
AUSTRIAN JOURNAL OF STATISTICS

Volume 35 (2006), Number 2&3, 347–356

Fuzzy Probability Spaces and
Their Applications in Decision Making
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Abstract: In this paper, two types of fuzzy probability spaces will be in-
troduced and their applications in methods of decision making under risk
(especially in the Decision Matrix Method) will be described. First, a fuzzy
probability space that generalizes the classical probability space (<n,Bn, p)
to the situation of fuzzy random events will be studied. It will be applied
to perform fuzzy discretization of continuous risk factors. Second, a fuzzy
probability space that enables an adequate mathematical modelling of ex-
pertly set uncertain probabilities of states of the world will be defined. The
presented theoretical results will be illustrated with two examples comparing
stock yields.
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1 Introduction
In decision making under risk, decision matrices are often used as a tool of risk analysis.
They describe how consequences of alternatives depend on the fact which of possible and
mutually disjoint states of the world occurs. The states of the world are supposed to be set
exactly and their probabilities to be known. However in practice, the states of the world
are often specified only vaguely and their probabilities are based on experts’ estimations.
Sometimes the states of the world and their probability distributions are obtained as a
result of discretization of continuous risk factors. In this paper, it will be shown how the
apparatus of fuzzy sets, especially two types of fuzzy probability spaces, can be used in
these situations.

In general, various ways of fuzzification of probability spaces are described in Dubois
and Prade (1980). Many bibliographical references concerning mathematical models
combining fuzzy and stochastic approaches are available in Dubois et al. (2000).

2 Applied Notions of the Fuzzy Sets Theory
A fuzzy set A on a universal set X , X 6= ∅, is uniquely determined by its membership
function A : X → [0, 1]. A set SuppA = {x ∈ X|A(x) > 0} is called a support
of A. Sets Aα = {x ∈ X|A(x) ≥ α}, α ∈ (0, 1], are called α-cuts of A. A set
KerA = {x ∈ X|A(x) = 1} is a kernel of A. A fuzzy set A is called normal if
KerA 6= ∅. The family of all fuzzy sets on X is denoted by F(X).

A normal fuzzy set A on the set of all real numbers <, whose α-cuts Aα, α ∈ (0, 1],
are closed intervals, and whose support SuppA is bounded, is called a fuzzy number.
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The family of all fuzzy numbers is denoted by FN (<). A fuzzy number A is said to be
defined on [a, b] if SuppA ⊆ [a, b]. The family of all fuzzy numbers on [a, b] is denoted
by FN ([a, b]). In this paper, trapezoidal fuzzy numbers will be used. The membership
function of any trapezoidal fuzzy number A is piecewise linear, determined by four points
(a1, 0), (a2, 1), (a3, 1), (a4, 0), a1 ≤ a2 ≤ a3 ≤ a4. Real numbers a1, a2, a3, a4 are called
significant values of A.

Calculations with fuzzy numbers are based on a so-called extension principle. For
example, let ∗ be a binary operation on <. Its extension to FN (<) is defined for any
A,B ∈ FN (<) and any z ∈ < as follows

(A ∗B)(z) =

{
sup{min{A(x), B(y)} | z = x ∗ y, x, y ∈ <} if such x, y exist,
0 otherwise. (1)

The center of gravity of a fuzzy number A defined on [a, b] is a real number cA ∈ [a, b]
given by the following formula

cA =

∫ b
a A(x)x dx
∫ b
a A(x) dx

. (2)

The linguistic approximation of a fuzzy number A on [a, b] by means of a set of
linguistic terms {T1, . . . , Ts}, where meanings of Tk are fuzzy numbers Tk on [a, b] for
k = 1, . . . , s, is the linguistic term Tk0 , k0 ∈ {1, . . . , s}, such that

P (A, Tk0) = max
k=1,...,s

P (A, Tk) , (3)

where

P (A, Tk) = 1−
∫ b
a |A(x)− Tk(x)| dx

∫ b
a (A(x) + Tk(x)) dx

, k = 1, . . . , s . (4)

A fuzzy scale on [a, b] is a finite set of fuzzy numbers A1, . . . , An that are defined on
[a, b] and form a fuzzy partition on [a, b], i.e.

