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Abstract: Kernel type density estimators are studied for random fields. A
functional central limit theorem in the space of square integrable functions is
proved if the locations of observations become more and more dense in an
increasing sequence of domains.

Zusammenfassung: Es werden Kerndichteschätzer für stochastische Felder
untersucht. Ein funktionaler Grenzwertsatz im Raum der quadratisch inte-
grierbaren Funktionen wird bewiesen für den Fall, dass die Lokationen der
Beobachtungen immer dichter werden in einer wachsenden Folge von Be-
reichen.
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1 Introduction

In this paper a functional central limit theorem in the space L2[0, 1] is proved for ker-
nel type density estimators for α-mixing random fields if the locations of observations
become more and more dense in an increasing sequence of domains.

Kernel type density estimators are widely studied, see e.g. Prakasa Rao (1983), De-
vroye and Györfi (1985). In Bosq et al. (1999), the asymptotic normality of these esti-
mators is proved for α-mixing stochastic sequences and continuous time processes. In
Fazekas and Chuprunov (2005) a so called infill-increasing setup is used to obtain a result
that is in some sense between the discrete and the continuous time cases. See also Fazekas
and Chuprunov (2004).

In statistics, most asymptotic results concern the increasing domain case, i.e. when
the random process (or field) is observed in an increasing sequence of domains Tn, with
|Tn| → ∞. However, if we observe a random field in a fixed domain and intend to prove
an asymptotic theorem when the observations become dense in that domain, we obtain
the so called infill asymptotics (see Cressie, 1991). It is known that several estimators
being consistent for weakly dependent observations in the increasing domain setup are
not consistent if the infill approach is considered.

In this paper we combine the infill and the increasing domain approaches. We call
infill-increasing approach if our observations become more and more dense in an increas-
ing sequence of domains. Using this setup, Lahiri (1999) and Fazekas (2003) studied the
asymptotic behavior of the empirical distribution function. Also in the infill-increasing
case, consistency and asymptotic normality of the least squares estimator for linear errors-
in-variables models were proved in Fazekas and Kukush (2000).
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In this paper we follow the line of Fazekas and Chuprunov (2005). There asymptotic
normality of the kernel type density estimator (4) is proved in the infill-increasing case.
We quote that result in Theorem 2.1.

The main result of this paper is a functional central limit theorem for kernel type
density estimators (Theorem 3.1). It is the functional version of the ordinary central limit
theorem, i.e, Theorem 2.1.

We prove our functional central limit theorem in L2[0, 1], i.e. in the space of square
integrable functions defined in the interval [0, 1]. We have to mention that most of the
functional limit theorems are established in the space C of continuous functions, or in
the Skorohod space D, see Billingsley (1968). However, there are papers establishing
criteria for functional limit theorems in Lp and containing applications of such theorems
(Grinblat, 1976, Ivanov, 1980, Oliveira and Suquet, 1998). To prove our result we apply
criteria given in Grinblat (1976).

2 Notation and a Central Limit Theorem
The following notation is used. Z is the set of all integers, Zd is the set of the d-
dimensional lattice points, where d is a fixed positive integer. R is the real line, Rd is
the d-dimensional space with the usual Euclidean norm ‖x‖. In Rd we shall also consider
the distance corresponding to the maximum norm: %(x,y) = max1≤i≤d |x(i)−y(i)|, where
x = (x(1), . . . , x(d)), y = (y(1), . . . , y(d)). The distance of two sets in Rd corresponding
to the maximum norm is also denoted by %, i.e. %(A,B) = inf{%(a, b) : a ∈ A, b ∈ B}.

We shall denote different finite constants with the same letter C. |D| denotes the
cardinality of the finite set D and at the same time |T | denotes the volume of the domain
T . The indicator function of the set A is I{A}.

We shall suppose the existence of an underlying probability space (Ω,F ,P). The σ-
algebra generated by a set of events or by a set of random variables will be denoted by
σ{.}. The Lp-norm of a random (vector) variable η is ‖η‖p = {E‖η‖p}1/p, 1 ≤ p < ∞.

