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Abstract: We suggest a new approach to parameter estimation in time se-
ries models with large number of parameters. We use a modified version of
the Basis Pursuit Algorithm (BPA) by Chen et al. [SIAM Review 43 (2001),
No. 1] to verify its applicability to times series modelling. For simplicity we
restrict to ARIMA models of univariate stationary time series. After hav-
ing accomplished and analyzed a lot of numerical simulations we can draw
the following conclusions: (1) We were able to reliably identify nearly zero
parameters in the model allowing us to reduce the originally badly condi-
tioned overparametrized model. Among others we need not take care about
model orders the fixing of which is a common preliminary step used by stan-
dard techniques. For short time series paths (100 or less samples) the sparse
parameter estimates provide more precise predictions compared with those
based on standard maximum likelihood estimators from MATLAB’s System
Identification Toolbox (IDENT). For longer paths (500 or more) both tech-
niques yield nearly equal prediction paths. (2) As the model usually depends
on the estimated parameters, we tried to improve their accuracy by iterating
BPA several times.

Keywords: Overcomplete Model, Algorithm.

1 Introduction
Chen, Donoho, and Saunders (1998) deal the problem of sparse representation of vectors
(signals) by using special overcomplete (redundant) systems of vectors (atoms) spanning
this space. Typically such systems (also called frames or dictionaries) are obtained either
by refining existing basis or merging several such bases (refined or not) of various kind
(so called packets).

In contrast with vectors which belong to a finite-dimensional space, Veselý (2002)
formulates the problem of sparse representation within a more general framework of (even
infinite dimensional) separable Hilbert space. Such functional approach allows us to get
more precise representation of objects from such space which, unlike vectors, are by their
nature not discrete.

In this paper we attack the problem of sparse representation from overcomplete time
series models using expansions in the Hilbert space L2 := L2(Ω,A,P) of random vari-
ables defined on the probability space (Ω,A,P) and having finite variance. With complex
scalars we have inner product defined by 〈X,Y 〉 := EXY . A numerical study demon-
strates benefits and limits of this approach when applied to overcomplete AR(I)MA mod-
els of univariate (covariance) stationary time series.



372 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 371–378

2 Recovering Sparse Parameter Estimates from
Overcomplete Time Series Models

In this section we shall keep to the notation of Brockwell and Davis (1991), corrected
second printing.

2.1 Overcomplete ARMA Model for Stationary Time Series
Let Ht = sp({Xt+1−j}∞j=1) be a separable closed space in L2 spanned by the history
of {Xt} up to the time t and Pt : L2 → Ht the orthogonal projection operator. By
orthogonalization of {Xt}we get also Ht = sp({Zt+1−j}∞j=1) where {Zt} is uncorrelated,
Zt = Xt − Pt−1Xt, t ∈ Z. We shall confine ourselves to {Xt} zero-mean stationary with
autocovariance function γ, {Xt} ∼ ARMA(p, q), in which case mean and variance are
constant and {Zt} is a white noise, {Zt} ∼ WN(0, σ2), σ > 0. Thus both {Xt+1−j} and
{Zt+1−j} are dictionaries in Ht. Merging both dictionaries, we get a new overcomplete
dictionary {Ut+1−j}∞j=1 = {Xt+1−j}∞j=1 ∪ {Zt+1−j}∞j=1 in Ht. Fixing P,Q such that
0 ≤ p ≤ P ≤ ∞, 0 ≤ q ≤ Q ≤ ∞ we get an overcomplete but still finite atomic
decomposition of X̂t+:

X̂t+1 = PtXt+1 =
P∑

j=1

ΦjXt+1−j +

Q∑

k=1

ΘkZt+1−k =: T P,Q
t ξ =:

P+Q∑
i=1

Ut+1−iξi , (1)

with atoms Ut+1−j := Xt+1−j for j = 1, . . . , P and Ut+1−P−k := Zt+1−k for k = 1, . . . , Q
where ξ := {Φ, Θ} stands for the corresponding concatenation of coefficient sequences
Φ := {Φj}P

j=1 and Θ := {Θk}Q
k=1. Clearly Tt := T P,Q

t : `2(J) → Ht, J := {1, . . . , P +
Q}, is a bounded linear operator with closed range spaceR(Tt) = Ht of finite dimension.
After changing the notation accordingly this model comprises all three commonly used
representations, namely

