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Abstract: The accuracy of binary discrimination models (discrimination be-
tween cases with and without any condition) is usually summarized by clas-
sification matrix (also called a confusion, assignment, or prediction matrix).
Receiver operating characteristic (ROC) curve can visualize the association
between probabilities of incorrect classification of cases from the group with-
out condition (False Positives) versus the probabilities of correct classifica-
tion of cases from the group with condition (True Positives) across all the
possible cut-point values of discrimination score.

Area under ROC curve (AUC) is one of summary measures. This article de-
scribes the possibility of AUC estimate with the use of web based application
of bootstrap (resampling). Bootstrap is useful mainly to data for which any
distributional assumptions are not appropriate. The quality of the bootstrap
application was evaluated with the use of a special programme written in
C].NET language that allows to automate the process of repeating differ-
ent experiments. Estimates of AUC and confidence limits given by bootstrap
method were compared with bi-normal and nonparametric estimates. Results
indicate that usually bootstrap confidence intervals are narrower than non-
parametric one, mainly for small data samples.
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1 Introduction
Classification solves the problem of classifying the individuals into one of several cat-
egories on the basis of a number of measurements made on each of individuals. An
individual is a random observation given from any of finite number of categories or pop-
ulations. Solutions of the problem of classification can be given as statistical decision
problems (linear or nonlinear discrimination rule, logistic regression, Bayesian methods)
as well as semi statistical or non-statistical (decision trees, decision rules, neural net-
works, logic programming approaches, multi-criteria classification methods, etc.). In the
process of classification it is desirable to minimize on the average the bad effects of mis-
classification (usually the average costs of misclassification). Classification algorithms
can be optimized with respect to costs of misclassification and probabilities of classes.
When these external conditions changes then the classification model can lose their opti-
mality. Therefore an evaluation of different models given within the full range of external
conditions is necessary. We will assume the problem of binary classification when only
two groups (classes) are admitted. One of the groups is assumed without any condition
(negative) and the second one with any condition present (positive one). Then ROC curve
can be used for description of accuracy the classification model. This article describes
bootstrap estimate of area under ROC curve (AUC) and confidence limits for AUC. The
web application was prepared with this possibility. Results are compared with ROCkit
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and NCSS software. The advantage of the solution is in that bootstrap is distribution free
and allows to reach narrower confidence limits no matter the size of the samples is small.

2 Accuracy of Binary Classification Models

Predictive accuracy of discrimination model can be estimated in proportions of correctly
classified cases that is based on training or test sample. Apparent error rate (APER) is cal-
culated from confusion matrix. APER is based on re-substitution of learning sample and
usually underestimate the future proportion of misclassification. Unbiased estimator can
be achieved through jackknife (leaving-one-out) or cross-validation on training sample. In
constructing classification matrix, the optimum cutting score should be determined. Re-
ceiver operating characteristic (ROC) curve is a set of the points with coordinates given
with a probability of incorrect classification of cases from the group without condition
(often called FP rate of False Positives) versus the probability of correct classification of
cases from the group with condition (TP rate of True Positives) across all the possible cut-
point values of discrimination score. ROC describes and visualizes all possible confusion
matrices. As the optimal cutting point depends on external conditions (probabilities of
the groups and costs of misclassification) than ROC describes the quality of classification
model under all possible external conditions.

Area under receiver operating characteristic curve (AUC) is one of the summary mea-
sures (Hanley and McNeil, 1982). The AUC can take values between 0.0 and 1.0 with
practical lower bound value 0.5 (chance diagonal). The AUC can be interpreted as the
probability that an object randomly selected from the group with the condition will have
discrimination score indicating greater suspicion than that of a randomly selected (from
the group) without condition.

In the literature, estimation of AUC may be based either on parametric model (very
often bi-normal distribution is assumed) or on nonparametric approach (mostly with the
use of Wilcoxon statistic). Statistical software packages in latest versions enable this
type of analysis (NCSS, SPSS, Statistica, etc.) Mostly estimates of AUC are based on
trapezoidal rule or assume bi-normal distribution. Software RocKit prepared by Metz
(2003) is specialized in ROC and AUC, calculates maximum-likelihood estimates of the
parameters of a bi-normal model and statistical significance of the difference between two
ROC curves.