∑n
i=1 Ai(x) = 1 holds for any x ∈ [a, b]. If a

fuzzy scale expresses a mathematical meaning of a natural linguistic scale, then it is called
a linguistic fuzzy scale. Fuzzy scales enable finite fuzzy representations of intervals.

Fuzzy numbers Vi, i = 1, . . . , m, defined on [0, 1] are called normalized fuzzy weights
if for all α ∈ (0, 1] and for all i ∈ {1, . . . , m} the following holds: for any vi ∈ Viα there
exist vj ∈ Vjα, j = 1, . . . , m, j 6= i, such that

vi +
m∑

j=1,j 6=i

vj = 1 . (5)

Normalized fuzzy weights express uncertain rates, a division of a unit into uncertain parts.
The fuzzy weighted average of fuzzy numbers Ui, i = 1, . . . ,m, defined on [a, b], with

normalized fuzzy weights Vi, is a fuzzy number U on [a, b] whose membership function
is for any u ∈ [a, b] given by the formula

U(u) = max{ min{V1(v1), . . . , Vm(vm), U1(u1), . . . , Um(um)}|
∑m

i=1 viui = u ,
∑m

i=1 vi = 1 , vi ≥ 0 , ui ∈ [a, b] , i = 1, . . . , m} .
(6)

The following notation will be used for the fuzzy weighted average:

U = (F)
m∑

i=1

ViUi . (7)
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3 Fuzzy Discretization of Continuous Risk Factors
A decision matrix represents a suitable instrument of risk analysis when risk factors af-
fecting the consequences of alternatives are of discrete nature, and at the same time each
of them takes on a relatively small number of values. Then states of the world are given
by all possible combinations of values of the risk factors.

In practice, the Decision Matrix Method is applied also in situations when some of
the risk factors are continuous. Then their continuous probability distributions have to
be approximated by discrete ones. The approximation is more realistic when continuous
domains (intervals) of the risk factors are replaced by fuzzy scales instead of usual crisp
scales.

For that purpose, it is necessary to generalize the classical probability space (<n,Bn, p),
where < is the set of real numbers, Bn is the σ-field of all Borel subsets on <n, and p is a
probability measure defined on Bn, to the situation of fuzzy events. The associated fuzzy
probability space will be defined as a triple (<n,FB(<n), P ), where FB(<n) is the family
of all the fuzzy sets on <n whose membership functions are Borel measurable, and the
probability P (A) of any fuzzy event A ∈ FB(<n) is given by the following formula

P (A) =
∫

<n
A(x) dp(x) . (8)

It can be proved (see Negoita and Ralescu, 1975) that FB(<n) has the following prop-
erties: a) <n ∈ FB(<n), b) if A ∈ FB(<n), then A ∈ FB(<n), c) if Ai ∈ FB(<n),
i = 1, 2, . . ., then ∪∞i=1Ai ∈ FB(<n); It means FB(<n) is a σ-field of fuzzy sets on <n.
Moreover, the mapping P : FB(<n) → [0, 1] given by (8) satisfies the classical axioms of
probability (see Negoita and Ralescu, 1975). Therefore, it is meaningful to call the triple
(<n,FB(<n), P ) a fuzzy probability space. And evidently, if a set A belongs to Bn, then
it belongs also to FB(<n) as a fuzzy set, and P (A) = p(A). So, (<n,FB(<n), P ) is an
extension of (<n,Bn, p).

Let us notice that the probability of a fuzzy event A ∈ FB(<n) could be expressed
also in another way – as a fuzzy set PF (A) on [0, 1]. Its membership function would be
defined for any p̃ ∈ [0, 1] by the following formula

PF (A)(p̃) =

{
sup{α ∈ (0, 1] | p̃ = p(Aα)} if {α ∈ (0, 1] | p̃ = p(Aα)} 6= ∅ ,
0 otherwise. (9)

It means, the fuzzy probability PF (A) is uniquely determined by the probabilities of α-
cuts of A, p(Aα), α ∈ (0, 1]. The following relation between P (A), introduced by (8),
and p(Aα), α ∈ (0, 1], determining PF (A), holds for any fuzzy event A ∈ FB(<n)

P (A) =
∫ 1

0
p(Aα) dα . (10)

