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Abstract: Analyzed is the comparative calibration problem in the case when
linear relationship is assumed between two considered measuring devices.
The method deriving the approximate confidence region for the unknown pa-
rameters of the calibration line based on estimation of the calibration line via
replicated errors-in-variables model is given in Wimmer et al. (2004). Essen-
tial point in this approach is the use of the F -approximation of the distribu-
tion of the F -statistic suggested by Kenward and Roger (1997). Moreover,
in Wimmer and Witkovský (2005) such a calibration procedure is conducted
which enables proper interval estimates of several unknown values based on
the next independent measurement results obtained by the less precise mea-
suring device.

The present contribution is a continuation of work presented in Wimmer et
al. (2004) and Wimmer and Witkovský (2005). Derived is the Scheffé-type
confidence region for the (whole) calibration line. This enables to construct
the interval estimators for the multiple-use calibration case.

Keywords: Comparative Univariate Linear Calibration, Kenward-Roger Type
Approximation.

1 The Calibration Problem
Under the term calibration problem we understand the task of fitting the calibration curve
based on well designed calibration experiment. The calibration curve expresses the re-
lationship between the ideal (true, errorless) results of measuring the same object (sub-
stance, quantity) by two measuring devices. In particular, we are interested in finding
the proper estimators of the coefficients of the calibration curve and constructing the in-
terval estimators for further determinations of the unknown true value of the measured
substance in units of the more precise instrument, given measurement in units of a less
precise instrument.

In this paper we consider comparative calibration, the situation in which one instru-
ment is calibrated against the other and both are subject to the measurement error. We
suggest a method for constructing the Scheffé-type confidence region for the whole cali-
bration line. This could be directly used for the multiple-use calibration. For more details
on classical approaches to the calibration problem see e.g. Eisenhart (1939), Krutchkoff
(1967), Scheffé (1973), and Brown (1993).

Throughout this paper we will consider the above mentioned problem under the fol-
lowing circumstances:

(i) The less precise measuring device, say instrument A: The measurement result xi ob-
tained by the instrument A is a realization of normally distributed random variable
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Xi, i.e. Xi ∼ N(µi, σ
2
x), i = 1, . . . , n, where the mean value E(Xi) = µi is the

ideal (true, errorless) value of the measure and given in units of the instrument A
and σ2

x is the (unknown) dispersion of Xi assumed to be common for all i.
(ii) The more precise measuring device, say instrument B: The measurement result yi

obtained by the the instrument B is a realization of normally distributed random
variable Yi, i.e. Yi ∼ N(νi, σ

2
y), i = 1, . . . , n, where the mean value E(Yi) = νi is

the ideal (true, errorless) value of the measure and given in units of the instrument
B and σ2

y is the (unknown) dispersion of Yi assumed to be common for all i.
(iii) For estimation of the parameters of the calibration curve and for obtaining the confi-

dence region of the parameters we accomplish a pre-planned calibration experiment
with measurements made by both instruments, A and B, respectively, on a set of
n ≥ 4 suitably chosen objects (substances, quantities of interest), say v1, . . . , vn,
repeatedly m ≥ 2 times for each object.

(iv) All the measurements are mutually independent.

(v) We assume that over the typical range of values of µ and ν (the range of interest) the
true, however unknown, the calibration curve is a linear function, i.e. ν = a + bµ
with (unknown) parameters a, b.

In the above setup the instrument B is considered to be more precise than the instrument
A (σ2

y ≤ σ2
x). The instrument A is said to be the calibrated device.

2 Estimation of the Calibration Line
Wimmer et al. (2004) suggested an iterative algorithm for estimating the parameters of the
linear calibration curve of the following comparative calibration model, see also Kubáček
and Kubáčková (2000).

Denote the vector of errorless measurement results made by the instrument A by
µ = (µ1, . . . , µn)′ and the vector of errorless measurement results made by the instru-
ment B by ν = (ν1, . . . , νn)′, respectively. Let the measurements made by the instrument
A be represented by n-dimensional random vector X ∼ N(µ, σ2

xIn,n) and let the mea-
surements made by the instrument B be represented by Y ∼ N(ν, σ2

yIn,n), where I
represents the identity matrix.

