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Abstract: We introduce a skewness parameter into Vaughan’s (2002) gener-
alized secant hyperbolic (GSH) distribution by means of exponential tilting
and develop some properties of the new distribution family. In particular,
the moment-generating function is derived which ensures the existence of
all moments. Finally, the flexibility of our distribution is compared to similar
parametric models by means of moment-ratio plots and application to foreign
exchange rate data.
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1 Introduction
Recently, Vaughan (2002) suggested a family of symmetric distributions—the so-called
generalized secant hyperbolic (GSH) distribution—with kurtosis ranging from 1.8 to in-
finity. This family includes both hyperbolic secant and logistic distribution, and closely
approximates the Student t-distribution with corresponding kurtosis. In addition, the
moment-generating function and all moments exist, and the cumulative distribution is
given in closed form. Unfortunately, this family does not allow for skewness. For this
purpose, a skew version is developed in section 2 which maintains many properties of the
GSH family derived in section 3. To demonstrate its flexibility, both moment-ratio plot
and goodness-of-fit are compared to those of similar successful parametric models, like
the EGB2 distribution (see, e.g., McDonald, 1984) or the skew generalized error (SGED)
distribution (see, e.g. Theodossiou, 1998) in Section 4.

2 Definition
Vaughan (2002, p. 221) introduces the (symmetric) generalized secant hyperbolic (GSH)
distribution with probability density function
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(1)

where the parameter t > −π governs the amount of kurtosis. In particular, the usual
coefficient of kurtosis K(t)—i.e. the fourth standardized moment of X—comprises the
interval ]1.8,∞[ with K(0) = 4.2 which corresponds to the logistic distribution. More-
over, setting t ≡ −π/2, the hyperbolic secant distribution is obtained. Vaughan (2002)
also notes that as t → ∞, the density tends to that of the standard uniform distribution
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on (−√3,
√

3). Despite its flexibility, the GSH distribution is not able to account for
skewness.

To remove this shortcoming though pertaining many of the attractive properties, we
apply the Esscher transformation to X . Originally, the concept of the Esscher transfor-
mation was a time-honored tool in actuarial science suggested by Esscher (1932) which
became popular by Gerber and Shiu (1995) who apply this concept to value derivative
securities. Assuming that the moment-generating function M(u) = E(exp(uX)) of a
variable X with density f(x) exists, the Esscher-transformed density is defined by

f(x; h) ≡ exp(hx)f(x)/M(h) . (2)

Note that if the Esscher transformation is applied to is a Gaussian variable the resulting
variable is again Gaussian (and thus symmetric) but with different parameters. In contrast,
Esscher-transformations of symmetric non-Gaussian densities result in asymmetric distri-
butions, where h governs the amount of skewness and symmetry is obtained for h = 0.
Combining (1) and (2), and noting that the moment-generating function of a GSH variable
(see Vaughan, 2002, p. 221) is given by

M(u; t) =





π sin(ut)
[
t sin(uπ)

]−1

, −π < t < 0 , |u| < 1 ,

uπ
[
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]−1
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t sin(uπ)
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the Esscher-transformed GSH density for −π < t < 0 and h 6= 0 derives as

f(x; t, h) ≡ sin(hπ) sin(t)

π sin(ht)

exp((h + 1)x)

exp(2x) + 2 cos(t) exp(x) + 1
. (3)

Similarly, for t > 0 and h 6= 0,

f(x; t, h) =
sin(hπ) sinh(t)

π sinh(ht)

exp((h + 1)x)

exp(2x) + 2 cosh(t) exp(x) + 1
, (4)

and for t = 0 and h 6= 0,

f(x; 0, h) =
sin(hπ)

hπ

exp((h + 1)x)

exp(2x) + 2 exp(x) + 1
. (5)

Densities of the form (3), (4) or (5) will be termed as skew generalized secant hyperbolic
densities, or briefly SGSH densities, in the sequel. Exemplarily, SGSH densities are
plotted in Figure 1, below.

3 Moment-Generating Function and Moment Ratio Plot
We next show that the moment-generating function of a SGSH variable exists. Conse-
quently, all moments exit, too.
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Figure 1: Skew GSH densities of type (a) Platykurtic (left), and (b) Leptokurtic (right).

Lemma 1 (Moment-generating function) The moment-generating function of a SGSH
variable with h 6= 0 and |u + t| < 1 is given by

M(u) =





sin((h + u)t) sin(hπ)
[
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]−1
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[
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]−1

t > 0 .

In particular, all moments of the SGSH distribution exist.

Proof: Note that for −π < t < 0 and h 6= 0,

M(u; t, h) =

∫
sin(hπ) sin(t)

π sin(ht)

exp((h + u + 1)x)

exp(2x) + 2 cos(t) exp(x) + 1
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Similar reformulations hold for t ≥ 0. ¤

Lemma 2 (Power moments) Assume that h 6= 0. The first four power moments of a
SGSH variable are given by

E(X) =





t cot(ht)− π cot(hπ) −π < t < 0 ,
(1− hπ cot(hπ))/h t = 0 ,
t coth(ht)− π cot(hπ) t > 0 ,

E(X2) =





π2 − t2 − 2tπ cot(ht) cot(hπ) + 2π2 cot2(hπ) −π < t < 0 ,
π2 − 2π/h cot(hπ) + 2π2 cot2(hπ) t = 0 ,
t2 + π2 − 2tπ coth(ht) cot(hπ) + 2π2 cot2(hπ) t > 0 ,
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E(X3) =





−t3 cot(ht) + 3t2π cot(hπ) + 6tπ2 cot(ht) cot2(hπ) + 3tπ2 cot(ht)
−6π3 cot3(hπ)− 5π3 cot(hπ) , −π < t < 0 ,