Sign ⇒ denotes convergence in distribution. N (m, Σ) stands for the (vector) normal
distribution with mean (vector) m and covariance (matrix) Σ.

Describe the scheme of observations. For simplicity we restrict ourselves to rectangles
as domains of observations. Let Λ > 0 be fixed. By (Z/Λ)d we denote the Λ-lattice points
in Rd, i.e. lattice points with distance 1/Λ:

(
Z
Λ

)d

=

{(
k1

Λ
, . . . ,

kd

Λ

)
: (k1, . . . , kd) ∈ Zd

}
.

T will be a bounded, closed rectangle in Rd with edges parallel to the axes and D will
denote the Λ-lattice points belonging to T , i.e. D = T ∩ (Z/Λ)d. To describe the limit
distribution we consider a sequence of the previous objects. I.e. let T1, T2, . . . be bounded,
closed rectangles in Rd. Suppose that

T1 ⊂ T2 ⊂ T3 ⊂ · · · ,

∞⋃
i=1

Ti = T∞ . (1)
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We assume that the length of each edge of Tn is integer and converges to ∞, as n → ∞.
Let {Λn} be an increasing sequence of positive integers (the non-integer case is essentially
the same) and Dn be the Λn-lattice points belonging to Tn.

Let {ξt, t ∈ T∞} be a random field. The n-th set of observations involves the values
of the random field ξt taken at each point k ∈ Dn. Actually, each k = k(n) ∈ Dn

depends on n but to avoid complicated notation we often omit the superscript (n). By our
assumptions, limn→∞ |Dn| = ∞.

We need the notion of α-mixing (see e.g. Doukhan, 1994, Guyon, 1995, Lin and Lu,
1996). Let A and B be two σ-algebras in F . The α-mixing coefficient of A and B is
defined as follows:

α(A,B) = sup{|P(A)P(B)− P(AB)| : A ∈ A , B ∈ B} .

The α-mixing coefficients of {ξt : t ∈ T∞} are

α(r, u, v) = sup{α(FI1 ,FI2) : %(I1, I2) ≥ r, |I1| ≤ u, |I2| ≤ v} ,

α(r) = sup{α(FI1 ,FI2) : %(I1, I2) ≥ r} ,

where Ii is a finite subset in T∞ with cardinality |Ii| and FIi
= σ{ξt : t ∈ Ii}, i = 1, 2.

We shall use the following condition. For some 1 < a < ∞
∫ ∞

0

s2d−1α
a−1

a (s)ds < ∞ . (2)

From now on we shall use the following assumptions throughout the paper.
Suppose that ξt, t ∈ T∞, is a strictly stationary random field with unknown continuous

marginal density function f . We shall estimate f from the data ξi, i ∈ Dn.
A function K : R → R will be called a kernel if K is a bounded, continuous, sym-

metric density function (with respect to the Lebesgue measure), and

lim
|u|→∞

|u|K(u) = 0 ,

∫ +∞

−∞
u2K(u) du < ∞ . (3)

Let K be a kernel and let hn > 0, then the kernel-type density estimator is

fn(x) =
1

|Dn|
∑

i∈Dn

1

hn

K

(
x− ξi

hn

)
, x ∈ R . (4)

Let fu(x, y) be the joint density function of ξ0 and ξu, if u 6= 0. Denote Rd
0 the set

Rd \ {0}. Let

gu(x, y) = fu(x, y)− f(x)f(y) , u ∈ Rd
0 , x, y ∈ R . (5)

We assume that gu(x, y) is continuous in x and y for each fixed u.
Denote by C(R2) the space of continuous real-valued functions over R2. Consider the

function u → gu(·, ·), u ∈ Rd
0. This is an Rd

0 → C(R2) mapping. For the sake of brevity
we denote this function by gu (and we consider it as the above Rd

