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Abstract: Many problems considered and investigated in statistics follow a
general schema. Observed data are generated by a model containing ran-
domness and determined via a collection of parameters. We are interested in
future behavior of observed system. Therefore, a convenient estimation pro-
cedure for unknown parameters becomes to be the crucial task. This schedule
often leads to derivation of an optimization problem that solution is a reason-
able estimator of required parameters.

We are discussing behavior of such an estimator with a relatively general
background. The setup is illustrated on a linear regression model.

Keywords: Optimization Problem, Estimator, Strong Consistency, Weak Con-
vergence of Probability Measures.

1 Introduction
We consider a general scheme of parameter estimation in this paper. Our task is to es-
timate true value of a model parameter. As parameter we allow reals, real vectors, real
functions, etc. Simply, parameter is a member of a metric space. True value of parameter
is estimated with an ε-solution of an optimization problem. We present assumptions under
which such an estimator is consistent in almost sure sense. We do not require measurabil-
ity of the estimator. Hence, almost sure convergence used throughout the paper must be
understood according to definition in Vaart and Wellner (1996). Thus, it can happen that
an estimator is almost surely consistent, although it is not consistent in probability.

As an illustration of our general result we consider M -estimator in linear regression
model. There is a vast literature on the linear regression model, e.g. Chen and Wu (1988);
Dodge and Jurečková (2000); Jurečková (1980, 1985); Jurečková and Sen (1996); Knight
(1998); Leroy and Rousseeuw (1987); Rockafellar and Wets (1998), etc. But, the results
usually assume unique minimizer, regressors are supposed i.i.d. or deterministic, errors
are i.i.d., errors are independent with regressors, estimator must be measurable. Our
paper requires no prescribed structure for observations and errors. We only assume weak
convergence of their common empirical measure. Also, we allow non-uniqness of the
estimator. The non-measurability problem is overcome by using a general scheme and
definition of almost sure convergence without any measurability assumption, see Vaart
and Wellner (1996).

2 General Result
We consider a general scheme of parameter estimation in this paper. Our task is to esti-
mate true value of an important parameter. Let us denote it θ0. We suppose to know the
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set, say Θ, of all possible values of this parameter. Also we have known a parameterized
family of probability measures PΘ = {µθ | θ ∈ Θ} defined on a metric space Y .

We observe X1, X2, . . . belonging into a metric space X . From observed data we
construct probability measures µn(· |X1, . . . , Xn) on Y . These measures play rule of
estimators for the true probability measure µθ0 .

The true parameter θ0 is estimated by an εn-estimator θ̂n ∈ Θ, i.e. fulfilling for all
θ ∈ Θ

L(µn(· |X1, . . . , Xn) ; θ̂n) < L(µn(· |X1, . . . , Xn) ; θ) + εn , (1)

where L is a given distance between measures and parameters.
Now, let us formalize the schema in a list of assumptions.

Assumption A: Spaces X , Y , Φ are metric spaces, Θ ⊂ Φ is nonempty and
F ⊂ {f : Y → R | f is measurable}, possibly empty set.

Assumption B: εn > 0 for any n ∈ N and lim
n→∞

εn = 0.

Assumption C: For any θ ∈ Θ, µθ is a Borel probability measure on Y .
We denote PΘ = {µθ | θ ∈ Θ}.

Assumption D: For any k ∈ N, we observe a random variable Xk ∈ X .

Assumption E: For any n ∈ N, x1, . . . , xn ∈ X , µn(· | x1, . . . , xn) is a Borel probability
measure on Y .
We denote Pemp = {µn(· | x1, . . . , xn) | x1, . . . , xn ∈ X , n ∈ N}.

Assumption F: The function L : (Pemp ∪ PΘ)×Θ → R is non-negative.

Assumption G: θ0 is a minimizer of the function L(µθ0 ; ·).
Assumption H: lim

n→∞
L(νn ; θ0) = L(µθ0 ; θ0) whenever νn ∈ Pemp,

νn
w−−−−→

n→+∞
µθ0 , ∀ f ∈ F : lim

n→+∞
∫

f(y)νn(dy) =
∫

f(y)µθ0(dy).

Assumption I: There is a compact set K ⊂ Θ such that

1. θ0 ∈ K.

2. lim inf
n→+∞

L(νn ; θn) ≥ L(µθ0 ; θ) whenever νn ∈ Pemp, νn
w−−−−→

n→+∞
µθ0 ,

∀ f ∈ F : lim
n→+∞

∫
f(y)νn(dy) =

∫
f(y)µθ0(dy),

θ, θn ∈ K, θn−−−−→
n→+∞

θ.

