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Abstract: Finite mixture models are being increasingly used to model the
distributions of a wide variety of random phenomena and to cluster data sets.
In this paper, we focus on the use of normal mixture models to cluster data
sets of continuous multivariate data. As normality based methods of estima-
tion are not robust, we review the use of t component distributions. With the
t mixture model-based approach, the normal distribution for each component
in the mixture model is embedded in a wider class of elliptically symmet-
ric distributions with an additional parameter called the degrees of freedom.
The advantage of the t mixture model is that, although the number of outliers
needed for breakdown is almost the same as with the normal mixture model,
the outliers have to be much larger. We also consider the use of the t distribu-
tion for the robust clustering of high-dimensional data via mixtures of factor
analyzers. The latter enable a mixture model to be fitted to data which have
high dimension relative to the number of data points to be clustered.

Keywords: Finite Mixture Models, Normal Components, Mixtures of Factor
Analyzers, t Distributions, EM Algorithm.

1 Introduction
Finite mixture models are being increasingly used to model the distributions of a wide
variety of random phenomena and to cluster data sets. Here we consider their application
in the context of cluster analysis. We let the p-dimensional vector x = (x1, . . . , xp)

T con-
tain the values of p variables measured on each of n (independent) entities to be clustered,
and we let xj denote the value of x corresponding to the jth entity (j = 1, . . . , n). With
the mixture approach to clustering, x1, . . . , xn are assumed to be an observed random
sample from mixture of a finite number, say g, of groups in some unknown proportions
π1, . . . , πg. The mixture density of xj is expressed as

f(xj; Ψ) =
g∑

i=1

πifi(xj; θi) , j = 1, . . . , n , (1)

where the mixing proportions π1, . . . , πg sum to one and the group-conditional density
fi(xj; θi) is specified up to a vector θi of unknown parameters (i = 1, . . . , g). The vector
of all the unknown parameters is given by Ψ = (π1, . . . , πg−1, θT

1 , . . . , θT
g )T , where the

superscript T denotes vector transpose. Using an estimate of Ψ, this approach gives a
probabilistic clustering of the data into g clusters in terms of estimates of the posterior
probabilities of component membership,

τi(xj) =
πifi(xj; θi)

f(xj; Ψ)
, (2)
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where τi(xj) is the posterior probability that xj (really the entity with observation xj)
belongs to the ith component of the mixture (i = 1, . . . , g; j = 1, . . . , n).

The parameter vector Ψ can be estimated by maximum likelihood. The maximum
likelihood estimate (MLE) of Ψ, Ψ̂, is given by an appropriate root of the likelihood equa-
tion,

∂ log L(Ψ)/∂Ψ = 0 (3)

where

log L(Ψ) =
n∑

j=1

log f(xj; Ψ) (4)

is the log likelihood function for Ψ. Solutions of (4) corresponding to local maximizers of
log L(Ψ) can be obtained via the expectation-maximization (EM) algorithm of Dempster
et al. (1977).

For the modelling of continuous data, the group-conditional densities are usually taken
to belong to the same parametric family, for example, the normal. In this case,

fi(xj; θi) = φ(xj; µi, Σi) , (5)

where φ(xj; µ, Σ) denotes the p-dimensional multivariate normal distribution with mean
vector µ and covariance matrix Σ.

One attractive feature of adopting mixture models with elliptically symmetric com-
ponents such as the normal or t densities, is that the implied clustering is invariant under
affine transformations of the data (that is, under operations relating to changes in location,
scale, and rotation of the data); see, for example, Coleman et al. (1999). Thus the clus-
tering process does not depend on irrelevant factors such as the units of measurement or
the orientation of the clusters in space. Concerning the desirability of the latter, Hartigan
(1975) has commented that affine invariance is less compelling that than invariance under
the change of measuring units of each variable.