2.1 Bootstrap Estimate of AUC

There are different methods of rearranging a given data set. The basic idea of resampling
(bootstrap) is that observed sample is considered to be the population. Resampling uses
many samples taken from a single sample given from the population of interest. The
probability distribution of statistic is simulated by random samples from original sample.
This way bootstrap allows estimation of variance of a statistic. We assume two groups of
objects G0 (without condition), and G1 (with any condition) and ordinal or quantitative
discriminating variable (or discrimination score) X . We will assume that the smaller value
of variable X is in association with largest probability that the object belongs to group G0.
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Suppose that we have the random samples of sizes n0 and n1 from the groups G0

and G1 respectively: x = (x
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, x
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n1
) = (x(0), x(1)). The unknown

parameter to be estimated is θ. The statistic AUC is considered to be an estimate of
θ. Properties of AUC will be estimated by the use of bootstrap samples {x∗1, . . . , x∗k}
where x∗i = (x

(0)
1∗ , . . . , x

(0)
n0∗, x

(1)
1∗ , . . . , x

(1)
n1∗) for i = 1, . . . , k. Each bootstrap sample of

size n consists of two bootstrap samples of sizes n0, n1, n0 + n1 = n and is chosen
from the original samples x(0) and x(1) with replacement at each of them. Estimates
{AUC∗

1 , . . . , AUC∗
k} are of the same functional form as the original estimator (here cal-

culated on each bootstrap sample via trapezoidal rule).
Then specifically nonparametric Monte Carlo (Gentle, 2002; Prášková, 2004) estimate

AUC was used as an unbiased estimator of θ. Its distribution is related to the distribution
of AUC and the estimate is given with AUC

∗
= k−1 ∑k

i=1 AUC∗
i .

Bootstrap confidence limits were given as the bootstrap percentile confidence inter-
vals. If FAUC∗(t) is distribution function of AUC∗, then the upper (1 − α) confidence
limit for θ is the value AUC∗

(1−α) such that FAUC∗(AUC∗
(1−α)) = 1 − α. The lower limit

AUC∗
α is such a value that FAUC∗(AUC∗

α) = α. Then a (1−α) ·100% confidence interval
is given as (AUC∗

[α/2], AUC∗
[1−α/2]), where AUC∗

[α/2] is the k · (α/2)th and AUC∗
[1−(α/2])

is the k · (1− (α/2)th order statistic of the sample of size k of AUC∗.
In this way confidence limits can be non-symmetrical. Also they will retain the range

of possible values for AUC (going from 0 to 1).

2.2 An Application of Bootstrap Estimate of AUC

A bootstrap application of the method was developed by the authors. This application
is accessible at http://www.freccom.cz/stomo/input.php. User can input his (her)
own data and can change some bootstrap settings (e.g. the number of bootstrap samples).

Tests of the quality of this bootstrap application required the use of large number of
sets of samples. Therefore the programme written in C].NET language working under
.NET framework version 2.0 was prepared. This programme runs on personal PC and
allows to repeat automatically the different batches of bootstrap AUC estimates. It offers
calculation of empirical and bootstrap estimates based on data values that are stored in
database table. This database uses three attributes: value of discriminating variable, group
ID, and sample set ID.

2.3 Examples

Example 1. Different classification models were compared in the article Skalská (2003)
for prediction of good and bad loans from financial data set. This data is accessible at
http://lisp.vse.cz/pkdd99/ and it is described in Berka (2001). Here we compare
estimates given with ROCkit software (nonparametric and bi-normal AUC) with estimates
from our web based bootstrap application. Two discrimination models are compared here,
linear discrimination function (LDF) and logistic regression (LR).

Estimates of AUC (samples of sizes n0 = 203 and n1 = 31) are summarized in the
Table 1. Confidence interval for nonparametric (Wilcoxon) AUC should to be calculated
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extra via Fisher transformation of AUC and then under assumption of normality of trans-
formed AUC (it is not given here as this is not included in the software). As an example
of empirical distribution of discriminating variable X , Figure 1 visualizes the distribution
of discriminating score variable of LR model conditioned G0 and G1. The ROC curves
on Figure 1 indicate the dominance of LR model under LDF model. Asymmetry in dis-
tribution of X in G0 and non-normality in G1 are characteristics of these distributions.
Skewness equals 2.5 (2.9) in G0 and 0.7 in G1 for models LR (LDF respectively).