3. For any sequence of probability measures νn ∈ Pemp, νn
w−−−−→

n→+∞
µθ0 ,

∀ f ∈ F , lim
n→+∞

∫
f(y)νn(dy) =

∫
f(y)µθ0(dy) we have

lim inf
n→+∞

inf
θ∈Θ\K

L(νn ; θ) > L(µθ0 ; θ0).

These assumptions ensure the existence and consistency of the estimator.
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Lemma 1 Under B and F, an estimator θ̂n ∈ Θ fulfilling (1) exists for any n ∈ N.

Proof. Let n ∈ N. Accordingly to Assumptions F and B,

0 ≤ inf
θ∈Θ

L(µn(· |X1, . . . , Xn) ; θ) < ∞ and εn > 0 .

Hence, an θ̂n ∈ Θ fulfilling (1) exists. 2

We have to recall a few from topological terminology.

Definition 1 For a sequence ηn, n ∈ N in a metric space W , we denote the set of its
cluster points by Ls (ηn, n), i.e.

Ls (ηn, n) =

{
ψ ∈ W

∣∣∣∣ ∃ subsequence s.t. lim
n→+∞

ηkn = ψ

}
.

Definition 2 We say that a sequence ηn, n ∈ N in a metric space W is compact if each
its subsequence possesses at least one cluster point.

Compact sequence in metric space possesses an equivalent description.

Lemma 2 Let ηn, n ∈ N be a sequence in a metric space W . Then, the following state-
ments are equivalent:

1. The sequence is compact.

2. There is a compact L ⊂ W such that ηn ∈ L for all n ∈ N.

3. The set {ηn | n ∈ N} ∪ Ls (ηn, n) is compact.

General topology concept and a proof of Lemma 2 can be found in any textbook on
topology, e.g. Kelley (1955).

Now, we proceed to the main theorem of our paper.

Theorem 1 Let Ω0 ⊂ Ω, Prob (Ω0) = 1 be such that for all ω ∈ Ω0

µn(· |X1(ω), . . . , Xn(ω))
w−−−−→

n→+∞
µθ0

∀ f ∈ F : lim
n→+∞

∫
f(y)µn(dy |X1(ω), . . . , Xn(ω)) =

∫
f(y)µθ0(dy)

and Assumptions A–I be fulfilled. Then θ̂n ∈ Θ fulfilling (1) exists for any n ∈ N and for
all ω ∈ Ω0 the sequence θ̂n(ω), n ∈ N is compact and

∅ 6= Ls
(
θ̂n(ω), n

)
⊂ argmin {L(µθ0 ; θ) | |θ ∈ Θ} .



292 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 289–298

Proof.Existence of an εn-estimator is proved in previous Lemma 1.
For fixed ω ∈ Ω0, the situation became to be deterministic.

1. Assumption H implies

lim
n→+∞

L(µn(· |X1(ω), . . . , Xn(ω)) ; θ0) = L(µθ0 ; θ0).

2. Property (1) and Assumptions B, H, I imply

lim sup
n→+∞

L(µn(· |X1(ω), . . . , Xn(ω)) ; θ̂n(ω)) ≤

≤ lim
n→+∞

[
L(µn(· |X1(ω), . . . , Xn(ω)) ; θ0) + εn

]

= L(µθ0 ; θ0) < lim inf
n→+∞

inf
θ∈Θ\K

L(µn(· |X1(ω), . . . , Xn(ω)) ; θ).

Therefore, εn-estimator θ̂n(ω) ∈ K for all n ∈ N sufficiently large.

3. We have shown that θ̂n(ω) ∈ K for all n ∈ N sufficiently large. Hence the sequence
θ̂n(ω), n ∈ N is compact and possesses at least one cluster point.

4. Let η ∈ Φ be a cluster point of the sequence θ̂n(ω), n ∈ N and
lim

n→+∞
θ̂kn(ω) = η. Then η ∈ K and employing property (1) and Assumptions B,

H, G, I, we receive

L(µθ0 ; θ0) ≤ L(µθ0 ; η) ≤
≤ lim inf

n→+∞
L(µkn(· |X1(ω), . . . , Xkn(ω)) ; θ̂kn(ω))

≤ lim
n→+∞

[
L(µkn(· |X1(ω), . . . , Xkn(ω)) ; θ0) + εkn

]

≤ L(µθ0 ; θ0).