Let us prove the above proposition. Interpreting Aα, α ∈ (0, 1], as fuzzy sets, we can write∫ 1
0 p(Aα) dα =

∫ 1
0

∫
<n Aα(x) dp(x) dα. By the Fubini theorem,

∫ 1
0

∫
<n Aα(x) dp(x) dα =∫

<n

∫ 1
0 Aα(x) dα dp(x). Since

∫ 1
0 Aα(x) dα = A(x) for any x ∈ <,

∫
<n

∫ 1
0 Aα(x) dα dp(x)

=
∫
<n A(x) dp(x) = P (A), which completes the proof.
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As the fuzzy probability PF seems to be too complicated to be used in practice, the
crisp probability P will be preferred in this paper.

Now, it will be shown how the fuzzy probability space can be applied to perform fuzzy
discretization of continuous risk factors in decision making under risk.

First, let us suppose that consequences of alternatives are affected by only one con-
tinuous risk factor Z whose probability distribution is given by a density function f(z).
Consider a fuzzy scale A1, . . . , An on the domain of the risk factor. As elements of the
fuzzy scale are fuzzy random events, their probabilities P (Ai), i = 1, . . . , n, are given by
(8), i.e.

P (Ai) =
∫

SuppAi

Ai(z)f(z) dz . (11)

It is easy to check that
∑n

i=1 P (Ai) = 1 and P (Ai) ≥ 0, i = 1, . . . , n. So, a discrete
probability distribution is defined on the given fuzzy scale.

If the density function of the risk factor Z is not known, a similar probability distribu-
tion on the given fuzzy scale can be derived directly from measured data. If measurements
z1, . . . , zm of Z are given, m À n, then probabilities of the fuzzy scale elements can be
set by the formula

P (Ai) =
1

m

m∑

j=1

Ai(zj) , i = 1, . . . , n . (12)

The fuzzy expected value and the fuzzy standard deviation of such a fuzzy random
variable Z that takes on values Ai of the given fuzzy scale with probabilities P (Ai),
i = 1, . . . , n, are defined by the following formulas

FEZ =
n∑

i=1

P (Ai)Ai , FσZ =

√√√√
n∑

i=1

P (Ai)(Ai − FEZ)2 . (13)

Now let us suppose that consequences of alternatives are affected by several indepen-
dent continuous risk factors. Then the above described procedure of fuzzy discretization
is applied to each of them. All combinations of fuzzy values of the risk factors determine
the states of the world; probabilities of the states are given as products of probabilities of
particular fuzzy values of the risk factors.

If the consequences of alternatives are affected for example by two mutually depen-
dent continuous risk factors Y , Z, whose conjugate probability distribution is given by a
density function f(y, z), then fuzzy scales A1, . . . , An and B1, . . . , Bm will be defined on
domains of both risk factors. The Cartesian products Ai×Bj , i = 1, . . . , n, j = 1, . . . , m,
where (Ai×Bj)(y, z) = Ai(y)Bj(z) for any y, z ∈ <, form a fuzzy partition on the Carte-
sian product of domains of both risk factors. A conjugate discrete probability distribution
of the fuzzy discretized risk factors is given by the following probability function

P (Ai, Bj) =
∫

Supp(Ai×Bj)
(Ai ×Bj)(y, z)f(y, z) dy dz , (14)

for i = 1, . . . , n, j = 1, . . . , m. Possible states of the world are determined by such
combinations of fuzzy values of the risk factors for which P (Ai, Bj) > 0.

Example 1. The fuzzy discretization procedure will be illustrated with an example con-
cerning stock yields. Let us suppose that yields (in %) on stocks A and B are continuous
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random variables with normal probability distributions whose parameters are µA = 4,
σA = 7.5, and µB = 6.5, σB = 12, respectively.