Unfortunately, as with many other applications of ML estimation for normal-based
models, the ML fitting of normal mixture models is not robust against gross outliers, at
least if the number of components g is not fixed. The problem of providing protection
against outliers in multivariate data is a very difficult problem and increases in difficulty
with the dimension of the data. There is now a vast literature on robust modelling meth-
ods some of which focus on outlier identification, while others are more for outlier ac-
commodation (Huber, 1981). In a series of papers, Rocke (1996), Rocke and Woodruff
(1996), Rocke and Woodruff (1997), and Woodruff and Rocke (1993), Woodruff and
Rocke (1994) have considered robust estimation of multivariate location and shape, and
the consequent identification of outliers and leverage points. More recently, Davies and
Gather (2005) have discussed the concept of breakdown points (Hampel, 1971; Donoho
and Huber, 1983). In the context of mixtures, Hennig (2004) has given an account of
robustness issues with ML estimation of univariate normal mixture models.

One-way to broaden the normal mixture parametric family for potential outliers or
data with longer-than-normal tails is to adopt mixtures of t distributions, as proposed by
McLachlan and Peel (1998) and McLachlan and Peel (2000b) and Peel and McLachlan
(2000). Mixtures of a fixed number of t components are not robust against outliers. The
advantage of the t mixture model is that, although the number of outliers needed for
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breakdown is almost the same as with the normal mixture model, the outliers have to be
much larger. This point is made more precise in Hennig (2004).

In this paper, we give a brief review of the fitting of mixtures of t components. Some
illustrative examples are discussed. We also consider the use of mixture models for the
clustering of high-dimensional data. With mixtures of normal or t component distribu-
tions, there may be problems with potential singularities in the estimates of the component
scale matrices. One way to avoiding such singularities for mixture of normal components
is to fit mixtures of factor analyzers. We discuss how this latter model can be made less
sensitive to outliers by considering the implementation of mixtures of factor analyzers
with t distributed errors in the component factor models.

Before we proceed to define the t mixture model, we give a brief account of some
other methods for improving the robustness of mixture models.

2 Some Alternatives to Improving the Robustness of Mix-
ture Models

One way in which the presence of atypical observations or background noise in the data
has been handled when fitting mixtures of normal components has been to include an
additional component having a uniform distribution. The support of the latter component
is generally specified by the upper and lower extremities of each dimension defining the
rectangular region that contains all the data points. Typically, the mixing proportion for
this uniform component is left unspecified to be estimated from the data (Banfield and
Raftery, 1993). As shown by Hennig (2004), the noise component can be affected too by
outliers. This can be prevented if the density constant for the noise component is chosen
as fixed beforehand, which leads to ML estimation of a mixture model with an improper
distribution added to catch the noise.

Robust estimation in the context of mixture models has been considered in the past by
Campbell (1984) and McLachlan and Basford (1988, Chapter 3), among others, using M-
estimates of the means and covariance matrices of the normal components of the mixture
model. Markatou (2000) has provided a formal approach to robust mixture estimation
by applying weighted likelihood methodology (Markatou et al., 1998) in the context of
mixture models. Müller and Neykov (2003) and Neykov et al. (2004) have considered the
trimmed likelihood methodology (Hadi and Luceño, 1997; Vandev and Neykov, 1998)
in the fitting of mixtures of normals and generalized linear models. Also, Tibshirani and
Knight (1999) have proposed the technique of bootstrap “bumping”, which can be used
for resistant fitting.

It is outside the scope of this paper to review procedures besides mixture model-based
ones for robust cluster analysis, such as k-medoids. There are also those methods that
optimize a target function for only part of the data, such as trimmed k-means (Garcia-
Escudero and Gordaliza, 1999) and minimum covariance determinant or minimum vol-
ume ellipsoid procedures (Rocke and Woodruff, 2000; Hawkins, 2003; Hawkins, 2004;
and Hardin and Rocke, 2004). In the example to be considered here, we shall make use
of trimmed k-means to provide a starting partition for the fitting of the t mixture model in
clustering the main body of a data set in the presence of local contamination. Although
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the k-means procedure corresponds to the assumption of clusters with a common spher-
ical covariance matrix, it is often used to provide a starting partition for the application
of the EM algorithm and its variants. But other clustering procedures could be used, for
example, the classification method; see Coleman et al. (1999).

3 Multivariate t Distribution
For mixtures of normal components, the ith component-conditional distribution of the jth
observation vector Xj is given by

Xj ∼ N(µi, Σi) ,

denoting the multivariate normal distribution with mean vector µi and covariance matrix
Σi.

