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Abstract: In this paper, we provide solutions for univariate and multivari-
ate testing problems with ordered categorical variables by working within
the nonparametric combination of dependent permutation tests (see Pesarin,
2001). Two applications and Monte Carlo simulations for power comparisons
of NPC solutions to most competitors from the literature are shown.
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1 Introduction
Problems of testing for ordered categorical variables are of great interest in many appli-
cation disciplines, where a finite number of Q ≥ 1 of such variables are observed on
each individual unit. Testing of hypotheses for multivariate ordered categorical variables
is known to be quite a difficult problem especially when testing for stochastic dominance,
that is for a set of restricted alternatives. Stochastic dominance problems present peculiar
difficulties, especially within the framework of likelihood ratio tests (see e.g. Cohen et al.,
2003; Silvapulle and Sen, 2005). Several solutions have been proposed for the univariate
case, most of which are based on the restricted maximum likelihood ratio test. These
solutions are generally criticized, because their asymptotic null and alternative distribu-
tions are mixtures of chi-squared variables the weights of which essentially depend on
underlying population distribution F and so the related degree of accuracy is difficult to
assess and to characterize; thus their use when F is unknown is somewhat questionable
in practice. Moreover, due to the extreme difficulty of modelling the related likelihood
function (see Joe, 1997), the multivariate case is considered as almost impossible to be
analyzed within the likelihood ratio approach, especially when the number Q of observed
variables is larger than two and when there are more than two samples to analyze.

By working within the nonparametric combination of dependent permutation tests
(NPC; see Pesarin, 2001), it is possible to find exact solutions to that kind of problems.
The NPC approach works as a general methodology for most multivariate situations, as for
instance in cases where sample sizes are smaller than the number of observed variables,
or in some cases where there are non-ignorable missing values, or when some of the
variables are categorical (ordered and nominal) and others are quantitative, and in many
other complex situations. In particular, it is of interest when testing for a set of restricted
alternatives in which context it shows a specific efficacy.

Section 2 examines the basic problem for stochastic dominance alternatives in the
one-dimensional two-sample design and presented a brief review of NPC approach; Sec-
tion 3 considers some multivariate extensions; Section 4 is devoted to the discussion of
two application examples; in Section 5 there are some Monte Carlo simulations for power
comparisons of NPC solutions to most competitors from the literature; Section 6 is de-
voted to some concluding remarks.
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2 The Univariate Two-Sample Basic Problem
Let us assume that the support of a univariate non-degenerate ordered categorical variable
X is partitioned into a finite number K ≥ 2 of ordered classes (A1, A2, . . . , AK), and that
the data are classified according to two levels of a treatment, giving rise to a typical two-
sample design. Thus, given two independent samples of respectively nj > 2, j = 1, 2,
independent and identically distributed (iid) observations, Xj = {Xji, i = 1, . . . , nj}
say, we want to test H0 : {X1

d
= X2} = {F1(Ak) = F2(Ak), k = 1, . . . , K − 1},

against H1 : {X1

d
> X2} = {F1(Ak) ≤ F2(Ak), k = 1, . . . , K − 1}, where at least one

inequality is strict and the function Fj(Ak) = Pr{Xj ≤ Ak} plays the role of cumulative
distribution function (CDF) for Xj , j = 1, 2. By assuming that no reverse inequality such
as F1(Ak) > F2(Ak), k = 1, . . . , K − 1, is possible, the alternative can also be written
in the form H1 : {∪K−1

k=1 [F1(Ak) < F2(Ak)]}. Observed data are generally organized in a
2 ×K contingency table such as {fjk =

∑
i≤nj

I(Xji ∈ Ak), k = 1, . . . , K, j = 1, 2},
where I(·) = 1 if event (·) occurs and 0 otherwise. Symbols Njk =

∑
s≤k fjs, nj = NjK ,

and f·k = f1k + f2k indicate cumulative and marginal frequencies, respectively.
Permutation analysis is much easier if, in place of usual contingency tables, data are

unit-by-unit represented by listing the n = n1+n2 individual records. In the 2×K design,
the data set is represented by X = {X(i), i = 1, . . . , n; n1, n2}, where it is intended that
the first n1 records belong to the first sample and the rest to the second. Sometimes we
also use symbol X to denote the pooled data set. Thus, if (u∗1, . . . , u