To discretize the real variable ”stock yield”, a linguistic fuzzy scale {NH, NVL, NL,
NM, NS, AZ, PS, PM, PL, PVL, PH} (see Figure 1 and Table 1) will be defined on the
closed interval [−50, 50] of possible stock yields.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

1
NH NVL NL NM NS 

AZ
PS PM PL PVL PH 

Figure 1: Linguistic fuzzy scale for the variable ”stock yield”

Table 1: Discrete probability distributions of fuzzy stock yields of A and B
Probability

Linguistic description Fuzzy Stock Yield (%) A B
Negative Very Large (NVL) −37.5 −35 −25 −22.5 0 0.01
Negative Large (NL) −25 −22.5 −15 −12.5 0.01 0.03
Negative Medium (NM) −15 −12.5 −7.5 −5 0.08 0.11
Negative Small (NS) −7.5 −5 −2.5 0 0.16 0.11
Approximately Zero (AZ) −2.5 0 0 2.5 0.11 0.07
Positive Small (PS) 0 2.5 5 7.5 0.26 0.16
Positive Medium (PM) 5 7.5 12.5 15 0.29 0.27
Positive Large (PL) 12.5 15 22.5 25 0.09 0.17
Positive Very Large (PVL) 22.5 25 35 37.5 0 0.07

Discrete probability distributions on the given linguistic fuzzy scale are calculated for
the yields on stocks A and B by means of the formula (11); they are displayed in Table
1. The fuzzy expected values and fuzzy standard deviations of the fuzzy stock yields
are calculated according to (13); significant values of the fuzzy numbers are displayed in
Table 2.
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Table 2: Fuzzy expected values and fuzzy standard deviations
Fuzzy Stock Yield (%)

FEA −0.35 2.15 5.80 8.30
FEB 1.28 3.78 8.65 11.5
FσA 2.88 4.99 11.33 15.85
FσB 5.09 8.02 16.66 21.16

Table 3: Linguistic approximation of results
Fuzzy number Linguistic Approximation

FEA PS
FEB PS or PM

[FEA− FσA,FEA + FσA] NS or AZ or PS or PM
[FEB − FσB, FEB + FσB] NS or AZ or PS or PM or PL

The linguistic approximation defined by (3) and (4) makes it possible to characterize
both the fuzzy random variables also linguistically (Table 3). Judging by the results of
linguistic approximation, we can say that the stock B is better than the stock A with
respect to the criterion of yield.

4 Expertly Defined Fuzzy Probabilities of States of the
World

Not in all cases, when the Decision Matrix Method is applied, probabilities of states of the
world represent the results of exhaustive mathematical risk analysis. Especially if states
of the world are specified linguistically or if they are given by a large number of hardly
describable risk factors, their probabilities are set only on the basis of experts’ knowledge
and experience.

To enable a correct mathematical modelling of uncertain probabilities of states of
the world, it is necessary to extend the classical probability space (Ω,P(Ω), p), where
Ω = {ω1, . . . , ωr}, p(ωi) = pi, pi > 0, i = 1, . . . , r,

∑r
i=1 pi = 1, P(Ω) is the family

of all subsets of Ω, and p(A) =
∑
{i:ωi∈A} pi for any A ∈ P(Ω), to the situation of fuzzy

probabilities of elementary events (fuzzy random events will be allowed as well).
Let us define the corresponding fuzzy probability space with a finite set of elementary

events as a triple (Ω,F(Ω), P ), where Ω = {ω1, . . . , ωr} is a set of elementary events
whose fuzzy probabilities are given by normalized fuzzy weights 1 P1, . . . , Pr, Pi 6= 0
for i = 1, . . . , r, F(Ω) is the family of all fuzzy sets on Ω (fuzzy random events), and
a mapping P : F(Ω) → FN ([0, 1]) assigns to each fuzzy random event A ∈ F(Ω) its
fuzzy probability P (A) according to the formula

P (A) = (F)
r∑

i=1

PiA(ωi) , (15)

1Modelling fuzzy probabilities of elementary events, the authors of this paper apply a general structure
of fuzzy numbers, called normalized fuzzy weights, originally developed in Pavlačka (2004) for the purpose
of aggregation of partial evaluations in MCDM. The same structure of fuzzy probabilities is also used in
Pan and Yuan (1997) but there the authors take as their starting point interval probabilities (see Pan and
Klir, 1997, Campos, Huete, and Moral, 1994)
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where A(·) is the membership function of A.
The mapping P has properties representing a generalization of axioms of the classical

probability: a) P (Ω) = 1, because P (Ω) = (F)
∑r

i=1 PiΩ(ωi) = (F)
∑r

i=1 Pi · 1, and
by the definition of fuzzy weighted average, (F)