0 → C(R2) mapping).
Let ‖gu‖ = sup(x,y)∈R2 |gu(x, y)|. It is the norm of gu(·, ·) in C(R2). In order to keep
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the notation simple, the function u → ‖gu‖ (which is an Rd
0 → R mapping) will also be

denoted by ‖gu‖.
Introduce the notation

σ(x, y) =

∫

Rd
0

gu(x, y) du , x, y ∈ R . (6)

For a fixed positive integer m and fixed distinct real numbers x1, . . . , xm, let

Σ(m) = (σ(xi, xj))1≤i,j≤m . (7)

Theorem 2.1. (Theorem 1 in Fazekas and Chuprunov, 2005.) Assume that gu is
Riemann integrable (as a function Rd

0 → C(R2)) on each bounded closed d-dimensional
rectangle R ⊂ Rd

0, moreover ‖gu‖ is directly Riemann integrable (as a functionRd
0 → R).

Let x1, . . . , xm be given distinct real numbers and assume that Σ(m) in (7) is positive
definite. Suppose that there exists 1 < a < ∞ such that (2) is satisfied and

(hn)−1 ≤ C|Tn|
a2

(3a−1)(2a−1) for each n. (8)

Assume that limn→∞ Λn = ∞, limn→∞ hn = 0, and

lim
n→∞

1

Λd
n

1

hn

= L . (9)

Then √
|Dn|
Λd

n

{
(fn(xi)− Efn(xi)) , i = 1, . . . , m

}
⇒ N (0, Σ

′(m)) , (10)

as n →∞, where
Σ
′(m) = Σ(m) + D , (11)

and D is a diagonal matrix with diagonal elements Lf(xi)
∫ +∞
−∞ K2(u) du, i = 1, . . . , m.

If f(x) has bounded second derivative and limn→∞ |Tn|h4
n = 0, then in (10) Efn(xi)

can be changed for f(xi), i = 1, . . . , m, and the above statement remains valid. ¤
Remark 2.2. In Theorem 2.1 and Theorem 3.1 we need approximations of the in-

tegral
∫
Rd

0
‖gu‖ du with Riemannian sums. This procedure is usually applied only for

bounded functions defined in bounded closed domains. Therefore we turn to the idea of
direct Riemann integrability. The notion of direct Riemann integrability is well-known
for univariate functions (see, e.g., Asmussen, 1987, p. 118). That is somewhat stronger
than Lebesgue integrability. As we did not find appropriate references for multivariate
functions, below we describe the notion of direct Riemann integrability for nonnegative
functions defined on Rd

0 and being unbounded at the origin.
Let l : Rd

0 → [0,∞) be given. For a v > 0 consider a subdivision of Rd into (right
closed and left open) d-dimensional cubes ∆i with edge length v such that the center of
∆0 is the origin 0 ∈ Rd. The family {∆i} is called the subdivision corresponding to v. If
i 6= 0, for x ∈ ∆i let lv(x) = sup{l(y) : y ∈ ∆i}, lv(x) = inf{l(y) : y ∈ ∆i}, while
lv(x) = lv(x) = 0 if x ∈ ∆0. If

lim
v→0

∫

Rd
lv(x) dx = lim

v→0

∫

Rd
lv(x) dx = I
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and this common value is finite, then l is called directly Riemann integrable (d.R.i.) and
I is its direct Riemann integral.

If l is d.R.i., then l is bounded outside each neighborhood of the origin. Moreover, l is
continuous almost everywhere (with respect to the Lebesgue measure). Therefore, by the
Lebesgue criterion of Riemann integrability (see Zorich, 1984), l is Riemann integrable
on each bounded closed d-dimensional rectangle not containing the origin. Call a zone a
set M = R1 \R2, where R1 is a closed d-dimensional rectangle while R2 (∅ 6= R2 ⊂ R1)
is an open d-dimensional rectangle both having center at the origin. Then one obtains that
l is Riemann integrable on each zone.