6π2/h cot2(hπ) + 3π2/h− 6π3 cot3(hπ)− 5π3 cot(hπ) , t = 0 ,
t3 coth(ht)− 3t2π cot(hπ) + 6tπ2 coth(ht) cot2(hπ) + 3tπ2 coth(ht)

−6π3 cot3(hπ)− 5π3 cot(hπ) , t > 0 ,

E(X4) =





t4 + 5π4 + 4t3π cot(ht) cot(hπ)− 12t2π2 cot2(hπ)− 6t2π2

−24tπ3 cot(ht) cot3(hπ)− 20tπ3 cot(ht) cot(hπ) + 24π4 cot4(hπ)
+28π4 cot2(hπ) , t > 0 ,

5π4 − 24π3/h cot3(hπ)− 20π3/h cot(hπ) + 24π4 cot4(hπ)
+28π4 cot2(hπ) , t = 0 ,

t4 + 5π4 − 4t3π coth(ht) cot(hπ) + 12t2π2 cot2(hπ) + 6t2π2

−24tπ3 coth(ht) cot3(hπ)− 20tπ3 coth(ht) cot(hπ)
+24π4 cot4(hπ) + 28π4 cot2(hπ) , −π < t < 0 .

Note that the formulas of Lemma 2 can easily be worked out with the help of Maple or
Mathematica. Moreover, the variance of a SGSH variable is given by

var(X) =





π2(1 + cot2(hπ))− t2(1 + cot2(ht)) , −π < t < 0 ,
π2(1 + cot2(hπ))− 1/h2 , t = 0 ,
π2(1 + cot2(hπ)) + t2(1− coth2(ht)) , t > 0 .

Similarly, Lemma 2 allows (tedious but straightforward) derivation of both skewness and
kurtosis coefficient S(X) and K(X)—i.e. third and fourth standardized moment—of a
SGSH variable. In order to provide a visual assessment of skewness and kurtosis asso-
ciated with a SGSH variable, moment ratio plots are a useful tool. These diagrams were
introduced for Pearson-type distributions by Elderton and Johnson (1969). The classi-
cal moment ratio plot consists of all possible pairs (S(X),K(X)) that can be obtained
through different combinations of the shape parameters of the underlying distribution
(i.e. t and h for the SGSH distribution). In general, the relation S(X)2 < K(X) + 1 for
K(X) > 0 holds, i.e. for a given level of kurtosis only a finite range of skewness may
be spanned. The moment ratio diagram of a SGSH variable was generated using random
numbers from the domain of the shape parameters and is plotted in figure 2, below. Ad-
ditionally, MR plots of ”natural competitors” (i.e. distribution families with two shape
parameters, similar range of skewness and kurtosis and/or existing moment-generating
function) like the skew Laplace normal (SNL) distribution of Reed and Jørgensen (2003),
the exponential generalized beta of the second kind (EGB2) distribution discussed by Mc-
Donald (1984) or the skew generalized error (SGED) distribution of Theodossiou (1998)
were generated. Figure 2 foreshadows the flexibility of the SGSH distribution which is
empirically demonstrated in the terminating section.

4 Application to Exchange Rate Data
To analyze the goodness-of-fit of the SGSH distribution, we focus on the daily noon spot
US dollar exchange rates (USD/local currency) for the Japanese YEN (YEN) over the
period 1 January 1990 to 31 December 2004 (3774 observations) which are available
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Figure 2: Moment-ratio plots. (a) above/left SGSH, (b) above/right EGB2, (c) below/left
SGED, (d) below/right SNL distribution.

from the PACIFIC Exchange Rate Service1. In a first step, the exchange rates St are
transformed to percentual log-returns defined as Ri,t ≡ 100 log(St/St−1). Both prices
and log-returns can be seen in figure 3, below.
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Figure 3: Exchange Rates Dollar/YEN. Prices left and Returns on the right.

1Download under the URL-link http://pacific.commerce.ubc.ca
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The (sample) mean of the log-returns is −0.0093 with a (sample) standard deviation
of 0.70. Moreover, the data set exhibits significant skewness (the skewness coefficient—
measured by the third standardized moments—is given by by −0.5117), whereas the kur-
tosis coefficient—in terms of the fourth standardized moments—is 7.05, reflecting the
remarkable leptokurtosis.

In order to assess the flexibility of the skew GSH family, we fitted a SGSH distribu-
tion (using Maximum-Likelihood estimation) to the exchange rate data and calculated the
log-Likelihood value (as an overall measure for the goodness-of-fit). Additionally, the
corresponding log-Likelihoods were determined for the skew generalized error distribu-
tion (SGED) of Theodossiou (1998), the skew Laplace-normal distribution of Reed and
Jørgensen (2003) and exponential generalized beta of the second kind (EGB2) discussed
by McDonald (1984). The results are summarized in Table 1, below. Again, the SGSH
distribution outperforms the three other parametric models (all of which exhibit lower
log-Likelihood values than the SGSH distribution).

Table 1: Maximum-Likelihood estimation: Results.

Distribution NORM SGED EGB2 SNL SGSH
Log-Likelihood value -4038.5 -3817.9 -3811.7 -3811.8 -3810.6

5 Summary

Within this work we introduced a skew version of Vaughan’s (2002) generalized secant
hyperbolic distribution by means of exponential tilting. It was shown that all moments
exist and that the moment-generating function admits a closed form. Finally, both mo-
ment ratio plot and application application to foreign exchange rate data demonstrate the
flexibility of our new parametric distribution model.
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