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Pavel Tuček and Jaroslav Marek
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1 Introduction
The aim of this paper is to make one keep in view that the geographical coordinates,
obtained with the help of a GPS receiver cannot be regarded as accurate data. Based on
the results of one exemplary measurement, we will show that it is always necessary to take
into account an uncertainty of data acquired from the GPS receiver. The user of the GPS
receiver should always consider carefully if the measured values are sufficiently accurate
with respect to the particular purposes. This conclusion can be drawn only in cases when
an estimation of a dispersion of the GSP receiver is known in a given place and time.

In order to lower the uncertainty of the measurement, various measuring approaches
are used. A repeated (multistage) measurement is one of such procedures. In addition, it
is also well-known how to determine the estimation of the dispersion of the GPS receiver.
However, a possible situation can arise when the user of the device is not in a position
to repeat the measurement several times during longer time interval. This can be caused
either by a physical principle of a given design of the measurement or by practical aspects
(e.g. expensiveness of the repeated measurement carried out for several days). To avoid
this difficulty, we will show another possible approach which leads to the estimation of
the dispersion of the GPS receiver. Moreover, the presented method can serve for an
improvement of the accuracy of data acquired from the GPS receiver.

In the following text, an algorithm based on the theory of estimation is introduced
which would eventually decrease the uncertainty of the coordinates obtained from the
GPS receiver with an utilization of an additional measurement (in our case, by a mea-
suring tape). Even for an amateur measurement, the dispersion of the measured lengths
is approximately about 0.12 m2. From here and on, the uncertainty of the first-stage
measurement is considered as the B-type uncertainty (in our case, the B-type uncertainty
represents the uncertainty of the measurement by the measuring tape) and the lengths ob-
tained in the first-stage measurement are denoted by a symbol Θ. On the contrary, the
uncertainty of the second-stage measurement is considered as the A-type uncertainty (in
our case, the A-type uncertainty represents the uncertainty of the measurement by the
GPS receiver) and the coordinates acquired in the second-stage measurement are denoted
by a symbol β.

Motivation: Let us suppose the following situation. The goal was to determine a
stochastic distribution of a chemical element in the soil. The coordinates of the positions,
where the value of the chemical element was intended to be measured, have been acquired
by the GPS receiver. The obtained values are depicted in Figure 1 where every point



358 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 357–364

corresponds to the place where the sample was taken. According to the design of the
measurement and principle of the utilized device, it was then expected that the acquired
data would create an accumulation in the form of a ring.

As it is evident from Figure 1, the ring was generated from data for one ”locality”.
However, the expected ring for the second locality was extended in comparison with the
previous one. One may therefore ask the following questions. What were the reasons
for such an anomalous behavior of the measured data? Was it a consequence of the
uncertainty of the acquired coordinates?

In the next example from another area of interest, it will be shown that the estimation
of the dispersion of the GPS device is 0.3542 m2. This value may greatly differ depending
on a number of available satellites, surrounding landscape and sedulity of the person
performing the measurement. Therefore, the values acquired by the GPS receiver always
exhibit different accuracy.

In the above-discussed example it was found out that the student carrying out the
measurement did not respect the instructions for a given measurement. The measurement
was not performed all at once but there was a time delay between particular steps of the
measurement.

Figure 1: Coordinates of the measured points.

If Ivan Klı́ma, the well-known Czech writer, was present personally during this

measurement, he would surely not write the story called The Geodetic Story

where the following thought about an accuracy appears:

From time immemorial a man has been striving for perfection. One of the devices

through which we explore mystical places, is measurement. We measure the

Earth, the Universe, velocities, times and depths. Depths both uncomprehensibly

big and uncomprehensibly small. We draw schemes, maps and plans that are

getting more and more accurate. Accuracy has put a spell on us, we have stepped

into a dimension where our senses may be deluding us.

