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Abstract: Consider an unknown distribution with a symmetric unimodal
density and the induced location-scale family. We study confidence intervals
for the location parameter based on Student’s t-statistic, and we conjecture
that the uniform distribution is least favorable in that it leads to confidence in-
tervals that are largest given their coverage probability, provided the nominal
confidence level is large enough. This conjecture is supported by an argument
based on second order asymptotics in the sample size and on asymptotics in
the length of the confidence interval, by a finite sample inequality, and by
simulation results.
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1 Student’s t-Statistic
Consider a location-scale family of symmetric distributions with the mean as location
and the standard deviation as scale parameter. We are interested in confidence intervals
for the location parameter based on observations that will be viewed as realizations of
independent and identically distributed (i.i.d.) random variables from this location-scale
family. We will adopt the following notation.

Let X1, . . . , Xn be i.i.d. random variables with distribution function

P (Xi ≤ x) = Fµ,σ(x) = F

(
x− µ

σ

)
, x ∈ R , i = 1, . . . , n ,

where F = F0,1 is standardized such that

EFµ,σXi = µ , varFµ,σXi = σ2

hold.
We denote the sample mean

∑
i Xi/n by X̄n and the variance

∑
i(Xi− X̄n)2/(n− 1)

by S2
n with Sn ≥ 0. Note that the statistic

Tn(µ) =

√
n(X̄n − µ)

Sn

(1)

is the location and scale invariant Student’s t-statistic. If F equals the standard normal
distribution function Φ, then under Φ((· − µ)/σ) the t-statistic Tn(µ) has a Student t-
distribution with n − 1 degrees of freedom. It is well known that this distribution is
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called after Student, pseudonym of William Sealy Gosset, who was chemist and Brewer-
in-Charge of the Experimental Brewery of Guinness’ Brewery. Gosset determined the
density of the t-statistic from (1) under normality as

Γ(n/2)√
π(n− 1) Γ((n− 1)/2)

(
1 +

t2

n− 1

)−n/2

, t ∈ R , (2)

in Section III of his paper Student (1908).
With tn−1(p) denoting the p-th quantile of this distribution we obtain

It(X1, . . . , Xn) = [X̄n − tSn/
√

n, X̄n + tSn/
√

n] (3)

with t = tn−1(1−α/2) as a confidence interval for the location parameter µ with coverage
probability 1−α, provided the underlying distribution of the random variables generating
the observations is normal. This confidence interval is the classical, standard method for
constructing confidence intervals for location parameters. However, quite often the obser-
vations may not be viewed as stemming from normal random variables and consequently,
one is not sure then about the true coverage probability

PFµ,σ (µ ∈ It(X1, . . . , Xn)) = PF (0 ∈ It(X1, . . . , Xn))

and one is not even sure if 1−α is still a valid confidence level. The question poses itself:
‘How should t be chosen such that the interval It(X1, . . . , Xn) has confidence level at
least 1− α under all F from a given class of distributions?’ We will discuss this question
for the class of distributions with a symmetric unimodal density under the complicating
assumption that the sample size n be small. In practice, sample sizes as small as 3 are not
rare. Nevertheless, we will start with asymptotics, as n, the sample size, tends to ∞.

2 Asymptotics
By the Central Limit Theorem and the Law of Large Numbers we have

Tn(µ)
D−→ N (0, 1)

as n →∞, regardless of the underlying distribution function Fµ,σ (with finite and positive
variance). This asymptotic normality means that asymptotically the coverage probability
of It(X1, . . . , Xn) equals Φ(t)− Φ(−t), or

lim
n→∞

PFµ,σ (µ ∈ It(X1, . . . , Xn)) = 2Φ(t)− 1 , µ ∈ R , σ > 0 , t > 0 ,

irrespectively of the underlying distribution function F with finite variance. Although this
result implies that a confidence interval with approximate confidence level 1− α may be
constructed by choosing t = Φ−1(1−α/2) in It(X1, . . . , Xn), the confidence level might
be quite misleading for finite sample sizes n. A better approximate confidence interval
might be obtained by application of Edgeworth expansions for the distribution function of
Tn. In fact, this yields the following approximation, with ϕ denoting the standard normal
density.
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Theorem 2.1 Let F be symmetric and nonsingular in the sense that the part of F that is
absolutely continuous with respect to Lebesgue measure, does not vanish. If F has finite
fourth moment, then κ(F ) = EF X4(EF X2)−2 − 3, the kurtosis (excess), is well defined
and