Assuming (i)-(v) (first, ignoring the replications of measurements) we have the fol-
lowing calibration model

(
X
Y

)
∼ N

[(
µ
ν

)
,

(
σ2

xI 0
0 σ2

yI

)]
(1)

with nonlinear constraints on parameters

ν = a1 + bµ , (2)

where 1 = 1n,1 = (1, . . . , 1)′ is an n-dimensional vector of ones, and a and b are unknown
coefficients which specify the intercept and the slope of the calibration line.

Further, we suggest to linearize the model (1) and (2) by using Taylor series expansion
locally about µ0 = (µ01, . . . , µ0n)′ and b0 (some values chosen near to the true parameters
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µ and b). So, µ = µ0 + δµ, b = b0 + δb and the new parameters of the approximate linear
model are δµ = (δµ1, . . . , δµn)′, ν, a, δb, σ2

x, σ2
y:

(
X − µ0

Y

)
∼ N

[(
δµ
ν

)
,

(
σ2

xI 0
0 σ2

yI

)]
(3)

with linear constraints

b0µ0 + (b0I
...− I)

(
δµ
ν

)
+ (1,µ0)

(
a
δb

)
= 0 . (4)

Model (3) – (4) is highly overparameterized, so we repeat the measurements on n objects
independently m times. Let us denote by ξ1, . . . , ξm the m independent replications of

ξ =

(
X − µ0

Y

)
,

i.e. the vector ξ = (ξ′1, . . . , ξ
′
m)′ represents the vector of all measurements from the cal-

ibration experiment. The linearized version of the replicated model (3) and (4) is then
given by

ξ ∼ N

[
(1m,1 ⊗ I2n,2n)

(
δµ
ν

)
, Im,m ⊗ (σ2

xV 1 + σ2
yV 2)

]
, (5)

with linear constraints (4) on the parameters, where

V 1 =

(
In,n 0
0 0

)
, V 2 =

(
0 0
0 In,n

)
,

and by ⊗ we denote the Kronecker product of matrices.
Assuming that the model (5) with linear constraints (4) is (approximately) correct, the

BLUE (best linear unbiased estimators) of the parameters µ = µ0 + δµ, ν, a, and δb are
derived in Wimmer et al. (2004) and are given by

µ̂ = X̄ +
b0σ

2
x

b2
0σ

2
x + σ2

y

M [1,µ0](Ȳ − b0X̄) , (6)

ν̂ = Ȳ − σ2
y

b2
0σ

2
x + σ2

y

M [1,µ0](Ȳ − b0X̄) , (7)

(
â

δ̂b

)
=

(
n 1′µ0

µ′
01 µ′

0µ0

)−1 (
1′(Ȳ − b0X̄)
µ′

0(Ȳ − b0X̄)

)
(8)

with the covariance matrix

cov
(

â

b̂

)
=

b2
0σ

2
x + σ2

y

m

(
n 1′µ0

µ′
01 µ′

0µ0

)−1

,

where b̂ = b0 + δ̂b and X̄ = 1
m

∑m
j=1 Xj , Xj = (Xj1, . . . , Xjn)′, Ȳ = 1

m

∑m
j=1 Y j ,

Y j = (Yj1, . . . , Yjn)′, j = 1, . . . , m, and M [1,µ0] = I−[1,µ0] ([1,µ0]
′[1,µ0])

−1 [1,µ0]
′.
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The estimates of the parameters of the calibration line and covariance matrices depend
on the unknown variance components σ2

x and σ2
y , which could be suitably estimated from

the data by the (iterated) (σ2
x0, σ

2
y0)-MINQUE, i.e. the (σ2

x0, σ
2
y0)-locally minimum norm

quadratic unbiased estimator.
The (σ2

x0, σ
2
y0)-MINQUE of (σ2

x, σ
2
y)
′ in linear model (5) with constraints (4) is given

by (
σ̂2

x

σ̂2
y

)
=

1

n(m− 1)