Notation The following notations will be used throughout the paper:
Rn space of all n-dimensional real vectors
Θ real column vector – from the first stage
β real column vector – from the second stage
Im,n, Am,n m× n identity matrix; the real m× n matrix
Ar1:s1,r2:s2 (s1 − r1)× (s2 − r2) block matrix with elements of A
A′, r(A), Tr(A) transpose, the rank and the trace of the matrix A
A = Diag(u) diagonal matrix with diagonal equal elements of vector u
M(A) column space of the matrix A; M(A) = {Au : u ∈ Rn} ⊂ Rm

Ker(A) null space of the matrix A; Ker(A) = {u : u ∈ Rn,Au = 0} ⊂ Rn

A− generalized inverse of the matrix A (satisfying AA−A = A)
see Rao and Mitra (1971)

PA orthogonal projector onto M(A) in Euclidean norm
PA = A(A′A)−A′

MA orthogonal projector onto M⊥(A) = Ker(A′) in Euclidean norm
MA = I− PA

Y ∼ (AΘ,T) observation vector Y with mean value AΘ and covariance matrix T.
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2 Model of Measurements
Definition 2.1 Let us consider the linear model Y − DΘ̂ ∼n (Xβ, Σ0), where Σ0 =
σ2V1 + DV0D

′ and Y ∼n (DΘ + Xβ, σ2V1) is a random observation vector, β ∈ Rk

stands for a vector of the useful parameters and Xn,k denotes a design matrix belonging
to the vector β. We suppose that an estimator Θ̂ ∼k1 (Θ,V0) of Θ is at our disposal only.
Theorem 2.1 The standard estimator σ̂2 of the parameter σ2 for the model defined in
Definition 2.1 is given by

σ̂2 = λ[(Y −DΘ̂)′(MAΣ0MA)+V1(MAΣ0MA)+(Y −DΘ̂)]−
−Tr[(MAΣ0MA)+V1(MAΣ0MA)+V0] ,

where the parameter λ is expressed by

S(MAΣ0MA)+λ = 1 ,

where the 1×1 matrix S(MAΣ0MA)+ is

S(MAΣ0MA)+ = Tr[(MAΣ0MA)+V1(MAΣ0MA)+V1] .

Proof. The idea is given in Kubáček and Kubáčková, 2000, p. 102. Details are given in
Tuček and Marek (2006). ¤

Hereafter we will focus on the same model but from a different point of view. We will
consider the model of the measurement and then we will present how to determine the
estimators of the fundamental parameters.

Definition 2.2 The model of connecting measurement will be represented by

(i)

(
Y1

Y2

)
∼

[(
X1, 0
D, X2

)(
Θ
β

)
,

(
Σ1,1, 0
0, Σ2,2

)]
,

where X1,D,X2 are known n1 × k1, n2 × k1, n2 × k2 matrices, respectively, such that
M(D′) ⊂ M(X′

1); Θ and β are unknown k1- and k2-dimensional vectors; Σ2,2 = σ2V1,
where Σ1,1 and V1 are known matrices.

In this model the parameter Θ is estimated on the basis of the vector Y1 of the first
stage and parameter β on the basis of the vectors Y2−DΘ̂ and Θ̂. At this point, it should
be mentioned that the results of the measurement from the second stage (i.e. Y2) cannot
be used for a modification of the estimator Θ̂.

The parametric space Θ of this model of connecting measurement Y is defined as

(ii) Θ = {(Θ′, β′)′ : Bβ + CΘ + a = 0} ,

where B and C are q×k2 and q×k1 matrices, a is q-dimensional vector, r(B) = q < k2.

Definition 2.3 The model in the parametric space Θ (see Definition 2.2) is regular pro-
vided that r(X1) = k1, r(X2) = k2, Σ1,1,Σ2,2 are positively definite matrices, r(B) = q.

Remark 2.1 Θ represents the parameter of the first stage (connecting) whereas the vector
β denotes the parameter of the second stage (connected). In the second stage, we then start
with the unbiased estimator Θ̂ = (X′

1Σ
−1
1,1X1)

−1X′
1Σ

−1
1,1Y1 originating from the first stage

whose covariance matrix is expressed in the form of var(Θ̂) = V0 = (X′
1Σ

−1
1,1X1)

−1.
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Definition 2.4 The least-square estimator of the parameter β, obtained under the condi-
tion that Σ1,1 = 0 (⇒ var(Θ̂) = 0), is called the standard estimator if the vector Θ is
substituted by Θ̂ in this estimator.

Theorem 2.2 The standard estimator β̂ of the parameter β in the model (i) and (ii) pos-
tulated in Definition 2.2 and given by

β̂ = (X′
2Σ

−1
22 X2)

−1X′
2Σ

−1
22 (Y2 −DΘ̂)− (X′

2Σ
−1
22 X2)

−1B′[B(X′
2Σ

−1
22 X2)

−1B′]−1×
× {a + CΘ̂ + B(X′

2Σ
−1
22 X2)

−1X′
2Σ

−1
22 (Y2 −DΘ̂)},

is unbiased.

