.

Let T (X̃) = I{x̃I}(X̃). We have E[T (X̃)] = [1− 1/
√

θ2 + 1]/2. This fuzzy estimator
does not attain the CRLB for its expectation, since

var[T (X̃)] =
1

2

[
1− 1√

θ2 + 1

]
−

[
1

2

(
1− 1√

θ2 + 1

)]2

=
θ2

4(θ2 + 1)
,

and

∂

∂θ
log f̃(X̃; θ) =





∂
∂θ

log((1/2)[1− 1/
√

θ2 + 1]) = θ
(1+θ2)(−1+

√
θ2+1)

, x̃ = x̃I

∂
∂θ

log(1/
√

θ2 + 1) = − θ
θ2+1

, x̃ = x̃II
∂
∂θ

log((1/2)[1− 1/
√

θ2 + 1]) = θ

(1+θ2)(−1+
√

θ+1)
, x̃ = x̃III .

Hence

E

[
∂

∂λ
log f̃(X̃; θ)

]2

=
θ2

(θ2 + 1)2 + (−1 +
√

θ2 + 1)
.

But γ′(θ) = θ/(2(θ2 + 1)3/2). Thus,

CRLB =
−1 +

√
θ2 + 1

4(θ2 + 1)2
,

which is less than var[T (X̃)] for all θ > 0, because
√

θ2 + 1 < θ2 + 1. Therefore, T (X̃)
does not attain the CRLB.
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