Figure 1: Distribution of X for LR model (conditioned G0 and G1) and ROC

Small differences can be seen in Table 1 among different AUC estimates. Confidence
interval limits for nonparametric (Wilcoxon) AUC are not included in ROCkit. This is
disadvantage mainly for small sample sizes. Bootstrap confidence limits are narrower
than that given under bi-normal assumption.

Table 1: AUC estimates with 95% confidence limits
Bootstrap ROCkit

k = 3000 Bi-normal assumption Wilcoxon
Model AUC 95% CI AUC 95% CI AUC SE
LR 0.8607 0.7928− 0.9184 0.8595 0.7714− 0.9211 0.8625 0.0430
LDF 0.8221 0.7409− 0.8946 0.8238 0.7246− 0.8968 0.8198 0.0476

Example 2. This example compares estimates from our bootstrap application with
NCSS estimates Hintze (2005). The samples from Gamma, respectively Beta distributions
with different parameters (Table 2) were prepared. The comparison of estimates is based
on averages from 100 sample statistics resulting from the samples of sizes n0 = 30, or
n0 = 100 respectively, and n1 = 30. Each set consists of 100 samples from G0 and 100
samples from G1, ID of the group and ID of the sample. The sets of the samples used for
bootstrap and NCSS were the same within each experiment, but the sets were different
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Table 2: Description of distributions used in experiments.
Trials Model (G0) Skewness Model (G1) Skewness AUC

trapezoidal
A, D Gamma(2.0, 1.0) 1.5 Gamma(3.0, 1.0) +1.3 0.6893
B, E Beta(1.5, 3.0) 0.5 Beta(3.0, 1.5) −0.6 0.8725
C, F Beta(1.5, 3.0) 0.5 Beta(5.0, 1.5) −0.9 0.9450

Table 3: Comparison between bootstrap and NCSS (averages from 100 samples)

Bootstrap AUC NCSS 2004
k = 3000 Bi-normal AUC Nonparametric

n0 = 30 Empi-
n1 = 30 AUC 95% CI AUC 95% CI rical 95% CI
A 0.7032 0.5940− 0.8059 0.6814 0.5286− 0.7906 0.6949 0.5362− 0.8055
B 0.8893 0.8192− 0.9478 0.8845 0.7747− 0.9417 0.8774 0.7589− 0.9388
C 0.9595 0.9215− 0.9879 0.9577 0.8886− 0.9837 0.9484 0.8648− 0.9800
n0 = 100
n1 = 30
D 0.6874 0.5975-0.7726 0.6721 0.5447-0.7685 0.6892 0.5698-0.7798
E 0.8753 0.8136-0.9294 0.8803 0.7945-0.9313 0.8721 0.7803-0.9267
F 0.9497 0.9156-0.9777 0.9554 0.9095-0.9782 0.9451 0.8882-0.9732

for each of experiments A to F. The computing time varied from 100 to 200 seconds for
each of experiments. Description of populations that is based on samples of sizes 10000
(G0) and 3000 (G1) is given in Table 2. Results of experiments are summarized in Table
3. Each value is an average given from 100 samples. On average bootstrap estimates have
narrower confidence intervals.

3 Conclusion

Bootstrap estimate of AUC, area under receiver operating characteristic curve was de-
scribed here and compared with other commonly used methods of estimate. Web based
application of the bootstrap method was prepared and the results were compared with
other methods from NCSS and ROCkit software. Also another application for PC was
developed that uses bootstrap routine and allows running in a batch mode and repeat ex-
periments. Results of different experiments are described here. Examples present the data
for which bi-normal assumption is not appropriate.

It can be concluded that bootstrap estimates give very similar results with bi-normal
estimates. On average bootstrap provides narrower confidence limits than bi-normal and
nonparametric estimates do. Bootstrap can probably be more useful mainly when dis-
tributions are strongly skewed and sizes of samples are small. Our experiments do not
indicate substantial differences of bootstrap estimates from estimates based on bi-normal
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assumption. This may indicate the robustness of bi-normal estimate to a wide variety of
frequency distributions.
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Department of Informatics and Quantitative Methods
University of Hradec Králové
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Czech Republic

E-mail: hana.skalska@uhk.cz