Proof. See Marek (2003, p. 72-73). ¤
Theorem 2.3 If var(Θ̂) 6= 0 then the covariance matrix of the standard estimator β̂ is
composed of two uncertainties, i.e. the “uncertainty of type A” and “uncertainty of type
B”, as

var(β̂) = var0(β̂) +〈{I− (X′
2Σ

−1
22 X2)

−1B′[B(X′
2Σ

−1
22 X2)

−1B′]−1B}
× (X′

2Σ
−1
22 X2)

−1X′
2Σ

−1
2,2D− (X′

2Σ
−1
22 X2)

−1

×B′[B(X′
2Σ

−1
22 X2)

−1B′]−1C〉
× var(Θ̂)
× 〈{I− (X′

2Σ
−1
22 X2)

−1B′[B(X′
2Σ

−1
22 X2)

−1B′]−1B}
× (X′

2Σ
−1
22 X2)

−1X′
2Σ

−1
2,2D− (X′

2Σ
−1
22 X2)

−1

×B′[B(X′
2Σ

−1
22 X2)

−1B′]−1C〉′
︸ ︷︷ ︸

uncertainty of
︸ ︷︷ ︸

uncertainty of
type A type B

where var0(β̂) = (MB′X
′
2Σ22X2MB′)

+ = (X′
2Σ

−1
22 X2)

−1− (X′
2Σ

−1
22 X2)

−1B′

×[B(X′
2Σ

−1
22 X2)

−1B′]−1B(X′
2Σ

−1
22 X2)

−1.

Proof. See Marek (2003, p. 74). ¤
Theorem 2.4 The (1−α)-confidence domain for the parameter β, β ∈ Θ (see Definition
2.2), based on the standard BLUE β̂, is a set expressed by

E1−α(β) =
{
u : u ∈ Θβ ⊂ Rk2 , (u− β̂)′[var(β̂)]−(u− β̂) ≤ χ2

k2−q+r(C)(1− α)
}

.

The symbol χ2
k2−q+r(C)(1 − α) denotes the (1 − α)-quantile of a χ2-distribution with

k2 − q + r(C) degrees of freedom.

Proof. See Kubáčková (1996, p. 158-159). ¤
Example 2.1 The first aim of this example is to find a dispersion for a GARMIN GPS
12XL navigator, the second aim is to estimate plane coordinates β of points A1, A2, A3 in
situation I and plane coordinates of points A1, A2, A3 and P in situation II (see Figure 2).
We have given geographical coordinates of these points, i.e. their latitudes and longitudes,
which have been obtained from a navigator. For our purposes, the geographical coordi-
nates were transformed to the plane system known as S-JTSK (where +x-axes . . . south,
+y-axes . . . west)— Ryšavý (1953). So we have estimated values Ai = (Y2i−1, Y2i),
i = 1, 2, 3 and measured values Θ̂I = (Θ̂I

1, Θ̂
I
2, Θ̂

I
3)
′ in situation I or we have estimated
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values Ai = (Y2i−1, Y2i) and P = (Y7, Y8) and measured values Θ̂II = (Θ̂II
1 , Θ̂II

2 , Θ̂II
3 )′

in situation II.
Let the result from the first and the second stage of measurement in situation I be

(Θ̂I
1,Θ̂

I
2,Θ̂

I
3)
′ = (16.683m,12.453m,21.613m)′ and

YIg = (49◦38′02.2′′,17◦23′35.1′′,49◦38′01.8′′,17◦23′36.0′′,49◦38′01.8′′,17◦23′35.2′′)′ →
YI =(536622.29m,1118095.28m,536605.52m,1118109.33m,536621.49m,1118107.77m)′

or in situation II be (Θ̂II
1 , Θ̂II

2 , Θ̂II
3 )′ = (12.816m,10.244m,6.980m)′ and

YIIg = ((YIg)′,17◦23′35.5′′,49◦38′01.9′′)′ →YII = ((YI)′,536614.79m,1118105.88m)′.

Θ
3
=21.613 m

Θ
1
=16.683 m

Θ
2
=12.453 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

situation I

Θ
1
=12.816 m

Θ
3
=6.98 m

Θ
2
=10.244 m

A
1
=[β

1
,β

2
]

A
2
=[β

3
,β

4
]

A
3
=[β

5
,β

6
]

P=[β
7
,β

8
]

A
1
=[536622.292 m, 1118095.276 m]

A
2
=[536605.521 m, 1118109.327 m]

A
3
=[536621.495 m, 1118107.768 m]

P=[536615.205 m, 1118105.278 m]

situation II
Figure 2: The polygonometric measurement.