• invertible representation X̂t+1 =
∑∞

j=1(−πj)Xt+1−j =: T∞,0
t (−π), when putting

π0 = 1 and πj = 0 for j < 0:
Zt+1 = Xt+1 − X̂t+1 =

∑∞
j=0 πjXt+1−j =

∑∞
j=−∞ πjXt+1−j;

• causal representation X̂t+1 =
∑∞

k=1 ψkZt+1−k =: T 0,∞
t ψ, when putting ψ0 = 1 and

ψk = 0 for k < 0:
Xt+1 = X̂t+1 + Zt+1 =

∑∞
k=0 ψkZt+1−k =

∑∞
k=−∞ ψkZt+1−k;

• overcomplete ARMA(P, Q) representation X̂t+1 = T P,Q
t ξ with finite but sufficiently

overestimated orders P, Q: p ≤ P < ∞, q ≤ Q < ∞; the choice P = Q = 10
being satisfactory in most cases.

Hereafter we shall deal with the third case in more detail, the sparse solution of which
is expected to exclude redundant parameters which are nearly noughts allowing us to
approach the original ARMA(p, q) model and its parameter estimates.

As R(Tt) = Ht is closed, the restriction of adjoint operator T ∗
t onto Ht is a topologi-

cal linear isomorphism T ∗
t of Ht onto a closed subspace H′

t ⊆ `2(J), dim Ht = dim H′
t.

Thus instead of (1) we can solve the underdetermined system of M := P +Q linear equa-
tions (analogy to normal equations known from linear regression) obtained by applying
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T ∗
t to both sides of (1):

bt = Rtξ or equivalently bi(t) =
M∑

j=1

Rij(t)ξj for i ∈ J . (2)

In view of T ∗
t (X) = {〈X, Ut+i−1〉}M

i=1, X ∈ L2, above there is bt = [bi(t)]
M
i=1 where

bi(t) := 〈Xt+1, Ut+1−i〉 = E Xt+1U t+1−i is standing for 2-nd order joint moment of
Xt+1 and i-th atom Ut+1−i, and Rt = [Rij(t)]

M
i,j=1 with Rij(t) := 〈Ut+1−j, Ut+1−i〉 =

E Ut+1−jU t+1−i standing for 2-nd order joint moment of j-th and i-th atom which is a
covariance of them due to zero mean.

Lemma 1 Let {Xt} be a stationary time series and i, j ∈ Z arbitrary. The following
holds:

(1) If {Xt} is causal then 〈Xt+1−j, Zt+1−i〉 = σ2ψi−j .

(2) If {Xt} is invertible then 〈Xt+1−j, Zt+1−i〉 =
∑∞

k=0 γ(i− j + k)πk.

Proof.
(1) Causal representation substituted for Xt+1−j yields

〈Xt+1−j, Zt+1−i〉 = 〈∑∞
k=0 ψkZt+1−j−k, Zt+1−i〉 =

∑∞
k=0 ψk〈Zt+1−j−k, Zt+1−i〉 =∑∞

k=0 ψkσ
2δi,j+k = σ2ψi−j .

(2) Invertible representation substituted for Zt+1−i yields
〈Xt+1−j, Zt+1−i〉 = 〈Xt+1−j,

∑∞
k=0 πkXt+1−i−k〉 =

∑∞
k=0 πk〈Xt+1−j, Xt+1−i−k〉 =∑∞

k=0 πkγ(t + 1− j − (t + 1− i− k)) =
∑∞

k=0 πkγ(i− j + k). ¤

The next theorem reveals the entries bi := bi(t), i = 1, . . . , P + Q, of the left- hand-
side vector b := bt in (2) and the structure of the matrix R := (Tt)

∗ Tt = [Rij] which
show to be independent of t due to stationarity. That is why we have omitted the subscript
t from the notation.