With the t mixture model, the normal distribution for the ith component is embedded
in a wider class of elliptically symmetric distributions with an additional parameter νi

called the degrees of freedom. Then the ith-conditional distribution of Xj is given by

Xj ∼ t(µi, Σi, νi) , (6)

where t(µi, Σi, νi) denotes the multivariate t distribution with mean µi, scale matrix Σi,
and νi degrees of freedom. The mean of this t distribution is µi and its covariance matrix
is {νi/(νi − 2)}Σi.

The density corresponding to (6) is given by

f(xj; µi, Σi, νi) =
Γ(νi+p

2
) |Σi|−1/2

(πνi)
1
2
pΓ(νi

2
){1 + δ(xj, µi; Σi)/νi} 1

2
(νi+p)

, (7)

where
δ(xj, µi; Σi) = (xj − µi)

T Σ−1
i (xj − µi) (8)

denotes the squared Mahalanobis distance between xj and µi (with Σi as the covariance
matrix).

The t distribution (6) can be characterized by letting Wj denote a random variable
distributed as

Wj ∼ gamma(1
2
νi,

1
2
νi) , (9)

where the gamma(α, β) density function is equal to

{βαwα−1/Γ(α)} exp(−βw)I[0,∞)(w) α, β > 0 , (10)

and IA(w) denotes the indicator function that is 1 if w belongs to A and is zero otherwise.
If the conditional distribution of Xj given Wj = wj is specified by

Xj | wj ∼ N(µi, Σi/wj) , (11)

then the unconditional distribution of Xj is given by the t distribution (7); see, for ex-
ample, the monograph of Kotz and Nadarajah (2004) on the t distribution. As νi tends
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to infinity, the t distribution approaches the normal distribution. Hence this parameter νi

may be viewed as a robustness tuning parameter. It can be fixed in advance or it can be
inferred from the data for each component.

For ML estimation in the case of a single t distribution, the reader is referred to Rubin
(1983), Little and Rubin (1987) Liu and Rubin (1994), Liu and Rubin (1995), Liu (1997),
and Liu et al. (1998), A brief history of the development of ML estimation of a single-
component t distribution is given in Liu and Rubin (1995).

4 ML Estimation of Mixtures of t Components
McLachlan and Peel (2000a, Chapter 7) have implemented the E- and M-steps of the EM
algorithm and its variant, the ECM (expectation–conditional maximization) algorithm for
the ML estimation of multivariate t components. The ECM algorithm proposed by Meng
and Rubin (1993) replaces the M-step of the EM algorithm by a number of computation-
ally simpler conditional maximization (CM) steps.

In the EM framework for this problem, the unobservable variable wj in the charac-
terization (11) of the t distribution for the ith component of the t mixture model and the
component-indicator labels zij are treated as being the “missing” data, where zij is de-
fined to be one or zero according as xj belongs or does not belong to the ith component of
the mixture (i = 1, . . . , g; j = 1, . . . , n). On the (k + 1)th iteration of the EM algorithm,
the updated estimates of the mixing proportion, the mean vector µi, and the scale matrix
Σi are given by

π
(k+1)
i =

n∑

j=1

τ
(k)
ij /n , (12)

µ
(k+1)
i =

n∑

j=1

τ
(k)
ij w

(k)
ij xj/

n∑

j=1

τ
(k)
ij w

(k)
ij (13)

and

Σ
(k+1)
i =

∑n
j=1 τ

(k)
ij w

(k)
ij (xj − µ

(k+1)
i )(xj − µ

(k+1)
i )T

∑n
j=1 τ

(k)
ij

. (14)

In the above,

τ
(k)
ij =

π
(k)
i f(xj; µ

(k)
i , Σ

(k)
i , ν

(k)
i )

f(xj; Ψ(k))
(15)

is the posterior probability that xj belongs to the ith component of the mixture, using the
current fit Ψ(k) for Ψ (i = 1, . . . , g; j = 1, . . . , n). Also,

w
(k)
ij =

ν
(k)
i + p

ν
(k)
i + δ(xj, µ

(k)
i ; Σ

(k)
i )

, (16)

which is the current estimate of the conditional expectation of Wj given xj and zij = 1.
The updated estimate ν

(k+1)
i of νi does not exist in closed form, but is given as a

solution of the equation


−ψ(1

2
νi) + log(1

2
νi) + 1 +

1

n
(k)
i

n∑

j=1

τ
(k)
ij (log w

(k)
ij − w

(k)
ij )
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+ ψ


ν

(k)
i + p

2


− log


ν

(k)
i + p

2






 = 0 , (17)

where n
(k)
i =

∑n
j=1 τ

(k)
ij (i = 1, . . . , g) and ψ(·) is the Digamma function.

