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Abstract: The use of empirical likelihood (EL) in sample surveys dates back
to Hartley and Rao (1968). In this paper, an overview of the developments
in empirical likelihood methods for sample survey data is presented. Topics
covered include EL estimation using auxiliary population information and
EL confidence intervals. Issues related to pseudo-EL estimation for general
sampling designs are also discussed.
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1 Introduction

“Empirical likelihood” is used to denote a non-parametric likelihood. It was first in-
troduced in the context of survey sampling by Hartley and Rao (1968) under the name
“scale-load” approach. Twenty years later, Owen (1988) introduced it in the main stream
statistical inference, under the name “empirical likelihood”, developed a unified theory
and demonstrated its advantages. In recent years, the empirical likelihood (EL) approach
has been revived in survey sampling literature. The main purpose of this paper is to
present an overview of some recent developments in applying the EL approach to sample
survey data.
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Section 2 of the paper gives a brief account of the original approach of Hartley and
Rao (1968). Owen (1988, 2001) EL theory for the case of independent and identically
distributed (IID) variables and the use of supplementary population information are high-
lighted in Section 3. Some results for stratified random sampling are given in Section 4.
Use of pseudo-EL to handle general sampling designs is outlined in Section 5.

2 Scale-Load Approach

Consider a finite population U consisting of units ¢ = 1, ..., N, with associated values y;.
A subset s of units is selected from U with probability p(s). The sample data is denoted as
{(i,4:),1 € s}. Godambe (1966) obtained the non-parametric likelihood for the sample
data and showed that it is non-informative in the sense that all possible non-observed
values y;, ¢ € s lead to the same likelihood. This difficulty arises because of the distinct
labels 7, associated with the units in the sample data, that make the sample unique.
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Hartley and Rao (1968) suggested the scale-load approach to obtain an informative
likelihood. Under this approach, some aspects of the sample data need to be ignored
to make the sample non-unique and in turn the likelihood informative. The reduction of
sample data is not unique and depends on the situation at hand; data based decisions might
be needed (Hartley and Rao, 1971). The basic feature of the Hartley-Rao approach is a
specific representation of the finite population, assuming that the variable y is measured
on a scale with finite set of known scale points y;, ¢ = 1,...,T’; the parameter 7' is only
conceptual and inferences do not require the specification of 7". Let /V; be the number of
units in U having the value i (3>_ N; = N) so that the populationmean Y = N1 5~ Nyy7
is completely specified by the “scale loads” N = (N, ..., Np)T.

Consider simple random sampling without replacement of fixed size n and let n; be
the number of units in the sample having the value y;, so thatn, > 0 and > n, = n. If we
suppress the labels ¢ from the sample data, then the data are given by n = (n,, ... ,np)T
and the resulting likelihood is simply given by the hyper-geometric distribution that de-
pends on the parameter )V, unlike the flat likelihood based on the full sample data. Loss
of information due to igﬁoring the sample labels may be regarded as negligible if there
is no evidence of a relationship between the labels and associated variable values. If the
sampling fraction is negligible, the log-likelihood may be approximated by the multino-
mial log-likelihood I(P) = > n;log(p:), where p; = N,;/N. The resulting maximum
likelihood estimator (MLE) of ¥ = > py; is the sample mean § = > pyy;, where
Dr = ng/n.

Hartley and Rao (1968) also showed that the scale-load approach provides a system-
atic method of finding MLE of the mean Y in the presence of known population infor-
mation on an auxiliary variable x, in particular the mean X. Letting the scale points of x
as zj, j = 1,...,J, and the scale loads of (y;, x}) as Ny;, we have Y =3 piy; and
X = >_> piyx;, where p;; = Nyj/N. Maximization of the multinomial log-likelihood
subject to the constraint that X is known leads to the MLE of Y which is asymptotically
equal to the customary linear regression estimator of Y.

Under stratified random sampling, strata are regarded as separate populations, each
described by its separate set of parameters, that is, an additional subscript 4 is used to in-
dex the strata, and the strata labels h are regarded as informative because of known strata
differences. As a result, the likelihood is a product of multinomial distributions assum-
ing negligible sampling fractions within strata, and the MLE of Y is the usual stratified
mean in the absence of auxiliary information. Hartley and Rao (1969) studied proba-
bility proportional to size (PPS) sampling with replacement, where y; is approximately
proportional to the size x;. Under the latter assumption, it is reasonable to consider the
scale points of r; = y;/x;, say r;, and the resulting MLE of the total Y is equal to the
customary unbiased estimator in PPS sampling with replacement.