PFµ,σ(µ ∈ It(X1, . . . , Xn)) = 2Φ(t)− 1

+
t

6n
{κ(F )(t2 − 3)− 3t2 − 3}ϕ(t) + o( 1

n
) (4)

holds uniformly in t. In other words, if the t-statistic confidence interval It(X1, . . . , Xn)
has coverage probability

PFµ,σ(µ ∈ It(X1, . . . , Xn)) = 1− α , µ ∈ R σ > 0 ,

under F , then

t = Φ−1(1− α
2
){1+ 1

12n
[−κ(F )({Φ−1(1− α

2
)}2−3)+3{Φ−1(1− α

2
)}2+3]}+o( 1

n
) . (5)

Proof Straightforward application of the Theorem of Hall (1987) yields (4). Note that
Hall’s T0 equals

√
1 + 1/(n− 1)Tn and hence his y has to be replaced by t + (2n)−1t.

Since this expansion (4) is uniform in t the second statement is implied by it. ¤
Let us assume

α < 2(1− Φ(
√

3)) = 0.0832 . (6)

Then, the right-hand side of (5) is decreasing in κ(F ). Consequently, the confidence
interval It(X1, . . . , Xn) has coverage probability at least 1 − α for all symmetric F with
finite fourth moment, if t satisfies (5) with κ(F ) minimal. Under all such distributions F
the kurtosis excess κ(F ) equals at least −2, i.e.

κ(F ) = EF X4(EF X2)−2 − 3 ≥ −2 , (7)

in view of (EF X2)2 ≤ EF X4. A generalization of this inequality to possibly asymmetric
distributions is given by Karl Pearson (1916). Equality is attained in (7) if X2 is degener-
ate, i.e. if X is Bernoulli. However, in many applications this is not a natural distribution.
Moreover, if n is small, n < 1 − log α/ log 2, then a bounded confidence interval for µ
based on Student’s t-statistic does not exist for this distribution. In fact, if P (X = 1) =
P (X = −1) = 1/2 holds, then P (Tn = ∞) = P (X1 = · · · = Xn) = 21−n > α.

In the next Section we will restrict attention to symmetric distributions F with uni-
modal density and we will determine the (distribution with) minimal value of κ(F ) within
this class of unimodal distributions.

3 As n →∞ the Uniform Distribution is Least Favorable
Our discussion will be based on the following inequality.

Theorem 3.1 Let F be a distribution with a symmetric unimodal density. If F has finite
fourth moment, then the kurtosis proper of F equals at least 9/5, which implies that the
kurtosis excess satisfies

κ(F ) ≥ −6/5 . (8)

Equality holds here, iff F is uniform.



134 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 131–141

Proof Let f be the symmetric unimodal density of F . Then f may be written as a mixture
of symmetric uniform densities. This means that there exists a probability distribution G
on (0,∞) such that

f(x) =

∫ ∞

0

1
2y

1(−y,y)(x)dG(y) (9)

holds. By this Khintchin representation of f we obtain for k = 1 or 2

EF X2k = 2

∫ ∞

0

x2k

∫ ∞

0

1
2y

1(−y,y)(x)dG(y)dx

=

∫ ∞

0

∫ y

0

1
y
x2kdxdG(y) = 1

2k+1
EGY 2k

and hence
EF X4(EF X2)−2 = 9

5
EGY 4(EGY 2)−2 ≥ 9

5

by Cauchy-Schwarz as in (7). Note that equality holds iff Y 2 is degenerate, i.e. iff X is
uniformly distributed.