We have the model given by

Y = f(β) + ε =




√
(β1 − β3)2 + (β2 − β4)2√
(β3 − β5)2 + (β4 − β6)2√
(β1 − β5)2 + (β2 − β6)2

β1
...

β6




+ ε , (1)

where var(ε) = Σ0 = σ2W1 + W0.
In our case, we will consider the covariance matrices W0 = (0.1)2 ×

(
I3,3,03,6

06,3,06,6

)
,

σ2W1 = σ2 × Diag((0, 0, 0, 1, cos2 ϕ, 1, cos2 ϕ, 1, cos2 ϕ)′), σ2 = 3.12m2, cos(ϕ) =
cos(49◦) = 0.6564.

Note that the value of 0.1m, is usually used for the value of the standard deviation
of the measuring tape. For the parameter σ2 we will use the following value σ2

GPS =
2π6378·1000
360·60·60·10

= 3.12m2, where the expression above, especially the value of 3.1 m, denotes
the standard deviation, derived from the smallest decimal digit which the GPS receiver
displays. The angle ϕ = 49◦ stands for the value of the latitude where the measurement
has been carried out.

We will determine a linear model for the function f above. We generate the Taylor
expansion at the suitable point which is given by f(β) = f(β0)+A(β−β0). According to
the theory of the measurement, we have to define the matrix A = (∂f/∂Θ′), for example
A3,6 = (β6 − β2)/

√
β2

5 − 2β5β1 + β2
1 + β2

6 − 2β6β2 + β2
2 .
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Now we will determine the estimator σ̂2 of the parameter σ2 according to the Theorem
2.1. The whole process of determining the estimator σ̂2 can be now, according to the
Theorem 2.1, written as

σ̂2 = λ
{

[(Y −DΘ̂)′(MAΣ0MA)+W1(MAΣ0MA)+(Y −DΘ̂)] −
−Tr[(MAΣ0MA)+W1(MAΣ0MA)+W0]

}
, (2)

where λ is expressed by the equation

S(MAΣ0MA)+λ = 1 , (3)

where the 1× 1 matrix S(MAΣ0MA)+ is (for details see Tuček and Marek, 2006)

S(MAΣ0MA)+ = Tr[(MAΣ0MA)+W1(MAΣ0MA)+W1] . (4)

By solving equations (2),(3), and (4) we obtain λ = 4.1751e−27 and σ̂2 = (0.3540m)2.
We can say that the estimator of the uncertainty in GPS-coordinates is σ̂2 = 0.35402m2.

Hereafter, we will focus on the same model but from a different point of view. We will
consider the model of the measurement (i) and condition (ii) from Definition 2.2. Finally,
we have in situation I the model given by

(
Y1

Y2

)
=




Θ1

Θ̂2

Θ̂3

Y1
...

Y6



∼ N9




(
X1, 0
0, X2

)




Θ1

Θ2

Θ3

β1
...

β6




,

(
Σ11, 0
0, Σ22

)




.

In our case X1 = I, X2 = I, Σ11 = (Σ0)1:3,1:3, Σ22 = (Σ0)4:9,4:9 (see (1).
One can observe from Figure 2 in situation I that the condition g(Θ, β) = 0 is implied

for the parameters Θ and β, where g1(Θ, β) = (β5− β3)
2 + (β6− β4)

2−Θ2
1, g2(Θ, β) =

(β5 − β1)
2 + (β6 − β2)

2 −Θ2
2, g3(Θ, β) = (β3 − β1)

2 + (β4 − β2)
2 −Θ2

3.
The linear version of the condition g(Θ, β) = 0, obtained using the Taylor expansion

at the approximate point (Θ0, β0) = (Θ̂1, Θ̂2, Θ̂3, Y1, Y2, . . . , Y6), is in the form of Bδβ +
CδΘ + a = 0, where δβ = β − β0, δΘ = Θ − Θ0, B = ∂g(Θ0, β0)/∂β′, C =
∂g(Θ0, β0)/∂Θ′, a = g(β0, Θ0).