∗
n) indicates a permu-

tation of individual units (1, . . . , n), then X∗ = {X(u∗i ), i = 1, . . . , n; n1, n2} indicates
the corresponding permutation of the data set X . It is worth observing that in univariate
two-sample designs, since they contain exactly the same amount of information on F , the
marginal frequencies {n1, n2, f·1, . . . , f·K}, the pooled data set X as well as any of its
permutations X∗ are equivalent sets of sufficient statistics under H0. In multivariate prob-
lems, due to the well-known difficulty of expressing marginal frequencies in easy to read
ways, as a set of sufficient statistics we only consider pooled data set X = {X(i), i =
1, . . . , n; n1, n2}, or any of its permutations X = {X(u∗i ), i = 1, . . . , n; n1, n2}, where
X(i) = [X1(i), . . . , XQ(i)]′ is the vector of Q ≥ 1 responses for ith individual unit. Also
note that the assumed iid condition implies that in H0 the data of two samples are ex-
changeable, so that the permutation testing principle can be applied. In this framework,
as a solution to the two-sample one dimensional testing problem we may consider the
permutation test statistic:

TAD(X∗) = T ∗
AD =

K−1∑

k=1

(F̂ ∗
2k − F̂ ∗

1k)

[
F̄·k(1− F̄·k)

4n1

n2(n− 1)

]−1/2

,

where F̂ ∗
jk = N∗

jk/nj , j = 1, 2, F̄·k = N·k/n are permutation and marginal empirical
distribution functions (EDFs) respectively, N∗

1k, N∗
2k, k = 1, . . . , K − 1 are permutation

cumulative frequencies. Note that large values for TAD are significant. Statistic TAD es-
sentially compares two EDFs and corresponds to the discrete version of a statistic follow-
ing Cramér-von Mises’ two-sample goodness-of-fit test statistic for stochastic dominance
alternatives, adjusted according to Anderson-Darling. TAD is permutationally equivalent
to

∑
k(F̂

∗
2k − F̂ ∗

1k)[F̄·k(1 − F̄·k)]−1/2 in the sense that for each data set X they induce
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exactly the same p-value. The p-value is defined as λAD = Pr{T ∗
AD ≥ T o

AD|X}, where
T o

AD represents the observed value of TAD. Thus, according to the general testing rule, if
λAD ≤ α the null hypothesis is rejected at significance level α > 0.

Testing analysis by NPC methods requires that problems can be broken down into
a set of simpler sub-problems for each of which a permutation partial test is available
and that these partial tests can be jointly processed. Let us observe that the kth sum-
mand in TAD may be seen as a partial test for the sub-hypotheses H0k : {Fk = Gk}
and H1k : {Fk < Gk}, k = 1, . . . , K − 1. Thus the global hypotheses may equiva-
lently be written as H0 : ∩kH0k and H1 : ∪kH1k, where a suitable break down into a
set of partial sub-hypotheses is emphasized. Hence, in order to obtain an overall solution
one way is to properly combine all related partial results. Of course, these partial tests
and associated p-values are dependent in a way that in general is extremely difficult to
take into account explicitly, consequently, when considering their combination we shall
take account nonparametrically of their underlying dependence relations; hence we shall
work within the NPC approach. Theory and methods for this kind of solutions are fully
discussed in Pesarin (2001). In the NPC approach we need combining the p-values λk as-
sociated with partial tests by a non-degenerate and measurable combining function ψ (for
example, Fisher’s: T ′′

F = −∑
k log(λk) and Tippett’s: T ′′

T = maxk(1− λk)). As a further,
frequently used combining function there is the so-called direct combination consisting
in a function of partial test statistics instead of related p-values (for example T ′′

D =
∑

k Tk,
where Tk denotes the partial test). Thus, TAD may be seen as a direct nonparametric
combination and so it enjoys all NPC properties.

With reference to the 2 × K design, one more application of the NPC methodology
is in terms of joint analysis of tests on sampling moments. To this end, let us assign
ranks W to ordered classes, that is let us transform Ak into Wk = k, and consider the
rule: Two discrete distributions defined on the same support, with a finite number K of
distinct real values, are equal if and only if their first K-1 moments are equal, because
their characteristic functions, as well as their probability generating functions, depend
only on these few moments. Consequently, we are allowed to write global hypotheses as
H0 : {X1

d
= X2} = {∩K−1

r=1 E(W r
1 ) = E(W r

2 )}, H1 : {X1
d
= X2} = {∪K−1

r=1 E(W r
1 ) >

E(W r
2 )}.