[
I2,2 − c0

(
b4
0σ

4
x0 b2

0σ
4
x0

b2
0σ

4
y0 σ4

y0

)](
κ̂1

κ̂2

)
, (9)

where

c0 =
n− 2

(b4
0σ

4
x0 + σ4

y0)(mn− 2) + 2b2
0σ

2
x0σ

2
y0(m− 1)n

,

κ̂1 =
m∑

j=1

(Xj − X̄)′(Xj − X̄) + m(X̄ − µ̂)′(X̄ − µ̂) ,

κ̂2 =
m∑

j=1

(Y j − Ȳ )′(Y j − Ȳ ) + m(Ȳ − ν̂)′(Ȳ − ν̂) .

The covariance matrix (correct locally at (σ2
x0, σ

2
y0)) of the estimator (9) is

W =

(
w11 w12

w21 w22

)
=

2

n(m− 1)

[
I2,2 − c0

(
b4
0σ

4
x0 b2

0σ
4
x0

b2
0σ

4
y0 σ4

y0

)](
σ4

x0 0
0 σ4

y0

)
. (10)

All the estimators strongly depend on the chosen initial values µ0, b0, σ2
x0, σ2

y0, and
further, on the quality of linearization of the originally nonlinear model (1)–(2) at these
initial values, which on the other hand strongly depends on the experimental design of the
calibration experiment. If there is no specific prior information on the true values of the
parameters, a natural choice of the initial values, estimated from the measured data, could
be the following:

µ̂0 = X̄ , b̂0 =
nX̄

′
Ȳ − (1′X̄)(1′Ȳ )

nX̄
′
X̄ − (1′X̄)2

,

σ̂2
x0 =

1

n(m− 1)

n∑
i=1

m∑
j=1

(Xji − X̄i)
2 ,

σ̂2
y0 =

1

n(m− 1)

n∑
i=1

m∑
j=1

(Yji − Ȳi)
2 , (11)

with X̄i = m−1
∑m

j=1 Xij and Ȳi = m−1
∑m

j=1 Yij , i = 1, . . . , n. Further we compute â,
b̂ from (8), µ̂ from (6), ν̂ from (7), σ̂2

x and σ̂2
y from (9).

The estimation procedure could be iterated in such a way until convergence is reached
according to the following algorithm:

1. Set the initial values µ̂(0) = µ̂0, b̂(0) = b̂0, σ̂
2(0)
x = σ̂2

x0, and σ̂
2(0)
y = σ̂2

y0, according
to (11).

2. For given µ̂(k) and b̂(k) set µ0 = µ̂(k), b0 = b̂(k) and estimate â(k+1), b̂(k+1) from (8).
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3. Using this b̂(k+1) and µ̂(k), σ̂
2(k)
x , σ̂

2(k)
y , set b0 = b̂(k+1), µ0 = µ̂(k), σ2

x0 = σ̂
2(k)
x ,

σ2
y0 = σ̂

2(k)
y and estimate µ̂(k+1) from (6) and ν̂(k+1) from (7).

4. Finally, using σ̂
2(k)
x , σ̂

2(k)
y , and b̂(k+1), µ̂(k+1), ν̂(k+1), set σ2

x0 = σ̂
2(k)
x , σ2

y0 = σ̂
2(k)
y ,

b0 = b̂(k+1), µ̂ = µ̂(k+1), ν̂ = ν̂(k+1), and estimate σ̂
2(k+1)
x and σ̂

2(k+1)
y from (9).

Set k = k + 1 and go to the point 2.