Here we present values of the vector of the estimator β̂I (calculated according to Theo-
rem 2.2) based on the model with the measurement of all triangular lengths by the measur-
ing tape. They are: (536621.93m,1118095.92m,536604.64m, 1118108.12m,536622.73m,
1118108.32m)′. Its covariance matrix was calculated (see Theorem 2.3) leading to

var(β̂I) =




1.2455 0.5064 0.0300 −0.9437 0.1645 0.4373
0.5064 3.3361 −0.2980 2.3743 −0.2084 3.2896
0.0300 −0.2980 0.7453 0.5556 0.6647 −0.2576

−0.9437 2.3743 0.5556 4.1672 0.3881 2.4585
0.1645 −0.2084 0.6647 0.3881 0.6108 −0.1797
0.4373 3.2896 −0.2576 2.4585 −0.1797 3.2519




.
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Furthermore in the same way we will find estimator β̂II for model for situation II.
As we can see, it is possible to use estimator β̂I from model for situation I for finding

estimator in model for situation II. We will denote this estimator ̂̂
βII′ . All estimators and

their uncertainty are shown in the following tables.

Y var(Y)
1/2
i,i β̂I var(β̂I)

1/2
i,i Y − β̂I β̂II var(β̂II)

1/2
i,i Y − β̂II

536622.29 2.03 536621.93 1.12 0.362 536622.42 1.17 −0.124
1118095.28 3.10 1118095.92 1.83 −0.647 1118094.18 1.86 1.092
536605.52 2.03 536604.64 0.86 0.878 536605.58 1.00 −0.057

1118109.33 3.10 1118108.12 2.04 1.204 1118109.18 2.46 0.149
536621.49 2.03 536622.73 0.78 −1.240 536621.75 1.02 −0.257

1118107.77 3.10 1118108.32 1.80 −0.556 1118108.40 2.57 −0.635
536615.20 2.03 − − − 536614.77 0.84 0.437

1118105.28 3.10 − − − 1118105.88 1.76 −0.607

Y β̂I ̂̂
βII′ var(̂̂βII′)

1/2
i,i β̂I − ̂̂

βII′ Y − ̂̂
βII′

536622.29 536622.47 1.08 −0.057
1118095.28 1118094.36 1.62 −0.179
536605.52 536605.36 0.77 0.217

1118109.33 1118109.34 1.83 −0.163
536621.49 536622.07 0.69 −0.319

1118107.77 1118107.49 1.59 0.914
536615.20 536614.61 0.61 0.161

1118105.28 1118106.18 1.50 −0.298

We have taken into account three different cases in which we have determined the possible
way, how to obtain the coordinates from the GPS receiver, which shows a lesser uncer-
tainty. These results, especially variances and residuals, for the first calculated situation
are quite satisfactory. In the second situation we have not obtain better results because
we have measured shorter distances. We have corrected this imperfection in situation II’,
where we have arrived at the best results. The essence of this method is based on the use
of outputs of the situation II as the input for the situation II’.

The confidence ellipsoids obtained from calculated covariance matrix (based on The-
orem 2.4) for α = 5% are depicted in Figure 3.

situation I
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situation II’

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3
for A

1
 estimator from model

for A
2
 estimator from model

for A
3
 estimator from model

for P estimator from model
for GPS measurement

Figure 3: The (1− α) confidence ellipses for points A1, A2, and A3 (solid), for point Â1

(dashed), Â2 (dashdotted), and for Â3 (dotted).
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3 Concluding Remarks
We hope that our contribution has evidently pointed out a necessity to investigate the
dispersion of the measuring device (the GPS receiver in our case) before the initiation
of the measurement itself. In reality, a finding of the estimation of the dispersion can
be complicated and infeasible in some cases. It may happen that the measurement can-
not be repeated several times. Our proposed procedure, however, allows to estimate the
dispersion without the measurement being repeated but with the help of the additional
measurement (in our case, by a measure tape).

In the example worked out in this paper, we have calculated the values of the uncer-
tainty of the GPS receiver which may have at the latitude of ϕ = 49◦. Furthermore, our
contribution have shown how the theory of estimation is a powerful tool for a modification
of inaccurate data acquired by a measuring device (the GPS receiver in our case) with the
utilization of the additional measurement. The example has also demonstrated a possibil-
ity of a successive improvement of the estimation by a further additional measurement.
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Kubáček, L., and Kubáčková, L. (2000). Statistics and Metrology. Olomouc: Publishing
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