A related inequality for possibly asymmetric unimodal distributions has been given
by Klaassen, Mokveld, and van Es (2000). ¤

Together with (5) inequality (8) shows that asymptotically to second order, the uni-
form distribution is least favorable in the class of symmetric unimodal distributions for
constructing confidence intervals based on Student’s t-statistic at large confidence levels.
More precisely, at fixed n and α < 0.0832 such a confidence interval is largest if the
underlying distribution is uniform. At first sight, this might seem surprising since e.g.
the normal distribution itself has heavier tails than the uniform distribution. However, (5)
seems to imply that in some sense, heavier tails in the underlying distribution of the obser-
vations result in less heavy tails for the distribution of the t-statistic and vice versa. This
conjecture and evidence for it have been around for many years; see for example p. 645
of Benjamini (1983). In fact, (5) itself is an asymptotic version of this conjecture. For
finite sample size, the situation that interests us most, this conjectured phenomenon has
been formulated precisely and proved for t →∞ by Zwet (1964b, 1964a). We will prove
in the next section that the uniform distribution is least favorable among the symmetric
unimodal distributions in that sense too.

4 As t →∞ the Uniform Distribution is Least Favorable
In this section the relative tail behavior of PF (0 6∈ It(X1, . . . , Xn)) with respect to
PH(0 6∈ It(X1, . . . , Xn)) as t → ∞, will be discussed for H being the uniform distri-
bution function.

Theorem 4.1 Let F and H be two symmetric unimodal distributions, and assume that
they are symmetric about zero. If H is uniform, then

lim
t→∞

PF (0 6∈ It(X1, . . . , Xn))

PH(0 6∈ It(X1, . . . , Xn))
≤ 1 (10)

holds.
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Proof By symmetry, the left-hand side of (10) equals

lim
t→∞

PF (Tn ≥ t)

PH(Tn ≥ t)
=

Rn(F )

Rn(H)
= 2nn

∫ ∞

0

xn−1fn(x)dx (11)

with

Rn(F ) = lim
t→∞

PF (Tn ≥ t)

PΦ(Tn ≥ t)

introduced and studied by Hotelling (1961); cf. his (3.2) and (3.6). According to Theo-
rem 6.2.1 of Zwet (1964b) Rn(H) ≥ Rn(F ) holds for F and H symmetric about 0, if
F−1(H(x)) is convex in x ∈ (0,∞). This proves the theorem, since for H uniform, this
convexity of F−1(H) is equivalent to convexity of F−1(u) in u ∈ (1

2
, 1), which in turn is

equivalent to unimodality of f .
An alternative proof may be based on (11) and the representation (9). Indeed, we have

∫ ∞

0

xn−1fn(x)dx =

∫ ∞

0

xn−1

{∫ ∞

0

1
2y

1(0,y)(x)dG(y)

}n

dx

≤
∫ ∞

0

∫ ∞

0

xn−1(2y)−n1(0,y)(x)dxdG(y) = 2−nn−1 .

¤
Studying the limit behavior of the coverage probability of the Student t-interval It(X1,

. . . , Xn) as t →∞with n fixed, we have seen that within the class of symmetric unimodal
distributions the uniform is least favorable since its coverage probability is converging to
1 at the smallest possible speed. A strengthened version of this result is presented in the
next section.

5 For t ≥ n− 1 the Uniform Distribution is Least Favor-
able

The argument in the preceding section is based on a geometric interpretation of the
t-statistic by Hotelling (1961), which has also been exploited by Efron (1969). The
strongest version of this type of result is by Benjamini (1983). His main theorem is that
for t ≥ n− 1 and for symmetric distributions F and G with

F−1(u)

G−1(u)
nondecreasing in u ∈ [1

2
, 1) (12)

the inequality
PF (0 6∈ It(X1, . . . , Xn))

PG(0 6∈ It(X1, . . . , Xn))
≤ 1 (13)

holds. As a simple corollary to this result we have the following.