Let us now consider for each r, r = 1, . . . , K − 1, the permutation partial test statis-
tic based on comparison of the rth sampling moments or on one of its permutationally
equivalent statistics, such as T ∗

Wr =
∑

k≤K krf ∗1k/n1. We note that all these partial tests
are exact, unbiased, and consistent, then an NPC test associated with the combining func-
tion ψ is T ′′

Wψ = ψ(λW1, . . . , λWK−1); and therefore, for any ψ, combined tests T ′′
Wψ are

at least exact, unbiased, and consistent.
The exact determination of permutation distribution of any statistic can clearly be

obtained by complete enumeration of all its permutation values. Of course, this way
becomes impractical when sample sizes are not very small and for complex problems.
Alternatively, it can be estimated, to the desired degree of accuracy, by a conditional
Monte Carlo method consisting of a simple random sampling from the set of all permu-
tations. This solution is especially recommended for NPC methods and in general for
complex problems (see Pesarin, 2001). Main NPC routines for conditional Monte Carlo
simulation are implemented in the NPC-Test R© software.
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3 On Unrestricted and Multivariate Extensions
In this section we consider extensions to problems such as: (a) the two-sample unidimen-
sional design for unrestricted alternatives; (b) the multivariate extension of two-sample
design for restricted alternatives and multivariate extensions of problems in (a). All NPC
solutions in this section are obtained by using the direct combination of standardized par-
tial permutation tests. Of course, instead of the direct combination, we could use any
other combining function ψ.

a) In a univariate two-sample design with unrestricted alternatives the hypotheses are

H0 : {X1
d
= X2} against H1 : {X1

d

6= X2} = {∪k[F1(Ak) 6= F2(Ak)]}. Thus, the ex-
tension of test statistic TAD becomes T ∗2

AD =
∑K−1

k=1 (F̂ ∗
2k − F̂ ∗

1k)
2[F̄·k(1 − F̄·k)]−1, which

corresponds to a two-sample Anderson-Darling test for non-dominance alternatives, ad-
justed for discrete variables.

b) For an extension to the multivariate version of the two-sample design with stochas-
tic dominance alternatives, also called component-wise stochastic dominance, let us sup-
pose that the response is Q-dimensional X = (X1, . . . , XQ)′ whose related numbers of
ordered classes are K = (K1, . . . , KQ)′ and that n1 and n2 units are independently ob-
served from X1 and X2, respectively. In this framework the hypotheses under testing are
then H0 : {X1

d
= X2} = {∩Q

q=1(Xq1
d
= Xq2)} = {∩Q

q=1∩Kq−1
k=1 (Fqk = Gqk)} and, if no re-

verse inequality is possible in the alternative, H1 : {X1

d
> X2} = {∪Q

q=1(Xq1

d
> Xq2)} =

{∪Q
q=1∪Kq−1

k=1 (Fqk < Gqk)}, where Fqk and Gqk play the role of CDFs for the qth variable.
This problem, if not impossible, is considered as extremely difficult when approached
within the restricted maximum likelihood ratio test, whereas within the NPC method its
solution is straightforward. For instance, the direct combination on standardized partial
tests, which shows the Anderson-Darling’s structure, is:

T ∗
MD =

Q∑

q=1

Kq−1∑

k=1

(F̂ ∗
q2k − F̂ ∗

q1k)[F̄q·k(1− F̄q·k)]−1/2 .

It is worth noting that its qth component T ∗
Dq =

∑Kq−1
k=1 (F̂ ∗

q2k− F̂ ∗
q1k)[F̄q·k(1− F̄q·k)]−1/2 is

the partial permutation test related to the qth variable, for which F̄q·k = (Nq1k + Nq2k)/n
is the qth pooled EDF, q = 1, . . . , Q. In addition, we may consider the extension of T ∗

MD

to unrestricted or non-dominance alternatives, i.e. for, which gives:

T ∗2
MD =

Q∑

q=1

Kq−1∑

k=1

(F̂ ∗
q2k − F̂ ∗

q1k)
2[F̄q·k(1− F̄q·k)]−1 .

It is worth noting that T ∗2
MD may be considered to correspond to well-known Hotelling’s

T 2 statistic for a two-sample testing for multivariate ordered categorical variables.

4 Two Examples
Data of first example are from Brunner and Munzel (2000). Data concern a trial of shoul-
der tip pain, and the observed variables are pain scores following laparoscopic surgery.