5. After reaching convergence and finishing the iterations calculate the covariance ma-
trix W according to (10).

For testing the null hypothesis H0 : (a, b)′ = (a∗, b∗)′ and for the construction of the
confidence region for the parameters (a, b)′ we suggest to use the F -statistic

F =
1

2

(
â− a∗
b̂− b∗

)′
Φ̂−1

(
â− a∗
b̂− b∗

)
, (12)

where

Φ̂ =
b2
0σ̂

2
x + σ̂2

y

m

(
n 1′µ0

µ′
01 µ′

0µ0

)−1

,

with the values of the parameters given from the last iteration of the algorithm.
Under H0 the distribution of the F -statistic is approximated by the Fisher-Snedecor

F -distribution with 2 and u degrees of freedom (for more details see Kenward and Roger,
1997), where

u = (mn− 2) +
2n(m− 1)b2

0σ̂
2
xσ̂

2
y

b4
0σ̂

4
x + σ̂4

y

, (13)

with the values of the parameters estimated by the algorithm. For more details see Wim-
mer et al. (2004) and Wimmer and Witkovský (2005).

3 Scheffé-type Confidence Region for the Calibration Line
Let (a, b)′ represent the true vector of parameters of the calibration line ν = a + bµ,
µ ∈ 〈µl, µu〉, where the interval 〈µl, µu〉 represents the typical range of the calibration
experiment.

Using the derivation in Section 2 the parameter estimates given by the algorithm, we
have the following (approximate) distribution

F =
1

2

m

b2
0σ̂

2
x + σ̂2

y

(
â− a

b̂− b

)′ (
n 1′µ0

µ′
01 µ′

0µ0

)(
â− a

b̂− b

)
∼ F2,u , (14)

with u given by (13). From that we get

Pr

{
1

2

m

b2
0σ̂

2
x + σ̂2

y

(
â− a

b̂− b

)′ (
n 1′µ0

µ′
01 µ′

0µ0

)(
â− a

b̂− b

)
≤ F2,u(1− α)

}
= 1− α , (15)

where F2,u(1−α) is the (1−α)-quantile, α ∈ (0, 1) of the Fisher-Snedecor F -distribution
with 2 and u degrees of freedom. By applying Scheffé’s Theorem we directly get the
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100 · (1− α)%-confidence region for the calibration line a + bµ, for all µ ∈ 〈µl, µu〉:

Pr





∣∣∣(â+b̂µ)−(a + bµ)
∣∣∣≤

√
2F2,u(1−α)

b2
0σ̂

2
x+σ̂2

y

m

(
1

n
+

(µ−µ̄0)2

µ′
0µ0−nµ̄2

0

)

=1−α , (16)

where µ̄0 = (1′µ0)/n.
This could be directly used for the multiple-use linear univariate calibration. We note

that the calibration line is usually produced (estimated) externally from the viewpoint of
the user of the calibrated device. The user of this calibration line (the particular device,
instrument) needs for a series of further determinations the following information:

• the sizes n and m of the calibration experiment,

• the estimates (realizations of the estimators) âreal and b̂real = b0 + δ̂breal from the
last iteration of the algorithm,

• b0 and µ0 from the last iteration of the algorithm,

• the estimates (realizations of the MINQUE estimator) σ̂2
x,real, σ̂2

y,real together with
its covariance matrix W based on values from the last iteration of the algorithm.

4 Multiple-Use Calibration
In this section we shall derive a new approximate multiple-use calibration intervals for a
series of future determinations based on the approximate (linearized) calibration model
(5) with linear constraints (4). We assume that the calibration experiment was realized
and the results of the algorithm are available.

We will assume that the future measurement realized by the less precise measurement
device A, say x, is a realization of a random variable X , distributed as X ∼ N(µx, σ

2
x),

where µx represents the unobservable true value given in units of the less precise instru-
ment and further µx ∈ 〈µl, µu〉.

Based on the observed value x we suggest the estimate and a simple derivation of the
confidence interval for νx = a + bµx (the unobservable true value in units given by the
more precise measuring device B).

First, we suggest to construct the approximate (1− γ)-confidence region for the cali-
bration line, for small significance level γ ∈ (0, 1), chosen by the user according to (16).