If l ≥ 0 is d.R.i. then the improper integral
∫
Rd

0
l(x) dx exists and it is equal to the

direct Riemann integral of l. This can be proved using zones approximating Rd
0 and

the properties of the improper integral of a nonnegative function (see Zorich, 1984). The
above statement implies: for any ε > 0 there exists a zone M such that

∫
Rd

0\M l(x) dx ≤ ε.
Finally, we have the following. Let l ≥ 0 be d.R.i. Let vn be positive numbers

converging to zero, and let {∆(n)
i } be the subdivision corresponding to vn. Then for any

ε > 0 there exists a zone M such that all Riemannian approximating sums (based on the
above subdivisions but not containing term |∆0|l(x0)) of the integral

∫
Rd

0\M l(x) dx are
less than ε.

For the definition of the Riemann integrability of a Banach space valued function, see
Hille and Phillips (1957, p. 62). ¤

3 The Functional Central Limit Theorem

In this section we shall prove a functional central limit theorem in the space L2[0, 1]. We
shall use the assumptions of the previous section. Moreover, in this section we suppose
that both f and fn are equal to 0 outside of the interval [0, 1]. If we restrict our study to
densities and kernel functions with compact supports, by appropriate transformation, this
condition can be realized.

Let

Ln(x) =

√
|Dn|
Λd

n

[fn(x)− f(x)] . (12)

In the following theorem we shall use conditions of Theorem 2.1.
Theorem 3.1. Assume that gu is Riemann integrable on each bounded closed d-

dimensional rectangle R ⊂ Rd
0, moreover ‖gu‖ is directly Riemann integrable. Let the

function σ(x, y) defined in (6) be positive definite. Suppose that there exists 1 < a < ∞
such that (2) and (8) are satisfied. Assume that limn→∞ Λn = ∞, limn→∞ hn = 0, and

lim
n→∞

1

Λd
n

1

hn

= 0 . (13)

Assume that f(x) has bounded second derivative and limn→∞ |Tn|h4
n = 0.

Then, as n →∞,
Ln(x) ⇒ G(x) (14)
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in L2[0, 1], where G is a Gaussian process with mean 0 and with covariance function
σ(·, ·).

To prove our theorem we need the following criterion (see Grinblat, 1976, and Ivanov,
1980).

Proposition. Let ξ(t) and ξn(t), n = 1, 2, . . ., be measurable stochastic processes on
[0, 1]. Assume

the finite dimensional distributions of ξn(t) converge to those of ξ(t) ; (15)

sup
n

sup
t
E(ξn(t))2 = c < ∞ ; (16)

lim
n→∞

E(ξn(t))2 = E(ξ(t))2 for each t ∈ [0, 1] . (17)

Then, as n →∞, ξn(t) ⇒ ξ(t) in L2[0, 1]. ¤
Proof of Theorem 3.1. First we prove that

L0
n(x) ⇒ G(x) (18)

in L2[0, 1], where

L0
n(x) =

√
|Dn|
Λd

n

[fn(x)− Efn(x)]

=
1√

|Dn|Λd
n

∑

i∈Dn

{
1

hn

K

(
x− ξi

hn

)
− 1

hn

EK

(
x− ξi

hn

)}
. (19)

To this end we have to check the conditions of the preceding proposition.
Condition (15), i.e. the convergence of the finite dimensional distributions of L0

n(x) to
those of G(x) is a consequence of Theorem 2.1.

Now we turn to (16). The following calculation is a version of what is included in the
proof of Theorem 1 in Fazekas and Chuprunov (2005).

E
(
L0

n(x)
)2

=
1

Λd
n|Dn|

∑

i∈Dn

∑

j∈Dn

cov
{ 1

hn

K
(x− ξi

hn

)
,

1

hn

K
(x− ξj

hn

)}

= An(x) + Bn(x) , (20)

where An(x) denotes the part of the sum with i = j, while Bn(x) denotes the part of the
sum with i 6= j.