Theorem 1 If {Xt} ∼ ARMA(p, q) is zero- mean and causal with autocovariance func-
tion γ = {γ(h)}∞h=0, γ(h) := cov(Xt+h, Xt) = EXt+hX t = 〈Xt+h, Xt〉, then the equa-
tion (2) attains with 0 ≤ p ≤ P < ∞ and 0 ≤ q ≤ Q < ∞ the form

b = Rξ with b =

[
γP

σ2ψQ

]
, R =

[
ΓP σ2Ψ∗

σ2Ψ σ2IQ

]
and ξ =

[
ΦP

ΘQ

]
, (3)

where γP := [γ(1), . . . , γ(P )]T , ψQ := [ψ(1), . . . , ψ(Q)]T , σ2 = γ(0)/
∑∞

k=0|ψk|2 =
γ(0)/‖ψ‖2, ΦP = [Φ1, . . . , ΦP ]T , and ΘQ = [Θ1, . . . , ΘQ]T .
IQ is identity matrix of order Q, ΓP and Ψ are Toeplitz matrices:

ΓP := [γ(i− j)]Pi,j=1 =




γ(0) γ(1) · · · γ(P − 1)

γ(1) γ(0) · · · γ(P − 2)
...

... · · · ...
γ(P − 1) γ(P − 2) · · · γ(0)


 and (4)

Ψ := [ψ(i− j)]Q,P
i,j=1 =




1 0 · · · 0
ψ(1) 1 · · · 0

...
... · · · ...

ψ(Q− 1) ψ(Q− 2) · · · ·


 of size Q× P. (5)
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Proof. As Ut+1−j = Xt+1−j for j = 1, . . . , P and Ut+1−P−k = Zt+1−k, then in view of
(2) we get for R =: [Rij] =:

[
ΓP W ∗
W V Q

]
:

ΓP =: [Rij]
P
i,j=1 where Rij = 〈Ut+1−j, Ut+1−i〉 = 〈Xt+1−j, Xt+1−i〉 = γ(t + 1− j − (t +

1− i)) = γ(i− j) = γ(j − i);
V Q = [RP+i,P+j]

Q
i,j=1 where RP+i,P+j = 〈Ut+1−P−j, Ut+1−P−i〉 = 〈Zt+1−j, Zt+1−i〉 =

σ2δij which implies V Q = σ2IQ;
W = [RP+i,j]

Q,P
i,j=1 where RP+i,j = 〈Ut+1−j, Ut+1−P−i〉 = 〈Xt+1−j, Zt+1−i〉 = σ2ψi−j in

view of lemma 1(1), which implies W = σ2Ψ.
Clearly the above formulas remain valid for Ri0 = 〈Xt+1, Ut+1−i〉 as well when extending
the scope of column index by j = 0. Then we have also
bi = 〈Xt+1, Ut+1−i〉 = 〈Xt+1, Xt+1−i〉 = Ri0 = γ(i) for i = 1, . . . , P ;
bP+i = 〈Xt+1, Ut+1−P−i〉 = 〈Xt+1, Zt+1−i〉 = RP+i,0 = σ2ψi for i = 1, . . . , Q.
The relation for σ2 is well- known (Brockwell and Davis, 1991, eq.(3.2.4)) and easily
derived from
γ(0) = 〈Xt, Xt〉 = 〈∑∞

j=0 ψjZt−j,
∑∞

j=0 ψkZt−k〉 =
∑∞

j,k=0 ψjψk〈Zt−j, Zt−k〉 =∑∞
j,k=0 ψjψkσ

2δjk = σ2
∑∞

j=0|ψj|2. ¤

Corollary 1 If the time series {Xt} from theorem 1 is both causal and invertible, then the
entries of ψQ and Ψ may be evaluated from the invertible representation too:

ψi =
1

σ2

∞∑

k=0

γ(i + k)πk for i = 0, 1, . . . where (6)

σ2 =
∞∑

k=0

γ(k)πk = 〈γ, π〉 taking the scalar product in `2. (7)