Second, for small significance level α ∈ (0, 1), we suggest to construct the approx-
imate (1 − α)-confidence interval for µx, given x and the estimated value (realization
of) σ̂2

x. For that we suggest to construct the t-statistic with approximate tv Student’s t
distribution, where v represents the effective (estimated) degrees of freedom, i.e.

t =
X − µx

σ̂x

approx∼ tv , (17)

where the degrees of freedom are approximated by

v =
2σ̂4

x

W 11

, (18)
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where σ̂2
x is the estimate of σ2

x given by the algorithm and W 11 is its variance given by
the first element of the estimated covariance matrix W . This leads to the approximate
(1− α)-confidence interval for unobservable value µx

µx ∈ {x± σ̂xtv(1− α/2)} , (19)

where tv(1−α/2) is the (1−α/2)-quantile of the Student’s t distribution with v degrees
of freedom. Let µxl and µxu denote the lower and upper limit of the approximate (1−α)-
confidence interval for µx.

The suggested interval estimator for νx = 〈νxl, νxu〉 is then given as the intersection
of the bounds of the (1 − γ)-confidence region for the whole calibration line a + bµ and
the limits of the (1− α)-confidence interval 〈µxl, µxu〉 for µx. In fact,

νxl = â + b̂µxl −
√

2F2,u(1− γ)
b2
0σ̂

2
x + σ̂2

y

m

(
1

n
+

(µxl − µ̄0)2

µ′
0µ0 − nµ̄2

0

)
,

νxu = â + b̂µxu +

√
2F2,u(1− γ)

b2
0σ̂

2
x + σ̂2

y

m

(
1

n
+

(µxu − µ̄0)2

µ′
0µ0 − nµ̄2

0

)
. (20)

The above (1− γ, 1− α)-interval estimator for νx was suggested in such a way that with
probability (1− γ) the interval 〈νxl, νxu〉 will cover any future (unobservable) value of νx

with probability approximately equal to (1− α). Our simulation study based on different
calibration experiments shows that the the confidence interval (19) has the average empir-
ical confidence level equal to its nominal level (1 − α). In particular, we have estimated
σ̂x and v by the Algorithm 1 for each generated calibration experiment and then we have
calculated the following value of coverage factor (empirical confidence level) which is
the same for all possible confidence intervals (19) for given calibration experiment:

P = 1− 2

(
1− Φ

(
σ̂x

σx

tv(1− α/2)

))
. (21)

The probability (1− γ) is the probability that the calibration experiment detected the cor-
rect calibration line. Once the calibration line was correctly identified, the probability that
any future true value of νx will be covered by the interval estimator (20) is approximately
(in the above mentioned sense) equal to (1− α).

The preliminary simulations suggest that the empirical coverage probability, i.e. the
situation when the true value νx ∈ 〈a + bµl, a + bµu〉 is covered by the interval 〈νxl, νxu〉,
is typically higher than the nominal value (1− α).

This is in contrast with the properties (empirical coverage probabilities) of the single-
use calibration confidence interval which was proposed by Wimmer and Witkovský (2005).
In this case the empirical coverage probabilities are very close to the nominal level (1−α).
Single-use calibration assumes that the independent calibration experiment is conducted
for each single future measurement x, the realization of X ∼ N(µx, σ

2
x). In this case the
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Figure 1: Calibration line and its Scheffé-type confidence region. The thick dotted line
represents the true calibration line, the solid line is the estimated calibration line together
with the limits of the 99% confidence region (dashed-dotted lines). The dashed lines
represent the Scheffé-type interval estimator for νx = a + bµx, where µx = 7.5, based
on x = 7.1097, the realization of random variable X ∼ N(7.5, 0.15). The dotted lines
represent the limits of the approximate 95% single-use calibration confidence interval.

(1− α)-confidence interval for νx is given by

νxl = â + b̂x− tu

(
1− α

2

) √
b2
0σ̂

2
x + σ̂2

y

m

(
1

n
+

(x− µ̄0)2

µ′
0µ0 − nµ̄2

0

)
+ b̂2σ̂2

x ,

νxu = â + b̂x + tu

(
1− α

2

) √
b2
0σ̂

2
x + σ̂2

y

m

(
1

n
+

(x− µ̄0)2

µ′
0µ0 − nµ̄2

0

)
+ b̂2σ̂2

x , (22)

where u is given by (13). For more details see Wimmer and Witkovský (2005).