Following the proposal of Tyler and Vardi (1994) in the case of a single-component t

distribution, we can replace the divisor
∑n

j=1 τ
(k)
ij in (33) by

n∑

j=1

τ
(k)
ij w

(k)
ij ,

which should improve the speed of convergence; see also Liu (1997) and Liu et al. (1998).
These E- and M-steps are alternated until the changes in the estimated parameters

or the log likelihood are less than some specified threshold. It can be seen that if the
degrees of freedom νi is fixed in advance for each component, then the M-step exists in
closed form. In this case where νi is fixed beforehand, the estimation of the component
parameters is a form of M-estimation. However, an attractive feature of the use of the
t distribution to model the component distributions is that the degrees of robustness as
controlled by νi can be inferred from the data by computing its MLE.

5 Example of Clustering via Mixtures of Normal and t

Components
We consider some data simulated from a mixture in equal proportions of g = 3 groups
with configuration similar to that considered in Ueda and Nakano (1998), McLachlan
and Peel (2000a, Chapter 2), and, more recently, Cuesta-Albertos et al. (2005). The
component means are given by

µT
1 = (−2, 0) , µT

2 = (0, 0) , µT
3 = (2, 0) ,

while the common component-covariance matrix is diagonal,

Σi =

(
0.2 0
0 2

)
.

Cuesta-Albertos et al. (2005) added some 20 data points in two different schemes to
600 points of which 200 were simulated from each of the three normal distributions as
specified above. In the first case, they added 20 points from the uniform distribution on
the set,

{(x1, x2) ∈ [−5, 5]× [−8, 8] : x1 < −4 or > 4, or x2 < −5 or > 5} .

Cuesta-Albertos et al. (2005) used this example to show that if the k-means solution
is used to start the EM algorithm, then fitting a mixture of g = 3 normal components
will not lead to the desired solution, as exhibited in Figure 1. But we note here that if
we fit a mixture of g = 3 t components from the k-means solution, then it will converge
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Figure 1: (Asymptotic) ellipsoids for the three clusters obtained by fitting a mixture of
g = 3 normal components to three normal groups plus uniformly distributed noise.
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Figure 2: (Asymptotic) ellipsoids for the three clusters obtained by fitting a mixture of
g = 3 t components to three normal groups plus uniformly distributed noise.
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to the desired solution; see Figure 2. The estimated degrees of freedom in the three t
components are 190.0, 3.4, and 2.6, respectively, for the components in order of increasing
mean of the first variable.

In the second case, Cuesta-Albertos et al. (2005) added 20 points from the uniform
distribution on the square

[0.5, 1.5]× [−8,−7] ,

as illustrative of a situation with local contamination.
In this case, Cuesta-Albertos et al. (2005) noted that one gets essentially the same

clustering of this contaminated data set of 620 points into g = 3 clusters regardless of
whether one uses mixtures of normals or t components if the fitting algorithm (EM) is
started from the k-means solution; see clustering displayed in Figure 3 from fitting a
mixture of g = 3 normal components. This is obviously a situation where it helps to
know what is the desired number of clusters.

One would expect that with any sensible clustering procedure that uses all of the data,
that the 20 locally concentrated data points would be put into a separate cluster of their
own. Thus, if the main body of the data is to be clustered into three clusters, then clearly
we need to look at clustering the data into g = 4 clusters with one cluster for the cell of
locally contaminated points or using a procedure that focuses on the main body of data
and ignores the local contamination. If we adopt the former approach with mixtures of
normals or t components, we will get a four-cluster solution corresponding to the three
normal groups and the cell of contaminated data; see Figure 4. The fits produced by the
four-component normal and t mixture models are very similar and so only the fit for the
normal mixture model has been displayed in Figure 4. In fitting these two mixture models,
the EM algorithm was started from the k-means solution using all the data. We also tried
several random starts but the solution corresponding to the largest of the local maxima
found led to the same clustering obtained using the k-means start.