F. Pesarin and L. Salmaso 319

The pain scores could take integer values from one (low) to five (high), i.e. 1 ≤ k ≤
K = 5. Treatment A (active drug) and P (placebo) were assigned randomly to 25 female
patients with 14 receiving A and 11 receiving P . The pain scores recorded on the third
day following surgery for treatment A are the following: 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4,
1, 1; for treatment P : 3, 3, 4, 3, 1, 2, 3, 1, 1, 5, 4. For this problem it is of interest to
test if treatment with active drug A produces stochastically better responses than placebo
P , and so the alternative hypothesis may be written as H1 : {∪kFAk > FPk}. Based on
B = 100000 conditional Monte Carlo simulations (with the software NPC-Test R© 2.0),
Anderson-Darling’s test statistic TAD on categorical classes gives a p-value of 0.00455.
NPC test T ′′

WT on first four moments, after assigning ranks to categorical classes, and
based on Tippett’s combining function gives a p-value of 0.00457. The p-values of four
partial tests respectively are: 0.00471 for TW1, 0.00455 for TW2, 0.01133 for TW3, and
0.01939 for TW4.

As a second example let us consider data from Arboretti, Pesarin, and Salmaso (2005)
regarding an observational study carried out in 2004 at the University of Ferrara on
the professional placing of Post-Docs. We report some result by two doctorate areas:
economic-legal (EL) and scientific-technological (ST), regarding Post-Doc satisfaction
on education-employment relationship including 3 variables: coherence between educa-
tion and employment, use in employment of the abilities acquired during the PhD and
adequacy of the PhD training for the work carried out. All variables are ordered categor-
ical (scores from 1 to 4: not at all, not very, quite, very satisfied, i.e. 1 ≤ k ≤ K = 4).
Table 1 lists the marginal contingency tables for the three variables.

Table 1: Marginal contingency tables for the variables: use, adequacy and coherence

Category
Use Adequacy Coherence

EL ST Total EL ST Total EL ST Total
1 0 1 1 0 2 2 0 1 1
2 1 9 10 2 8 10 0 3 3
3 7 4 11 8 7 15 2 5 7
4 15 9 24 13 6 19 21 14 35

Total 23 23 46 23 23 46 23 23 46

It is of interest to highlight differences in the interviewed Post-Docs’ multivariate and
univariate satisfaction profiles. This gives rise to an unrestricted set of alternatives and so
the alternative hypothesis may be written as H1 : {∪kFELk 6= FSTk}. It is worth noting
that the selection of the subjects composing the two groups has been performed by taking
into account for all known confounding variables. Table 2 shows for each variable the
results of Anderson-Darling’s test statistic T ∗2

AD on categorical classes and of the test T ′′
WT

on first 3 moments combined through Tippett’s combining function. The last row of Table
2 shows the global p-values related to the Anderson-Darling’s test statistic T ∗2

MD and to
the test T ′′′

WT based on Tippett’s combining function applied to the Q, (Q = 3), p-values
of tests T ′′

WT .
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Table 2: Results of multivariate permutation tests
p-values

TW1 TW2 TW3 T ′′WT T ∗2AD

Use 0.01015 0.01081 0.01325 0.01084 0.00503
Adequacy 0.00733 0.00746 0.00935 0.00954 0.00604
Coherence 0.01555 0.01555 0.01600 0.01600 0.01600
Overall test 0.00077 0.00053

5 Monte Carlo Power Simulations

The performance of the NPC solutions for the univariate case discussed in Section 2 with
respect to two competitors proposed in the literature was studied using Monte Carlo sim-
ulations. The NPC solutions examined are the Anderson-Darling permutation test TAD

on categorical classes, the permutation test T ′′
WF based on Fisher’s combination of sam-

pling moments and the permutation test T ′′
WT based on Tippett’s combination of sampling

moments. We considered, as competitors, the Wilcoxon test with ties correction and the
Brunner and Munzel rank test. Brunner and Munzel (2000) proposed a rank test for the
Behrens-Fisher two-sample problem in a nonparametric model with the assumption of
continuous distribution functions relaxed. For the Brunner and Munzel rank test WBF

N ,
arbitrary distribution functions are admitted including the case where ties occur by ob-
serving ordered categorical data. The Wilcoxon rank sum test is often used in practice
for ordered categorical data. This test was proposed for the two sample location problem,
when, on the basis of two random samples of iid observations (one sample from the ’con-
trol’ population, the second independent sample from the ’treatment’ population), the aim
is to investigate the presence of a treatment effect that results in a shift of location.

For the present simulation study, data were generated from ordinal distributions with
four categories. By assuming the 1st sample coming from the control population and
the 2nd sample coming from the treatment population, we supposed the treatment effect
reduced the frequency of upper categories. The restricted alternative hypothesis is defined

as H1 : {X1

d
> X2} = {F1(Ak) ≤ F2(Ak), k = 1, 2, 3}, where at least one inequality

is strict. The associated distribution of the 2nd sample presented an absolute frequency
reduction of 40% for category 4. In settings (a) and (b) reported in Table 3, this reduction
entirely shifted respectively to category 3 and 1, while in setting (c) the reduction splitted
over categories 2 and 3.