∑r
i=1 Pi · 1 = 1. b) It is evident that

P (A) ≥ 0 holds for any A ∈ F(Ω). c) Finally, for any A1, . . . , As ∈ F(Ω), such that
Ak ∩ Al = ∅ for k 6= l, the following holds

P (∪s
j=1Aj) = (F)(P (A1) · 1 + · · ·+ P (As) · 1 + P (∪s

j=1Aj) · 0) . (16)

Let us prove c) in detail. As by assumption (Ak ∩ Al)(ωi) = min{Ak(ωi), Al(ωi)} = 0
for any k, l ∈ {1, . . . , s}, k 6= l, and any i ∈ {1, . . . , r}, we can write (∪s

j=1Aj)(ωi) =
maxj=1,...,s{Aj(ωi)} =

∑s
j=1 Aj(ωi). Consider pi ∈ Piα, i = 1, . . . , r,

∑r
i=1 pi = 1.

It holds
∑r

i=1 pi(∪s
j=1Aj)(ωi) =

∑r
i=1 pi

∑s
j=1 Aj(ωi) =

∑s
j=1

∑r
i=1 piAj(ωi) =

∑s
j=1 p∗j .

Real numbers p∗j =
∑r

i=1 piAj(ωi) are evidently elements of P (Aj)α for j = 1, . . . , s. Let
us denote As+1 = ∪s

j=1Aj and p∗s+1 =
∑r

i=1 piAs+1(ωi); then similarly p∗s+1 ∈ P (As+1)α.
Since A1, . . . , As, As+1 form a fuzzy partition of Ω,

∑s+1
j=1 p∗j =

∑r
i=1 pi

∑s+1
j=1 Aj(ωi) =∑r

i=1 pi = 1. By the above, the following holds for any p ∈ [0, 1]:

P (
s⋃

j=1

Aj)(p) = max{min
1≤i≤r

{Pi(pi)} | p =
r∑

i=1

pi(∪s
j=1Aj)(ωi),

r∑

i=1

pi = 1, pi ∈ [0, 1]}

= max{ min
1≤j≤s+1

{P (Aj)(p
∗
j)} | p =

s∑

j=1

p∗j ,
s+1∑

j=1

p∗j = 1, p∗j ∈ [0, 1]}

= ((F)P (A1) · 1 + · · ·+ P (As) · 1 + P (∪s
j=1Aj) · 0))(p) .

Similarly, it can be easily proved, that the family of all fuzzy sets on Ω forms a σ-
field of fuzzy sets. So, it is clearly meaningful to call the triple (Ω,F(Ω), P ) a fuzzy
probability space.

In a fuzzy probability space (Ω,F(Ω), P ) with a finite set Ω, any mapping U : Ω →
FN (<) defines a discrete fuzzy random variable. For example, fuzzy evaluations of an
alternative under possible states of the world whose fuzzy probabilities are known rep-
resent a discrete fuzzy random variable. The probability distribution of a discrete fuzzy
random variable U is given by a mapping P (Ui) = Pi, i = 1, . . . , r, where Ui = U(ωi)
and Pi = P (ωi).

The expected fuzzy value FEU of a discrete fuzzy random variable U is defined as
the fuzzy weighted average of fuzzy values U1, . . . , Ur with normalized fuzzy weights
P1, . . . , Pr, i.e.

FEU = (F)
r∑

i=1

PiUi . (17)

5 Fuzzy Decision Matrices
Let us consider a problem of decision making under risk that is described by the following
fuzzy decision matrix, where x1, . . . , xn are alternatives, S1, . . . , Sr states of the world,
P1, . . . , Pr their fuzzy probabilities, and Ui,k, i = 1, . . . , n, k = 1, . . . , r, denote fuzzy
degrees in which the alternatives xi satisfy a given decision objective if the states Sk occur.
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Table 4: Fuzzy decision matrix
S1 S2 . . . Sr

P1 P2 . . . Pr FEU

x1 U1,1 U1,2 . . . U1,r FEU1

x2 U2,1 U2,2 . . . U2,r FEU2
...

...
...

...
...