Concerning the latter approach, we display in Figures 5 and 6 the three clusters ob-
tained by fitting a mixture of g = 3 normal and t components, respectively, to all the 620
points, but with the EM algorithm started from the 50% trimmed k-means solution. The
estimated degrees of freedom in the three t components are 126.6, 3.2, and 51.6, respec-
tively, for the components in order of increasing mean of the first variable. It can be seen
that the normal mixture fit is not robust to the local contamination even when started from
a robust solution (50% trimmed k-means), but that the t mixture model is robust to the
contamination.

6 Factor Analysis Model for Dimension Reduction
The g-component normal mixture model with unrestricted component-covariance matri-
ces is a highly parameterized model with d = p(p+1)/2 parameters for each component-
covariance matrix Σi (i = 1, . . . , g). Banfield and Raftery (1993) introduced a parameter-
ization of the component-covariance matrix Σi based on a variant of the standard spectral
decomposition of Σi. However, if p is large relative to the sample size n, it may not
be possible to use this decomposition to infer an appropriate model for the component-
covariance matrices. Even if it is possible, the results may not be reliable due to potential
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Figure 3: (Asymptotic) ellipsoids for the three clusters obtained by fitting a mixture of
g = 3 normal components to 3 normal groups with local contamination; EM started from
k-means solution.
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Figure 4: (Asymptotic) ellipsoids for the 4 clusters obtained by fitting a mixture of g = 4
normal components to 3 normal groups with local contamination; EM started from k-
means solution.
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Figure 5: (Asymptotic) ellipsoids for the 3 clusters obtained by fitting a mixture of g = 3
normal components to 3 normal groups with local contamination; EM algorithm started
from trimmed k-means solution.
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Figure 6: (Asymptotic) ellipsoids for the 3 clusters obtained by fitting a mixture of g = 3
t components to 3 normal groups with local contamination; EM algorithm started from
trimmed k-means solution.
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problems with near-singular estimates of the component-covariance matrices when p is
large relative to n.

A common approach to reducing the the number of dimensions is to perform a prin-
cipal component analysis (PCA). But as is well known, projections of the feature data xj

onto the first few principal axes are not always useful in portraying the group structure;
see McLachlan and Peel (2000a, page 239), and Chang (1983). Another approach for
reducing the number of unknown parameters in the forms for the component-covariance
matrices is to adopt the mixture of factor analyzers model, as considered in McLachlan
and Peel (2000a), McLachlan and Peel (2000b). This model was originally proposed by
Ghahramani and Hinton (1997) and Hinton, Dayan, and Revow (1997) for the purposes
of visualizing high dimensional data in a lower dimensional space to explore for group
structure; see also Tipping and Bishop (1997) who considered the related model of mix-
tures of principal component analyzers for the same purpose. Further references may be
found in McLachlan and Peel (2000a, Chapter 8).

In the sequel, we focus on mixtures of factor analyzers from the perspective of a
method for model-based density estimation from high-dimensional data, and hence for
the clustering of such data. This approach enables a normal mixture model to be fitted
to a sample of n data points of dimension p, where p is large relative to n. The number
of free parameters is controlled through the dimension of the latent factor space. By
working in this reduced space, it allows a model for each component-covariance matrix
with complexity lying between that of the isotropic and full covariance structure models
without any restrictions on the covariance matrices.

7 Mixtures of Normal Factor Analyzers
A global nonlinear approach can be obtained by postulating a finite mixture of linear
submodels for the distribution of the full observation vector Xj given the (unobservable)
factors uj . That is, we can provide a local dimensionality reduction method by assuming
that the distribution of the observation Xj can be modelled as

Xj = µi + BiUij + eij with prob. πi , i = 1, . . . , g (18)

for j = 1, . . . , n, where the factors Ui1, . . . , Uin are distributed independently N(0, Iq),
independently of the eij , which are distributed independently N(0, Di), where Di is a
diagonal matrix (i = 1, . . . , g).