Table 3: Frequency distributions (%) for the data generation
Frequency Category
distribution (%) 1 2 3 4
1st sample 5 10 15 70
2nd sample (a) 5 10 55 30
2nd sample (b) 45 10 15 30
2nd sample (c) 5 30 35 30



F. Pesarin and L. Salmaso 321

For each configuration we performed 1000 Monte Carlo simulations and for eval-
uating the permutation distribution 1000 Conditional Monte Carlo iterations. For each
independent pair of samples, we consider sample sizes of n1 = n2 = 30 and n1 = 30,
n2 = 20. The results in Table 4 show a good behavior of the NPC solutions and the
competitors under the null hypothesis. In particular, the simulated type-I error rates for
T ′′

WF ranged for sample sizes of n1 = n2 = 30 and n1 = 30, n2 = 20 respectively from
0.9% to 1.2% (nominal level 1%), from 3.4% to 4.7% (nominal level 5%) and from 7.4%
to 9.7% (nominal level 10%). The Wilcoxon test ranged from 1% to 1.2% (nominal level
1%), from 3.7% to 5.8% (nominal level 5%) and from 7.9% to 10.2% (nominal level
10%). The Brunner and Munzel rank test ranged from 1.1% to 1.2% (nominal level 1%),
from 4.1% to 5.2% (nominal level 5%) and from 8.1% to 9.7% (nominal level 10%). The
results for the setting n1 = 30, n2 = 20 are listed in Table 4.

Under the alternative hypothesis (see Figures 1 and 2), the Anderson-Darling test is
close in power with the WBF

N in configuration reported in Table 3(b), where the associated
distribution of the 2nd sample differs from that of the 1st sample in the lowest and highest
classes. The permutation test T ′′

WF showed a good behavior in power in all situations both
for balanced and unbalanced sample sizes. For the simulation setting illustrated in Table
3(a), where the associated distribution of the 2nd sample have the absolute frequency
reduction of 40% shifted from category 4 to category 3, the permutation test T ′′

WF showed
the widest difference in power with respect to other tests. This difference decreased as the
frequency reduction of category 4 splitted over the other categories.

Table 4: Achieved significance levels (n1 = 30, n2 = 20)
α nominal TAD T ′′WF T ′′WT W WBF

N

0.01 0.012 0.012 0.013 0.012 0.012
0.025 0.034 0.029 0.031 0.031 0.029
0.05 0.056 0.047 0.055 0.058 0.052
0.1 0.100 0.097 0.097 0.102 0.097
0.2 0.178 0.176 0.184 0.190 0.186
0.3 0.291 0.273 0.284 0.297 0.292
0.4 0.392 0.359 0.370 0.376 0.375
0.5 0.481 0.463 0.479 0.484 0.484
0.6 0.569 0.558 0.560 0.574 0.574
0.7 0.664 0.650 0.651 0.661 0.661
0.8 0.763 0.757 0.760 0.776 0.770
0.9 0.889 0.889 0.882 0.905 0.899
1 1 1 1 1 1

6 Concluding Remarks
The nonparametric combination method is suitable and effective for many multivariate
testing problems which, in a parametric framework, are very difficult or even impossi-
ble to solve. One major feature of the nonparametric combination of dependent tests,
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Figure 1: Empirical power for n1 = 30, n2 = 20 for the three distribution configurations



F. Pesarin and L. Salmaso 323

Figure 2: Empirical power for n1 = 30, n2 = 30 for the three distribution configurations
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provided that the permutation principle applies, is that one must pay attention to a set
of partial tests, each appropriate for the related sub-hypothesis, because the underlying
dependence relation structure is nonparametrically captured by the combining procedure.
In particular, the researcher is not explicitly required to specify the dependence structure
of response variables. This aspect is of great importance especially for non-normal or
categorical variables, in which dependence relations are generally too difficult to define
and, even when well-defined, are hard to cope with (see Joe, 1997). The researcher is only
required to make sure that all partial tests are marginally unbiased, a sufficient condition
which is generally easy to check.

Monte Carlo experiments, reported in this contribution, show that the Fisher combin-
ing function have good power behavior both for balanced and unbalanced sample sizes
and in some situations it is more powerful than the Brunner-Munzel test and the Wilcoxon
test. Thus nonparametric combination tests are relatively efficient and much less demand-
ing in terms of underlying assumptions compared with parametric competitors. Moreover,
standard distribution-free methods based on ranks, which are generally not conditional on
sufficient statistics, rarely present a better unconditional power behavior.
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