3 Empirical Likelihood Approach

Owen (1988) considered independent and identically distributed observations v, . . ., Y
from some distribution F'(-). A non-parametric (or empirical) likelihood puts masses p; =
Pr(y = y;) at the sample points and the log-likelihood is [(F') = > log(p;). Maximizing
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[(F') under the constraints p; > 0 and ) p; = 1 leads to the MLE of p; as p; = 1/n and
the MLE of the mean u = E(y) as it = > p;y; = ¥, the sample mean. Note that [(F) is
equivalent to the multinomial log-likelihood of the scale-load approach.

Chen and Qin (1993) extended Owen’s EL approach to the case of known auxiliary
information of the form E{w(z)} = 0, assuming simple random sampling with replace-
ment. They considered parameters of the form § = N1 g(y;) for specified g(-). In
the special case of w(x) = x — X and g(y) = v, their results are equivalent to those
of Hartley and Rao (1968) for estimating the mean Y. By letting g(y;) be the indicator
function I(y; < t) for fixed t, we get the MLE of the population distribution function
as F(t) = 3,..pil(yi < t), where p; is the MLE of p;. The estimator F'(t) is non-
decreasing in ¢ and it can be used to obtain MLE of population quantiles, in particular the
population median.

A major advantage of the EL approach is that it provides non-parametric confidence
intervals on parameters of interest, similar to the parametric likelihood ratio intervals. For
the mean i, we obtain the profile empirical likelihood ratio function R(x) by maximizing
[ [(np;) under the constraints Y " p; = 1 and > p;y; = u. Noting that (1) = —2log R(1)
is asymptotically x? with one degree of freedom, the 1 — o level EL interval is then given
by {u|r(1) < x3(a)}, where x?(«) is the upper a-point of the x? distribution with one
degree of freedom. The shape and orientation of the EL intervals are determined entirely
by the data, and the intervals are range preserving and transformation respecting. Unlike
normal theory confidence intervals, EL intervals do no require the evaluation of standard
errors of estimators and are particularly useful if balanced tail error rates are needed. Chen
et al. (2003) obtained EL intervals on the population mean for populations containing
many zero values. Such populations are encountered in audit sampling, where y denotes
the amount of money owed to the government and Y is the average amount of excessive
claims. Previous work on audit sampling used parametric likelihood ratio intervals based
on parametric mixture distributions for the variable y. Such intervals perform better than
the standard normal theory intervals in terms of coverage, but EL intervals perform better
under deviations from the assumed mixture model, by providing non-coverage rate below
lower bound closer to the nominal value and also larger lower bound.

4 Stratified Random Sampling

Zhong and Rao (1996, 2000) studied EL inference under stratified random sampling with
separate index for each stratum h. In this case, the log-likelihood I(P) = I(P1,...,Pr) =
Yon>ologpp, h = 1,...,L and i = 1,...,n;, assuming negligible sampling frac-
tions within strata, where n;, is the sample size in stratum h, Py = (Phiy - - - p;mh)T and
> Pni = 1 for each h. Now suppose only the overall mean X of the auxiliary variable
z is known. Then the MLE of the population mean Y is given by >, >~ ppiyni, where
the py; are obtained by maximizing the log-likelihood under the constraints p,; > 0,
Soipni = land >, >, prizn: = X. Zhong and Rao (1996, 2000) have shown that the
MLE is asymptotically equivalent to an optimal linear regression estimator that is known
to have good conditional design-based properties (Rao, 1994). The MLE of the distribu-
tion function is given by >, > ppil(yn; < t). It is non-decreasing in ¢ and it can be



194 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 191-196

used to obtain the MLE of quantiles. Wu and Rao (2004a) has given an algorithm for
computing the estimators pp;.

Zhong and Rao also studied EL intervals on the population mean. The empirical log-
likelihood ratio function is given by r(Y) = —2{[( p) — ( p)}, where p is the MLE of p
under the previous constraints and the additional constraint Yo Privhi = Y. Zhong
and Rao adjusted the empirical log-likelihood ratio function to account for within strata
sampling fractions and showed that the adjusted function is asymptotically x> with one
degree of freedom. The adjustment factor reduces to 1 — n/N in the special case of
proportional sample allocation to the strata.