Proof. Equating both relations for 〈Xt+1−j, Zt+1−i〉 in lemma 1 with j = 0, we get im-
mediately σ2ψi =

∑∞
k=0 γ(i + k)πk and the relation for σ2 as its special case with i = 0

due to ψ0 = 1. ¤

2.2 Algorithm for Sparse Parameter Estimation
A lot of algorithms have been suggested by various authors (see Chen et al., 1998) for
searching sparse representations from the overcomplete ones. In this paper we use a
computationally intensive universal multi- stage iterative procedure coded in MATLAB
which shows to be robust against propagation of numerical errors when solving inverse
problems being extremely badly conditioned. The procedure is based on BPA (Basis
Pursuit Algorithm) originally suggested by Chen et al. (1998) for finite- dimensional
vectors and later on extended to functional setting by Veselý (2002). The main steps of
the algorithm applied to the solution of (2) are [see also Zelinka et al., 2004]:
(A0) Choosing a raw initial estimate ξ(0).
(A1) We improve ξ(0) iteratively by stopping at ξ(1) which satisfies optimality criterion

‖b−b̂‖ → min within numerical precision ‖b̂−Rξ(1)‖ < ε/2, b̂ := PH′
t
b. Solution

ξ(1) is ε- suboptimal but not sparse in general.
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(A2) Starting with ξ(1) we are looking for
ξ(2) = argminξ∈`2(J)‖ξ‖w,1 subject to ‖Rξ(1) − Rξ(2)‖ < ε/2, which tends to
be nearly sparse and is ε- suboptimal due to triangle inequality ‖b̂ − Rξ(2)‖ ≤
‖b̂ − Rξ(1)‖ + ‖Rξ(1) − Rξ(2)‖ < ε/2 + ε/2 = ε; ‖ξ‖w,1 :=

∑P+Q
j=1 wj|ξj| is

`1- norm of coefficients weighted in order to balance nonuniform norms of atoms:
wj =

√
γ(0) for j = 1, . . . , P and wj = σ for j = P + 1, . . . , P + Q.

(A3) We construct a sparse and ε- suboptimal solution ξ∗ := {ξ(2)
j }j∈F ∗ by choosing

zero threshold δ > 0 as large as possible such that ‖b̂−Rξ∗‖ < ε still holds with
F ∗ = { j ∈ J | |ξ(2)

j | ≥ δ}.

(A4) Optionally we can repeat step (A1) with J replaced by significantly reduced F ∗ and
new initial estimate ξ(0) = ξ∗ from the previous step (A3). We expect to obtain a
possibly improved sparse representation ξ∗.

Hereafter we refer to this four-step algorithm as to BPA4.

The overall estimation procedure is as follows:
(1) Replace exact autocovariance function γ by its sample estimate γ̂.

(2) Compute estimates ψ̂ and σ̂2 from γ̂ via iterating Innovations algorithm (IA) suffi-
ciently many times (Brockwell and Davis, 1991, §8.3) until σ̂2 and ψ̂i, i = 1, . . . , Q
are stabilized.

(3) Compute sparse solution ξ∗ =
[ Φ∗P

Θ∗
Q

]
of eq. (3) via BPA4 with γ, ψ and σ2 replaced

by their estimates. As the initial estimate in step (A0) we can use for example the
pseudoinverse solution ξ(0) = R+b.

(4) Optional step. We know from the causal representation (Brockwell and Davis,
1991, eq. (3.3.5)) and from (6) that both ψ and σ2 are functions of unknown param-
eters ΦP and ΘQ. Therefore we can reestimate ψ̂ on the basis of sparse solution
obtained in step (3) utilizing Lemma 1(1) where we substitute sample estimates.
Let {xt}n

t=1 denote sample path of {Xt} and {zt}n
t=1 errors of one- step predictions

from the model estimated in step (3). Putting t = n − 1 and j = 0 in Lemma 1(1)
we arrive at a possibly improved estimate of ψ:
ψ̂i = 〈Xn, Zn−i〉/σ2 ≈ (∑n−i−1

m=0 xn−mzn−i−m

)
/
(∑n−i−1

m=0 |z|2n−i−m

)
.