Thus the mixture of factor analyzers model is given by

f(xj; Ψ) =
g∑

i=1

πiφ(xj; µi, Σi) , (19)

where the ith component-covariance matrix Σi has the form

Σi = BiB
T
i + Di , i = 1, . . . , g (20)

and where Bi is a p×q matrix of factor loadings and Di is a diagonal matrix (i = 1, . . . , g).
The parameter vector Ψ now consists of the mixing proportions πi and the elements of the
µi, the Bi, and the Di.
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The mixture of factor analyzers model can be fitted by using the alternating expectation–
conditional maximization (AECM) algorithm (Meng and van Dyk, 1997). The AECM
algorithm is an extension of the ECM algorithm, where the specification of the complete
data is allowed to be different on each CM-step.

To apply the AECM algorithm to the fitting of the mixture of factor analyzers model,
we partition the vector of unknown parameters Ψ as (ΨT

1 , ΨT
2 )T , where Ψ1 contains the

mixing proportions πi (i = 1, . . . , g − 1) and the elements of the component means µi

(i = 1, . . . , g). The subvector Ψ2 contains the elements of the Bi and the Di (i = 1, . . . , g).
We let Ψ(k) = (Ψ

(k)T

1 , Ψ
(k)T

2 )T be the value of Ψ after the kth iteration of the AECM al-
gorithm. For this application of the AECM algorithm, one iteration consists of two cycles,
and there is one E-step and one CM-step for each cycle. The two CM-steps correspond to
the partition of Ψ into the two subvectors Ψ1 and Ψ2.

For the first cycle of the AECM algorithm, we specify the missing data to be just the
component-indicator labels zij , which are defined as above. The first conditional CM-step
leads to π

(k)
i and µ

(k)
i being updated to

π
(k+1)
i =

1

n

n∑

j=1

τi(xj; Ψ(k)) (21)

and

µ
(k+1)
i =

n∑

j=1

τi(xj; Ψ(k))xj

n∑

j=1

τi(xj; Ψ(k))

(22)

for i = 1, . . . , g, where

τi(xj; Ψ) =
πiφ(xj; µi, Σi)

g∑

h=1

πhφ(xj; µh, Σh)

(23)

is the ith component posterior probability of xj .
For the second cycle for the updating of Ψ2, we specify the missing data to be the

factors u1, . . . , un, as well as the component-indicator labels zij . On setting Ψ(k+1/2)

equal to (Ψ
(k+1)T

1 , Ψ
(k)T

2 )T , an E-step is performed to calculate Q(Ψ; Ψ(k+1/2)), which is the
conditional expectation of the complete-data log likelihood given the observed data, using
Ψ = Ψ(k+1/2). The CM-step on this second cycle is implemented by the maximization of
Q(Ψ; Ψ(k+1/2)) over Ψ with Ψ1 set equal to Ψ

(k+1)
1 . This yields the updated estimates B

(k+1)
i

and D
(k+1)
i . The former is given by

B
(k+1)
i = V

(k+1/2)
i γ

(k)
i

(
γ

(k)T

i V
(k+1/2)
i γ

(k)
i + ω

(k)
i

)−1

, (24)

where

V
(k+1/2)
i =

n∑

j=1

τi(xj; Ψ(k+1/2))(xj − µ
(k+1)
i )(xj − µ

(k+1)
i )T

n∑

j=1

τi(xj; Ψ(k+1/2))

, (25)
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γ
(k)
i = (B

(k)
i B

(k)T

i + D
(k)
i )−1B

(k)
i , (26)

and
ω

(k)
i = Iq − γ

(k)T

i B
(k)
i (27)

for i = 1, . . . , g. The updated estimate D
(k+1)
i is given by

D
(k+1)
i = diag{V(k+1/2)

i − B
(k+1)
i H

(k+1/2)
i B

(k+1)T

i } (28)

= diag{V(k+1/2)
i − V

(k+1/2)
i γ

(k)
i B

(k+1)T

i } ,

where

H
(k+1/2)
i =

n∑

j=1

τi(xj; Ψ(k+1/2))E(k+1/2)
i (UjU

T
j |xj)

n∑

j=1

τi(xj; Ψ(k+1/2))

(29)

= γ
(k)T

i V
(k+1/2)
i γ

(k)
i + ω

(k)
i

and E(k+1/2)
i denotes conditional expectation given membership of the ith component,

using Ψ(k+1/2) for Ψ.
Direct differentiation of the log likelihood function shows that the ML estimate of the

diagonal matrix Di satisfies

D̂i = diag(V̂i − B̂iB̂
T
i ) , (30)

where

V̂i =

n∑

j=1

τi(xj; Ψ̂)(xj − µ̂i)(xj − µ̂i)
T

n∑

j=1

τi(xj; Ψ̂)

. (31)

As remarked by Lawley and Maxwell (1971, page 30) in the context of direct computation
of the ML estimate for a single-component factor analysis model, the equation (30) looks
temptingly simple to use to solve for D̂i, but was not recommended due to convergence
problems.