...
xn Un,1 Un,2 . . . Un,r FEUn

Fuzzy numbers FEUi express expected fuzzy evaluations of alternatives xi for i =
1, . . . , n; it means they are calculated according to the formula

FEUi = (F)
r∑

k=1

PkUi,k . (18)

The best alternative will be chosen by the rule of the maximum expected fuzzy evalua-
tion. For that purpose some of the preference relations on FN (<) (see Talašová, 2003),
for example the ordering of fuzzy numbers according to their centers of gravity, can be
applied; also the linguistic approximation of the expected fuzzy evaluations by means of
an ordered set of evaluating linguistic terms can be used.

A similar approach can be applied also to multicriteria decision making under risk. In
Talašová (2005), utilization of expertly defined fuzzy probabilities in three-dimensional
decision matrices is presented, where multicriteria evaluating procedures are based either
on fuzzy weighted averages of partial fuzzy evaluations or on fuzzy expert systems (see
also Talašová, 2000, Talašová, 2003).

Example 2. Let us consider a problem of comparing two stocks, C and D, with respect to
their future yields. The starting prices of C and D are 2900 and 3300 CZK, respectively.
The considered states of the world are economic drop, economic stagnation and economic
growth; their uncertain probabilities will be set expertly. As fuzzy probabilities have to
form the structure of normalized fuzzy weights, it is not so easy for an expert to define
them directly. So, the expert expresses his/her estimates of the probabilities by fuzzy
numbers P ′

1, P ′
2, P ′

3 whose significant values have to satisfy at least the following natural
conditions

3∑

i=1

p′1i ≤ 1 ,
3∑

i=1

p′2i ≤ 1 ,
3∑

i=1

p′3i ≥ 1 ,
3∑

i=1

p′4i ≥ 1 . (19)

The correct fuzzy probabilities P1, P2, P3 are obtained from P ′
1, P

′
2, P

′
3 by the transforma-

tion
p1

i = max{p′1i , 1−∑3
j=1,j 6=i p

′4
j } , p3

i = min{p′3i , 1−∑3
j=1,j 6=i p

′2
j } ,

p2
i = max{p′2i , 1−∑3

j=1,j 6=i p
′3
j } , p4

i = min{p′4i , 1−∑3
j=1,j 6=i p

′1
j } ,

(20)

where i = 1, 2, 3. The transformation, that was described for interval probabilities in
Campos et al. (1994), eliminates the inconsistency of experts’ estimates (see Figure 2).

The future stock prices of C and D under the given states of the economy are also
estimated by fuzzy numbers. Corresponding fuzzy stock yields (in %) are calculated by
means of the extension principle according to the formula

yield =
new price− old price

old price
· 100 . (21)
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Figure 2: Fuzzy probabilities of states of the economy

Significant values of all the fuzzy numbers are given in Table 5. The expected fuzzy

Table 5: Fuzzy decision matrix for stocks C and D
Economic Drop Econ. Stagnation Economic Growth

P 0.1 0.15 0.2 0.3 0.4 0.5 0.55 0.7 0.2 0.3 0.35 0.5
C-price 2200 2400 2600 2800 2750 2900 3000 3150 3100 3250 3400 3600
C-yield −24.1 −17.2 −10.3 −3.5 −5.2 0 3.5 8.6 6.9 12.1 17.2 24.1
D-price 2400 2550 2750 2900 3000 3150 3500 3700 3750 3900 4100 4300
D-yield −27.3 −22.7 −16.7 −12.1 −9.1 −4.6 6.1 12.1 13.6 18.2 24.2 30.3

Table 6: Expected fuzzy stock yields, their centers of gravity
Exp. Fuzzy Stock Yield Center of Gravity

FEC −8.45 0.17 6.21 15.17 3.29
FED −10 −1.37 9.01 18.79 4.15

stock yields presented in Table 6 were calculated by the formula (18). The fuzzy numbers
FEC, FED are incomparable in the sense of the usual ordering of fuzzy numbers that is
based on the ordering of their α-cuts. But as the centre of gravity of FED is greater than
that of FEC, the stock D seems to be better than C with respect to the criterion of yield.

6 Conclusion

Mathematical models of decision making under risk can be more realistic if the apparatus
of the fuzzy sets theory is applied. Fuzzy discretization of continuous risk factors is more
natural than the crisp one. Similarly, vague expert’s information concerning probabilities
of states of the world is expressed in a more adequate way if fuzzy probabilities are used.
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