Hence,

L(µθ0 ; η) = L(µθ0 ; θ0)

and, therefore, η ∈ argmin {L(µθ0 ; θ) | θ ∈ Θ} . 2

Our proof treats any trajectory separately. Therefore, we do not need measurability of
µn(· | x1, . . . , xn) with respect to x1, . . . , xn ∈ X . Also, our definition of the εn-estimator
does not require measurability. Thus, it can happen that the estimator is not a random
variable.

3 Linear Regression
As an example illustrating the theory presented in the first section of the paper we will
discuss a linear regression model. Where, unknown regression coefficients are estimated
by an εn-M -estimator.
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We observe random couples (Y1, X1), . . . , (Yn, Xn) connected by a linear regression
model

Yi = X>
i β0 + εi ∀ i = 1, . . . , n . (2)

Where Yi ∈ R, Xi ∈ Rd are observed random variables, εi ∈ R are random errors which
are not observed and β0 ∈ Θ ⊂ Rd is deterministic but unknown parameter.

Parameter set Θ expresses our a prior information, knowledge about parameters. For
example, we know that some functions of parameters are nonnegative or having precise
value, e.g. some parameters are nonnegative or bounded by a value, some linear combi-
nations of parameters are nonnegative or having precise value, etc.

Considering relative frequencies of a sequence (y1, x1), . . . , (yn, xn), we receive a
probability measure ηn; Y,X , i.e. for any Borel subset A of Rd+1

ηn; Y,X(A | (y1, x1), . . . , (yn, xn)) =
1

n

n∑
i=1

I[(yi, xi) ∈ A].

Hence the empirical probability distribution of observed sample is

ηn; Y,X(· | (Y1, X1), . . . , (Yn, Xn)).

Unknown regression coefficients are estimated by an εn-M -estimator based on a loss
function defined by the formula

L(µ ; β) =

∫
ρ(y − x>β)µ(dy, dx). (3)

Especially, for empirical distribution we receive

L(ηn; Y,X(· | (Y1, X1), . . . , (Yn, Xn)) ; β) =

=

∫
ρ(y − x>β)ηn; Y,X(dy, dx | (Y1, X1), . . . , (Yn, Xn))

=
1

n

n∑
i=1

ρ(Yi −X>
i β).

An εn-M -estimator is β̂n ∈ Θ fulfilling for all β ∈ Θ

L(ηn; Y,X(· | (Y1, X1), . . . , (Yn, Xn)) ; β̂n) < (4)
< L(ηn; Y,X(· | (Y1, X1), . . . , (Yn, Xn)) ; β) + εn.

Now, the studied situation is fully described and we can proceed to assumptions.
Again, we consider relative frequencies of (x1, e1), . . . , (xn, en) forming a probability

measure ηn; X,ε, i.e. for any Borel subset A of Rd+1

ηn; X,ε(A | (x1, e1), . . . , (xn, en)) =
1

n

n∑
i=1

I[(xi, ei) ∈ A].

Hence the joint empirical probability distribution of covariates and errors is

ηn; X,ε(· | (X1, ε1), . . . , (Xn, εn)) .

For consistency, we assume
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Assumption J: Θ ⊂ Rd is a closed subset.

Assumption K: There is a Borel measure νX,ε defined on Rd+1 such that

ηn; X,ε(· | (X1, ε1), . . . , (Xn, εn)))
w−−−−→

n→+∞
νX,ε a.s.

Assumption L: For any β ∈ Θ

∫
ρ(e) νX,ε(dx, de) ≤

∫
ρ(e + x>(β0 − β)) νX,ε(dx, de).

Assumption M: Function ρ : R→ R is nonnegative and continuous.

Assumption N: There is a function ψ : R+ → R+ which is continuous, nondecreasing
and fulfilling:

1. ρ(t) ≤ ψ(|t|) for all t ∈ R.

2. Let for all t > 0
∫

ψ(|e|+ t‖x‖)νX,ε(dx, de) < +∞.

3. Let for all t > 0
1
n

∑n
i=1 ψ(|εi|+ t‖Xi‖) a.s.−−−−→

n→+∞
∫

ψ(|e|+ t‖x‖)νX,ε(dx, de).

Assumption O: There is ∆ > 0 such that
H = inf {ρ(t) | |t| > ∆, t ∈ R} > L(µβ0 ; β0).

Assumption P: Let νX,ε(
{
(x, e) ∈ Rd+1

∣∣ x>γ 6= 0
}
) = 1 for all γ ∈ Rd, γ 6= 0.