S Pseudo Empirical Likelihood Approach

It is difficult to obtain an informative empirical likelihood under general sampling de-
signs. Because of this difficulty, Chen and Sitter (1999) proposed an alternative ap-
proach based on a pseudo empirical likelihood function. The finite population is as-
sumed to be a random sample from an infinite super-population, leading to the “census”
empirical log-likelihood )., log(p;). The Horvitz-Thompson (HT) estimator l (p) =
> ics dilog(p;) of the census empirical log-likelihood is then used as a pseudo empirical
log-likelihood, where d; = ;! and 7, is the inclusion probability for the unit i. Maxi-
mizing the pseudo empirical log-likelihood subject to p; > O and » ,__ p; = 1 leads to the
pseudo MLE of the total Y as >, p;y;. It is equal to the well-known Hajek estimator
Yu=N (3 ies di) 13 ,es diy:) and it is significantly less efficient than the HT estimator
Yor = > ics diy; under PPS sampling without replacement with 7; proportional to the
size x;, when y; is approximately proportional to z;. Note that the Hartley-Rao approach
for PPS sampling with replacement based on the scale loads of the ratios y;/x; led to the
customary PPS estimator of Y. It would be useful to develop a similar approach under
the empirical likelihood set-up.

Suppose that the population mean X of a vector of auxiliary variables z is known. In
this case, the pseudo-MLE is obtained by minimizing the pseudo empirical log -likelihood
subject to the previous constraints on the p;’s and the additional constraint ) . p;z = )N(
Chen and Sitter (1999) have shown that the pseudo-MLE of the mean Y is asymptotically
equal to a generalized regression (GREG) estimator of the mean based on the Hajek esti-
mators of the means Y and );( . But the associated weights p; in the pseudo-MLE . p;¥;
are always positive unlike the weights associated with the GREG estimator. This property
enables us to get pseudo-MLE of the distribution function and quantiles. Calibration to
X leads to an efficient pseudo-MLE or GREG estimator of Y under an implicit linear re-
gression model with mean z;/3, but the same estimator will be inefficient if the regression
relationship is non-linear, as in the case of a binary variable y in which case a logistic
model is more relevant. Let the model expectatlon of y; be y; = h(x;3), then it is more
efficient to use the constraint >, p;fi; = N~* >, fi;, where fi; = h(z] ') is the pre-
dicted value of y; under the model and B is an estimator of the model parameter 3. Wu
and Sitter (2001) obtained the pseudo-MLE of Y under the above constraint, and named
it model-calibrated pseudo-MLE. Note that the constraint requires the knowledge of the
individual population values 1, ..., 2y unless h(a) = a which gives the previous cal-
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ibration constraint ZieS PiT; = ):g . Chen and Sitter (1999) and Chen and Wu (2002)
studied pseudo-MLE of the distribution function F),(¢) and quantiles and obtained model-
calibrated pseudo-MLE, using the predicted values of the indicator variables /(y; < t)
under the model for ;.

Wu and Rao (2004a) proposed an alternative pseudo empirical log-likelihood func-
tion given by [ (P) = n" ) ics d; log(p;), where d; = d;/ > _ics di are the normalized de-
sign weights and n* is the “effective sample size” taken as n/(estimated design effect).
For simple random sampling, [ (P) reduces to the usual empirical log-likelihood function
> ics10g(pi). The pseudo-MLE under the alternative formulation remains the same as
the pseudo-MLE of Chen and Sitter (1999), but the pseudo empirical log-likelihood ratio
function for constructing confidence intervals on the population mean Y, based on l (ZN?), is
asymptotically y? with one degree of freedom, unlike the pseudo empirical log-likelihood
ratio function based on the Chen-Sitter pseudo empirical log-likelihood [ (P). The latter
requires an adjustment to make it asymptotically x? with one degree of freedom. Wu
(2004b) has given R/S-PLUS codes for implementing the pseudo-EL methods under PPS
sampling without replacement.

Wu (2004c¢) has developed a pseudo-EL approach that attempts to combine informa-
tion from two independent surveys from the same population with some common vari-
ables of interest. This method ensures consistency between the surveys over the common
variables in the sense that the estimators from the two surveys are identical. Wu and Rao
(2004b) have studied more efficient methods of combining information from two surveys
using the pseudo-EL approach. They have also studied pseudo-EL confidence intervals
by developing a pseudo empirical log-likelihood based on effective sample sizes in the
two surveys, and then showing that the resulting pseudo empirical log-likelihood ratio
function is asymptotically y* with one degree of freedom.
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