4.1 Numerical Example
In order to illustrate the numerical results we illustrate the method for constructing the
Scheffé-type calibration confidence interval by the following artificial data. Let µ =
(1, 3, 5, 7, 9)′ be the vector of true values of n = 5 well prepared quantities (primary
standards), given in units of the less precise device A. Let X ∼ N(µ, σ2

x) represent the
random vector of measurements taken by the instrument A, with variance σ2

x = 0.15. We
will repeat the measurements independently m = 3 times.

Similarly, let ν represent the true values of the standards, given in units of the more
precise device B, and let ν = a + bµ = 0.5 + 1.5µ be the true calibration line. Let
Y ∼ N(µ, σ2

y) represent the random vector of measurements taken by the instrument B,
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with σ2
y = 0.01. We will repeat the measurements independently m times. The observed

measurements taken during the calibration experiment are given in the table below

µ x y ν

1 0.6086 0.7507 1.0000 2.0896 2.0569 1.9766 2
3 3.2380 3.1473 2.8769 5.0731 4.9744 5.0118 5
5 5.1966 4.6092 5.4241 8.0578 7.9623 8.0315 8
7 7.6555 6.9924 6.2742 11.0040 10.9704 11.1444 11
9 9.2290 8.9813 9.1658 14.0677 13.8525 13.9649 14

The following estimates (the result of the pre-planned calibration experiment) are
given after 10 iterations of the algorithm: â = 0.7405, b̂ = b0 = 1.4522, σ̂2

x = 0.1264,
σ̂2

y = 0.0057, µ0 = (0.8933, 2.9497, 5.0123, 7.0897, 9.1048)′, and W 11 = 2.4817 · 10−3,
W 22 = 6.4042 · 10−6, W 12 = −6.7842 · 10−7.

Further, let x = 7.1097 be a realization of X ∼ N(µx, σ
2
x), i.e. the future measurement

taken by the less precise instrument A, where µx = 7.5 and σ2
x = 0.15, i.e. the true value

given in units of the more precise instrument B is νx = 0.5 + 1.5 · 7.5 = 11.75. For
α = 0.05 and by using (19) we get the 95%-confidence interval for µx:

µx ∈ {x± σ̂xtv(1− α/2)} = {7.1097± 0.7688} ,

with v = 12.9 as given in (18).
For γ = 0.01 and by using the estimated degrees of freedom u = 13.4 in (13) we

calculate the Scheffé-type (99%, 95%)-interval estimate for νx according to (20):

νx ∈ 〈9.4096, 12.8699〉 .

For comparison we present also the single-use 95%-confidence interval for νx calculated
according to (22):

νx ∈ 〈9.8971, 12.2330〉 .

5 Conclusions
In the paper we have considered the comparative calibration problem. We have sug-
gested a method for construction of the Scheffé-type confidence region for the true (un-
observable) calibration line based on the replicated linearized calibration model and on
the Kenward-Roger type approximation to the distribution of the F -statistic for the pa-
rameters of the calibration line. Further, the interval estimate for the true value of the
measurand (in units of the more precise instrument) was suggested in the multiple-use
calibration case. The calculation of the interval estimate requires estimates of the param-
eters of the pre-planned calibration experiment given by the proposed algorithm.

Acknowledgement

The research on the subject was supported by VEGA, the Scientific Grant Agency of
Slovak Republic, grants No. 1/0264/03 and 2/4026/04.



406 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 397–406

References
Brown, P. J. (1993). Measurement, Regression, and Calibration. Oxford: Clarendon

Press.
Eisenhart, C. (1939). The interpretation of certain regression methods and their use in

biological and industrial reserach. Annals of Mathematical Statistics, 10, 162-186.
Kenward, M. G., and Roger, J. H. (1997). Small sample inference for fixed effects from

restricted maximum likelihood. Biometrics, 53, 983-997.
Krutchkoff, R. G. (1967). Classical and inverse methods of calibration. Technometrics,

9, 425-439.
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