For An(x) we have

An(x) =
1

Λd
nhn

var
{ 1√

hn

K
(x− ξi

hn

)}

=
1

Λd
nhn

{∫ +∞

−∞

1

hn

K2
(x− u

hn

)
f(u) du− hn

[∫ +∞

−∞

1

hn

K
(x− u

hn

)
f(u) du

]2
}

=
1

Λd
nhn

{∫ +∞

−∞
K2(y)f(x− hny) dy − hn

[∫ +∞

−∞
K(y)f(x− hny) dy

]2
}

≤ L̃

{
C

∫ +∞

−∞
K2(y) dy − hnC2

[∫ +∞

−∞
K(y) dy

]2
}

< ∞ , (21)
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as f (being continuous on a compact set) is bounded.
Now, turn to Bn(x).

Bn(x) =
1

Λd
n|Dn|

∑∑

i6=j

∫ +∞

−∞

∫ +∞

−∞

1

hn

K
(x− u

hn

) 1

hn

K
(x− v

hn

)
gi−j(u, v) dudv .

As the random field is strictly stationary, we can assume that the center of the rectangle
Tn is the origin. Then the set of vectors of the form i− j with i, j ∈ Dn is 2Dn, where 2Dn

is defined as (2Tn) ∩ (Z/Λn)d. If u ∈ 2Dn is fixed, then denote by |Dn,u| the number of
pairs (i, j) ∈ Dn ×Dn with i− j = u. Then

Bn(x) =

+∞∫

−∞

+∞∫

−∞





1

hn

K
(x− u

hn

) 1

hn

K
(x− v

hn

)( 1

Λd
n

∑

u∈2D0
n

|Dn,u|
|Dn| gu(u, v)

)


 dudv ,

where 2D0
n = 2Dn \ {0}. Now fix an ε > 0. As ‖gu‖ is directly Riemann integrable, one

can find a zone Mε ⊂ Rd (with center in the origin) such that
∫

Rd
0\Mε

‖gu‖ du ≤ ε (22)

and at the same time the Riemannian approximating sums of this integral do not exceed ε
if the diameter of the subdivision is small enough. Therefore, as |Dn,u|/|Dn| ≤ 1,

1

Λd
n

∑

u∈{2D0
n\Mε}

|Dn,u|
|Dn| ‖gu‖ ≤ ε , (23)

when 1/Λd
n is small enough, i.e. when n is large enough: n ≥ nε. Fix ε, Mε and assume

that n ≥ nε. Because gu is Riemann integrable as a function Rd
0 → C(R2) on R for each

bounded closed d-dimensional rectangle R in Rd
0, therefore we have

∥∥∥ 1

Λd
n

∑

u∈2D0
n∩Mε

gu −
∫

Mε

gu du
∥∥∥ ≤ ε (24)

in the space C(R2), if n is large enough. This relation and (22) imply that
∫
Rd

0
gu(x, y) du

exists and it is continuous in (x, y). As each edge of Tn converges to∞, |Dn,u|/|Dn| → 1
uniformly according to u ∈ Mε. Therefore, using that ‖gu‖ is directly Riemann inte-
grable, we obtain that

∥∥∥ 1

Λd
n

∑

u∈2D0
n∩Mε

|Dn,u|
|Dn| gu − 1

Λd
n

∑

u∈2D0
n∩Mε

gu

∥∥∥ ≤ ε , (25)

if n is large enough.
Relations (22), (23), (24), and (25) imply that

∥∥∥ 1

Λd
n

∑

u∈2D0
n

|Dn,u|
|Dn| gu −

∫

Rd
0

gu du
∥∥∥ ≤ 4ε , (26)
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if n is large enough.
Therefore, using that 1

hn
K(x−u

hn
) is a density function, we have

∣∣∣∣Bn(x)−
+∞∫

−∞

+∞∫

−∞

{ 1

hn

K
(x− u

hn

) 1

hn

K
(x− v

hn

) ∫

Rd
0

gu(u, v) du
}

dudv

∣∣∣∣ ≤ 4ε , (27)

if n is large enough. Moreover, the second term between the above absolute value signs
is equal to

∫ +∞

−∞

∫ +∞

−∞
K(t)K(s)

{ ∫

Rd
0

gu(x− hnt, x− hns) du
}

dtds .