On comparing (30) with (16), it can be seen that with the calculation of the ML esti-
mate of Di directly from the (incomplete-data) log likelihood function, the unconditional
expectation of UjU

T
j , which is the identity matrix, is used in place of the conditional ex-

pectation in (29) on the E-step of the AECM algorithm. Unlike the direct approach of
calculating the ML estimate, the EM algorithm and its variants such as the AECM ver-
sion have good convergence properties in that they ensure the likelihood is not decreased
after each iteration regardless of the choice of starting point; see McLachlan et al. (2003)
for further discussion.

It can be seen from (30) that some of the estimates of the elements of the diagonal
matrix Di (the uniquenesses) will be close to zero if effectively not more than q observa-
tions are unequivocally assigned to the ith component of the mixture in terms of the fitted
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posterior probabilities of component membership. This will lead to spikes or near singu-
larities in the likelihood. One way to avoid this is to impose the condition of a common
value D for the Di,

Di = D , i = 1, . . . , g . (32)

An alternative way of proceeding is to adopt some prior distribution for the Di as, for
example, in the Bayesian approach of Fokoué and Titterington (2002).

The mixture of probabilistic component analyzers (PCAs) model, as proposed by Tip-
ping and Bishop (1997) has the form (20) with each Di now having the isotropic structure

Di = σ2
i Ip i = 1, . . . , g . (33)

Under this isotropic restriction (33) the iterative updating of Bi and Di is not necessary
since, given the component membership of the mixture of PCAs, B

(k+1)
i and σ

(k+1)2

i are
given explicitly by an eigenvalue decomposition of the current value of Vi.

8 Mixtures of t Factor Analyzers
The mixture of factor analyzers model is sensitive to outliers since it uses normal errors
and factors. Recently, McLachlan and Bean (2005) have considered the use of mixtures
of t analyzers in an attempt to make the model less sensitive to outliers. With mixtures
of t factor analyzers, the error terms eij and the factors Uij are assumed to be distributed
according to the t distribution with the same degrees of freedom. Under this model, the
factors and error terms are no longer independently distributed but they are uncorrelated.

It follows that mixtures of t factor analyzers can be fitted essentially as in the previous
section for normal factors and errors with minor modification. In equations (22) and (25),
the weights w

(k+1)
ij should be used, and of course the t density f(xj; µ

(k+1)
i , Σ

(k+1)
i , ν

(k+1)
i )

should be used in forming the current estimates of the posterior probabilities of compo-
nent membership τi(xj; Ψ(k+1)). Further details are provided in McLachlan and Bean
(2005).

9 Discussion
In this paper, we have considered the use of mixtures of multivariate t distributions instead
of normal components as a more robust approach to the clustering of multivariate contin-
uous data which have longer tails that the normal or atypical observations. As pointed
out by Hennig (2004), although the number of outliers needed for breakdown with the t
mixture model is almost the same as with the normal version, the outliers have to be much
larger.

In considering the robustness of mixture models, it is usual to consider the number of
components as fixed. This is because the existence of outliers in a data set can be handled
by the addition of further components in the mixture model if the number of components
is not fixed. Breakdown can still occur if the contaminating points lie between the clusters
of the main body of points and fill in the feature space to the extent that a fewer number of
components is needed in the mixture model than the actual number of clusters (Hennig,
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2004). But obviously the situation is fairly straightforward if the number of clusters are
known a priori. However, this is usually not the case in clustering applications.

We consider also the case of clustering high-dimensional feature data via normal mix-
ture models. These models can be fitted by adopting the factor analysis model to represent
the component-covariance matrices. It is shown how the resulting model known as mix-
tures of factor analyzers can be made more robust by using the multivariate t distribution
for the component distributions of the factors and errors. It is indicated how this extended
model of mixtures of t factor analyzers can be fitted with minor modifications.
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