This procedure may be iterated several times. If convergence is exhibited then the
stabilized solution Φ∗

P and Θ∗
Q from the last iteration will be used as the final pa-

rameter estimate, otherwise we keep the initial solution ξ∗ from step (3).

3 Design of the Numerical Simulation Study
• simulated lengths: 500 and 100 samples (x), out of which the leading 300 and 80

(xm), respectively, have been used for parameter estimation; the remaining 200 and
20 for verification (xv);

• simulations were done for several AR(I)MA(p, q) models with varying orders and
parameter vectors ΦP and ΘQ (see Tables below);

• 100 simulations were carried out for every pair (length,model);



376 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 371–378

• for each simulation the command predict from MATLAB’s System Identification
toolbox (IDENT) designed by Ljung (2002) was used to compute one-step predic-
tions on xv based on exact parameters and on four different estimation techniques:

(1) single sparse using BPA4: steps (1)–(3) of the algorithm from section 2.2,
(2) iterated sparse using BPA4:steps (1)–(4) of the algorithm from section 2.2,
(3) iterated sparse using Moore- Penrose pseudoinverse: the same as (2) except

that (A0) was used instead of BPA4, and
(4) maximum likelihood (ML) estimate using armax function from IDENT;

• for every triple (length,model,simulation) the quality of the prediction was evalu-
ated using function compare from IDENT:
(1) standard deviation of one- step prediction errors,
(2) the percentage of the measured output xv that was explained by the model.
Their mean with sample std in parantheses were summarized in Table 1.

Table 1: Summary of simulation results for the ARMA model
Type of Φ = 0.50− 0.80 0.50− 0.80 0.90− 0.80 0.90− 0.80
estimate Θ = 0.60 0.60 0.60 0.60
for ARMA σ = 1.50 1.50 1.50 1.50 100

n = 500 100 500 100
Single sparse σ̂ 1.629 (0.342) 1.029 ( 0.257) 1.612 (0.191) 1.049 ( 0.295)
LSQ est. % 47.129 (2.704) 66.536 ( 9.929) 59.565 (6.367) 72.567 ( 7.689)
Iter. sparse σ̂ 1.533 (0.139) 1.112 ( 0.283) 1.555 (0.091) 1.230 ( 0.319)
LSQ est. % 49.805 (3.427) 63.917 (10.628) 61.080 (4.010) 67.285 (11.636)
Iter. sparse σ̂ 1.470 (0.109) 1.494 ( 0.086) 1.498 (0.070) 1.279 ( 0.788)
inv. matrix % 51.694 (4.227) 59.518 (18.139) 63.106 (3.399) 62.256 (17.059)
IDENT σ̂ 1.484 (0.102) 1.441 ( 0.243) 1.492 (0.069) 1.451 ( 0.268)
max. lik. % 51.290 (4.450) 53.392 (11.175) 62.634 (3.537) 59.591 (13.781)
Exact σ̂ 1.483 (0.081) 1.407 ( 0.232) 1.486 (0.061) 1.429 ( 0.258)

% 52.079 (4.503) 54.437 (11.374) 62.881 (3.813) 60.226 (13.581)
Type of Φ = 0.30 0.30 1.20− 0.80 1.20− 0.80
estimate Θ = 0.70 0.40 0.70 0.40 0.60 0.60