Theorem 2 If Assumptions B, J-P are fulfilled then β̂n ∈ Θ fulfilling (4) exists for any
n ∈ N and there is Ω0 ⊂ Ω, Prob (Ω0) = 1 such that for all ω ∈ Ω0 the sequence β̂n(ω),
n ∈ N is compact and

∅ 6= Ls
(
β̂n(ω), n

)
⊂ argmin {L(µβ0 ; θ) | |β ∈ Θ} .

Proof. We will show that this theorem is a particular case of Theorem 1.
We set X = Y = Rd+1, Φ = Rd and for any β ∈ Θ the measure µβ is defined by

µβ(A) =

∫
I[(e + x>β, x) ∈ A] νX,ε(dx, de).

As pointed functions we set

F =
{
(y, x) 7→ ψ(|y − x>β0|+ t‖x‖) | t > 0

}
.

Consider a sequence γk ∈ Rd, ‖γk‖ = 1 for all k ∈ N such that

νX,ε(
{
(x, e)

∣∣ k
∣∣x>γk

∣∣ ≥ ∆ + |e|}) < inf
‖γ‖=1

νX,ε(
{
(x, e)

∣∣ k
∣∣x>γ

∣∣ ≥ ∆ + |e|}) +
1

k
.
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The sequence lays in a compact, therefore, it contains a convergent subsequence

lim
j→+∞

γkj
= γ̂, ‖γ̂‖ = 1.

Hence

+∞⋃
J=1

+∞⋂
j=J

{
(x, e)

∣∣ kj

∣∣x>γkj

∣∣ ≥ ∆ + |e|} ⊃ {
(x, e)

∣∣ x>̂γ 6= 0
}

.

Because of Assumptions P and σ-additivity of the measure νX,ε, we have

lim
κ→+∞

inf
‖γ‖=1

νX,ε(
{
(x, e)

∣∣ κ
∣∣x>γ

∣∣ ≥ ∆ + |e|}) = 1.

Now, using Assumptions O, we are able to find Γ such that

H νX,ε(
{
(x, e)

∣∣ Γ
∣∣x>γ

∣∣ ≥ ∆ + |e|}) > L(µβ0 ; β0) ∀ ‖γ‖ = 1 .

Then, we define the required compact as

K = {β ∈ Θ | ‖β − β0‖ ≤ Γ} .

Hence, Assumptions A-E are fulfilled.

1. Loss function is non-negative since ρ is non-negative by Assumption M.

For β ∈ Θ and µ ∈ Pemp,

L(µ ; β) =
1

n

n∑
i=1

ρ(yi − x>i β) ∈ R

For β, γ ∈ Θ,

L(µγ ; β) =

∫
ρ(e + x>(γ − β)) νX,ε(dx, de) ∈ R

because of Assumption N we have

L(µγ ; β) ≤
∫

ψ(|e|+ ‖γ − β‖‖x‖) νX,ε(dx, de) < +∞.

Therefore, Assumption F is valid.

2. Assumption G is fulfilled because β0 is a minimizer of the function L(µβ0 ; •) ac-
cording to Assumption L.

3. Let νn ∈ Pemp, β, βn ∈ Θ, νn
w−−−−→

n→+∞
µβ0 , for any t > 0

lim
n→+∞

∫
ψ(|y − x>β0|+ t‖x‖)νn(dy, dx) =

∫
ψ(|y − x>β0|+ t‖x‖)µβ0(dy, dx)
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and βn−−−−→
n→+∞

β.

Let us fix ε > 0. Then there exist T, Q and a compact K̄ ⊂ Rd+1 such that

‖βn − β0‖ ≤ T for all n ∈ N,∫

ψ(|e|+T‖x‖)>Q

(ψ(|e|+ T‖x‖)−Q) νX,ε(dx, de) < ε,

νn(Rd+1 \ K̄) <
ε

Q
for all n ∈ N.

L(νn ; βn) =

∫
ρ(y − x>βn)νn(dy, dx) =

=

∫
min{Q, ρ(y − x>β)}νn(dy, dx) +

+

∫
min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx) +

+

∫

ρ(y−x>βn)>Q

(
ρ(y − x>βn)−Q

)
νn(dy, dx).

(a) The function min{Q, ρ} is bounded and continuous. Therefore,
∫

min{Q, ρ(y − x>β)}νn(dy, dx)−−−−→
n→+∞

∫
min{Q, ρ(y − x>β)}µβ0(dy, dx).