As ‖gu‖ is directly Riemann integrable, and K is a density function, therefore the above
expression is bounded. So condition (16) is satisfied.

The proof of condition (17), i.e. limn→∞ E(L0
n(x))2 = E(G(x))2, for each x ∈ [0, 1]

is included in the proof of Theorem 1 in Fazekas and Chuprunov (2005), as there the
convergences of the covariances are checked.

Now, to prove (14), we have to consider the difference

Ln(x)− L0
n(x) =

√
|Dn|
Λd

n

[Efn(x)− f(x)]

=
Efn(x)− f(x)

h2
n

√
|Dn|
Λd

n

h2
n .

Here h2
n

√
|Dn|/Λd

n = h2
n

√
|Tn| → 0. On the other hand, using Taylor’s expansion,

Efn(x)− f(x) =

+∞∫

−∞

K(t)f(x− hnt) dt− f(x)

= f(x)

+∞∫

−∞

K(t) dt − f ′(x)hn

+∞∫

−∞

tK(t) dt +
h2

n

2

+∞∫

−∞

t2K(t)f ′′(ϑ(hnt, x)) dt− f(x)

=
h2

n

2

+∞∫

−∞

t2K(t)f ′′(ϑ(hnt, x)) dt ,

where ϑ(hnt, x) is a point between x and x − hnt. This expression converges to 0, uni-
formly in x, because hn → 0, f ′′ is bounded, and

∫ +∞
−∞ t2K(t) dt < ∞. So we obtain

that
Ln(x)− L0

n(x) → 0 ,

uniformly in x. ¤
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Fazekas, I., and Chuprunov, A. (2005). Asymptotic normality of kernel type density

estimators for random fields. Accepted by Statistical Inference for Stochastic Pro-
cesses.

Fazekas, I., and Kukush, A. G. (2000). Infill asymptotics inside increasing domains for
the least squares estimator in linear models. Statistical Inference for Stochastic
Processes, 3, 199-223.

Grinblat, L. S. (1976). A limit theorem for measurable random processes and its applica-
tions. Proceedings of the American Mathematical Society, 61, 371-376.

Guyon, X. (1995). Random Fields on a Network. Modeling, Statistics, and Applications.
New York: Springer.

Hille, E., and Phillips, R. S. (1957). Functional Analysis and Semi-Groups. Providence:
American Mathematical Society.

Ivanov, A. V. (1980). On convergence of distributions of functionals of measurable
random fields. Ukrainean Journal of Mathematics, 32(1), 27-34.

Lahiri, S. N. (1999). Asymptotic distribution of the empirical spatial cumulative dis-
tribution function predictor and prediction bands based on a subsampling method.
Probability Theory and Related Fields, 114, 55-84.

Lin, Z., and Lu, C. (1996). Limit Theory for Mixing Dependent Random Variables.
Dordrecht: Kluwer Academic Publishers.

Oliveira, P. E., and Suquet, C. (1998). Weak convergence in Lp(0, 1) of the uniform
empirical process under dependence. Statistics & Probability Letters, 39(4), 363-
370.



418 Austrian Journal of Statistics, Vol. 35 (2006), No. 4, 409–418

Prakasa Rao, B. L. S. (1983). Nonparametric Functional Estimation. New York: Aca-
demic Press.

Zorich, V. A. (1984). Mathematical Analysis. (In Russian.) (Vol. II). Moscow: Nauka.

Authors’ addresses:
István Fazekas
Faculty of Informatics
University of Debrecen
P.O. Box 12
H-4010 Debrecen, Hungary
E-mail: fazekasi@inf.unideb.hu

Peter Filzmoser
Department of Statistics and Probability Theory
Vienna University of Technology
Wiedner Hauptstraße 8-10
A-1040 Vienna, Austria
E-mail: P.Filzmoser@tuwien.ac.at