σ = 1.50 1.50 1.50 1.50 100
n = 500 100 500 100

Single sparse σ̂ 1.477 (0.080) 1.070 ( 0.258) 1.659 (0.390) 1.071 ( 0.313)
LSQ est. % 37.158 (4.151) 46.570 (13.108) 65.648 (8.187) 76.213 ( 7.299)
Iter. sparse σ̂ 1.471 (0.078) 1.083 ( 0.266) 1.643 (0.0972) 1.249 ( 0.395)
LSQ est. % 37.438 (3.715) 45.777 (14.412) 65.363 (3.6007) 71.397 (11.138)
Iter. sparse σ̂ 1.474 (0.076) 1.082 ( 0.290) ∞ (∞) ∞ (∞)
inv. matrix % 37.315 (3.756) 45.707 (14.695) 0 (∞) 0 (∞)
IDENT σ̂ 1.492 (0.080) 1.433 ( 0.312) 1.496 (0.075) 1.426 (0.247)
max. lik. % 36.560 (3.705) 29.422 (13.862) 68.495 (3.339) 67.779 (8.165)
Exact σ̂ 1.481 (0.084) 1.417 ( 0.265) 1.473 (0.073) 1.396 (0.237)

% 36.593 (3.819) 31.312 (12.176) 69.523 (3.360) 68.882 (8.092)
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4 Conclusions
From the table and other experiments we can draw the following conclusions:

• For larger sample sizes (roughly n > 500) the ML-estimate from IDENT and the
sparse estimate produce practically equal predictions even though the parametriza-
tions of both estimates are typically quite different.

• With decreasing sample size the sparse estimate tends to be superior to the ML-
estimate from IDENT as to the precision of predictions.

• The parametrization obtained from a sparse estimate in an overcomplete model
cannot be used as an estimate of the parameters in the ideal ARMA model because
it is related exclusively to the particular sample path. It sometimes produces even
better predictions than the ideal model.

• On the other hand the prediction of any sample path from the model works with
parametrization obtained from any other path with any P ≥ p and Q ≥ q for
the same sample size (short or long). This seems to confirm that our procedure
constructs a new type of estimator for the time series itself not just an estimate of
one particular path.

• The number of significant parameters in the sparse parametrization rarely exceeds
the number of parameters from the ideal ARMA model, it happens very often that
it is smaller.

• Iterated sparse based on BPA4 preserves the quality of predictions and mostly re-
duces their uncertainty compared with single sparse.

• Iterated sparse based on MP-pseudoinverse behaves similarly but sometimes fails to
converge, which is probably a consequence of higher sensitivity to round- off errors
coming from the pseudoinverse of a matrix having accidentally a wrong condition
number.

Table 2: Summary of selected simulation results for the ARIMA model

Type of estimate Φ = 0.50− 0.20 0.50− 0.20 1.20− 0.80 1.20− 0.80
for ARIMA Θ = 0.60 0.60 0.60 0.60

σ = 1.50 1.50 1.50 1.50
[n,D] = 100 1 100 2 100 1 100 2

Single sparse σ̂ 2.097 ( 1.236) 8.545 ( 7.892) 1.649 (0.734) 7.133 ( 6.002)
LSQ. est. % 48.030 (13.401) 50.972 (13.095) 76.150 (6.756) 75.557 ( 8.310)
IDENT σ̂ 2.876 ( 1.578) 17.844 (12.569) 2.300 (1.038) 18.250 (12.140)
max. lik. % 29.748 (14.045) 30.489 (16.822) 66.263 (9.445) 65.612 ( 9.568)
Exact σ̂ 2.788 ( 1.334) 17.196 (11.659) 2.243 (0.981) 18.444 (12.776)

% 31.465 (11.970) 31.902 (15.620) 66.207 (9.557) 67.031 ( 9.156)

Analogical numerical study for ARIMA models leads to the same conclusions (see
Table 2). This is in accordance with our expectation because predictions in ARIMA
model are derived from ARMA- predictions of differenced time series.
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Standard statistical techniques numerically stabilize the parameter estimation in an
ARMA(p, q) model assuming low orders p, q. Our procedure is relaxing this assumption
assuming low number of parameters within a possibly higher range of orders. This is less
restrictive which may explain better precision of predictions in short time series where
there is not enough information inherent in the data to confirm the low order assumption.
That is why in situations where one cannot derive the low order assumption from an
a priori knowledge, the usage of our technique should be preferred.

A continued research is planned for VARMA where the BPA based technique is
promising in revealing sparse structure of parameter matrices which are commonly es-
timated as being full which, of course, may deteriorate the stability and reliability of
estimates and predictions.
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