(b) The second term fulfills
∣∣∣∣
∫

min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx)

∣∣∣∣ <

< 2ε +

∣∣∣∣
∫

K̄

min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}νn(dy, dx)

∣∣∣∣
≤ 2ε + sup

(y,x)∈K̄

∣∣min{Q, ρ(y − x>βn)} −min{Q, ρ(y − x>β)}
∣∣

−−−−→
n→+∞

2ε

because ρ is continuous, Assumption M, and, hence, uniformly continuous on
each compact set.

(c) The third term is smaller than ε since

0 ≤
∫

ρ(y−x>βn)>Q

(
ρ(y − x>βn)−Q

)
νn(dy, dx)

≤
∫

ψ(|y−x>β0|+T‖x‖)>Q

(
ψ(|y − x>β0|+ T‖x‖)−Q

)
νn(dy, dx)

=

∫
ψ(|y − x>β0|+ T‖x‖)νn(dy, dx)−
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−
∫

min{Q,ψ(|y − x>β0|+ T‖x‖)}νn(dy, dx)

−−−−→
n→+∞

∫

ψ(|y−x>β0|+T‖x‖)>Q

(
ψ(|y − x>β0|+ T‖x‖)−Q

)
µβ0(dy, dx)

=

∫

ψ(|e|+T‖x‖)>Q

(ψ(|e|+ T‖x‖)−Q) νX,ε(dx, de) < ε.

We have proved

lim
n→+∞

L(νn ; βn) =

∫
ρ(y − x>β)µβ0(dy, dx) = L(µβ0 ; β).

Thus, Assumption H and the second part of Assumption I are verified.

4. Evidently, β0 ∈ K. Therefore, the third part of Assumption I must be shown, only.

Let νn ∈ Pemp, νn
w−−−−→

n→+∞
µβ0 and ε > 0.

Then, there is a bounded open set G ⊂ Rd+1 such that νX,ε(G) > 1− ε.

For β ∈ Θ, ‖β − β0‖ > Γ we receive following chain of inequalities.

L(νn ; β) =

∫
ρ(y − x>β)νn(dy, dx)

≥
∫

|y−x>β|>∆

ρ(y − x>β)νn(dy, dx)

≥ H νn

({
(y, x)

∣∣ |y − x>β| > ∆
})

≥ H νn

({
(y, x)

∣∣ |x>(β − β0)| > ∆ + |y − x>β0|
})

≥ H νn

({
(y, x)

∣∣∣∣ Γ

∣∣∣∣x>
β − β0

‖β − β0‖

∣∣∣∣ > ∆ + |y − x>β0|
})

.

For properly chosen sequence of γn, ‖γn‖ = 1 and its cluster point γ̂, we have

lim inf
n→+∞

inf
β /∈K

L(νn ; β) ≥
≥ H lim inf

n→+∞
inf
‖γ‖=1

νn

({
(y, x)

∣∣ Γ
∣∣x>γ

∣∣ > ∆ + |y − x>β0|
})

≥ H lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>γn

∣∣ > ∆ + |y − x>β0|
})

≥ H lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>̂γ

∣∣ > ∆ + |y − x>β0|+ Γ
∣∣x>(γn − γ̂)

∣∣ , (x, y − x>β0) ∈ G
})

≥ H lim inf
n→+∞

νn

({
(y, x)

∣∣ Γ
∣∣x>̂γ

∣∣ > (1 + ε)∆ + |y − x>β0|, (x, y − x>β0) ∈ G
})

≥ H µβ0(
{
(y, x)

∣∣ Γ
∣∣x>̂γ

∣∣ > (1 + ε)∆ + |y − x>β0|, (x, y − x>β0) ∈ G
}
)

= H νX,ε(
{
(x, e)

∣∣ Γ
∣∣x>̂γ∣∣ > (1 + ε)∆ + |e|, (x, e) ∈ G

}
)

> H νX,ε(
{
(x, e)

∣∣ Γ
∣∣x>̂γ

∣∣ > (1 + ε)∆ + |e|})−Hε.

Letting ε vanish we have

lim inf
n→+∞

inf
β /∈K

L(νn ; β) ≥ H νX,ε(
{
(x, e)

∣∣ Γ
∣∣x>̂γ∣∣ ≥ ∆ + |e|})

> L(µβ0 ; β0) .
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Thus, the rest of Assumption I is verified. Assumptions A - I are valid. Existence of
Ω0, Prob (Ω0) = 1 such that on it weak convergence of empirical measures and conver-
gence of integrals for all functions from F follows Assumption K, monotonicity of ψ and
Assumption N. 2

We see that this setup covers both linear regression with random covariate X and the
case of covariate X lead by a deterministic design. Nevertheless, it allows more general
structure.
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