Theorem 5.1 Let F and H be unimodal distributions symmetric about 0. If H is uniform,
then

PF (0 6∈ It(X1, . . . , Xn))

PH(0 6∈ It(X1, . . . , Xn))
≤ 1 , t ≥ n− 1 ,

holds.
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Proof In view of (13) it suffices to show that F is more stretched than a uniform distribu-
tion in the sense of (12); this is the terminology of Benjamini (1983). Since the quantile
function of a uniform distribution symmetric around 0 is a multiple of u 7→ u − 1

2
, this

means that it suffices to show

F−1(u)

u− 1
2

≤ F−1(v)

v − 1
2

, 1
2

< u < v < 1 . (14)

The unimodality of F yields convexity of F−1(u), 1
2
≤ u < 1, and hence for 1

2
< u <

v < 1

F−1(u) = F−1

(
v − u

v − 1
2

1

2
+

u− 1
2

v − 1
2

v

)
≤ u− 1

2

v − 1
2

F−1(v) ,

which is (14). ¤
Together with the asymptotics, both as n → ∞ for t fixed and as t → ∞ for n fixed,

this result supports the claim that the uniform distribution is least favorable. Section 6
adds some numerical evidence to this claim.

6 Simulation Results
In our Monte Carlo study we have simulated the behavior of confidence intervals based
on Student’s t-statistic under the uniform, triangular, Laplace, Cauchy, and normal distri-
bution for sample sizes n = 2, 3, 4, 5, 6, 11, and 21. This has been done by simulating 108

realizations of the t-statistic in each of these 35 cases. We report the p-quantiles of the
resulting empirical distributions of the t-statistic for p = 0.9, 0.95, and 0.975, correspond-
ing to (1 − α)-confidence intervals with α = 0.2, 0.1, and 0.05, respectively. In analogy
with the usual way of reporting a sample mean together with its sample standard error, i.e.
in analogy with the usual t-statistic confidence interval(!), we also report between brack-
ets in the tables half the length of the Φ(1) − Φ(−1) ≈ 0.68-confidence interval based
on the above empirical of the corresponding p-quantile. These results show that the third
digit in our simulated quantiles is very reliable.

The unimodal distributions used in these simulations, are ordered according to the
kurtosis (excess) κ(F ) as follows

uniform −6/5
triangular −3/5
normal 0
Laplace 3
Cauchy ∞

Straightforward computation shows that for n = 2 and p ≥ 3/4 we have

tn−1(p) = t1(p) = 1
2
(1− p)−1 − 1

under the uniform distribution, yielding in Table 1 the exact values 4, 9, and 19, respec-
tively, for n = 2. An analytic calculation as in Perlo (1933) shows that the exact values
for n = 3 are 2.073664, 3.589439, and 5.741739.
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Table 1: Uniform distribution, estimated p-th quantiles of the t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 3.9998(.0010) 9.0009(.0030) 18.9982(.0085)
3 2.0731(.0004) 3.5881(.0008) 5.7400(.0016)
4 1.6707(.0003) 2.6314(.0005) 3.8531(.0009)
5 1.5199(.0002) 2.2577(.0004) 3.1465(.0006)
6 1.4554(.0002) 2.0737(.0003) 2.7913(.0005)

11 1.3572(.0002) 1.8177(.0002) 2.2724(.0003)
21 1.3171(.0002) 1.7244(.0002) 2.1002(.0003)

Table 2: Triangular distribution, estimated p-th quantiles of the t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 3.1384(.0007) 6.5498(.0021) 13.2634(.0059)
3 1.9043(.0003) 2.9574(.0006) 4.3999(.0011)
4 1.6556(.0002) 2.3911(.0004) 3.2321(.0006)
5 1.5420(.0002) 2.1670(.0003) 2.8331(.0005)
6 1.4780(.0002) 2.0409(.0003) 2.6217(.0004)

11 1.3678(.0002) 1.8183(.0002) 2.2492(.0003)
21 1.3218(.0002) 1.7252(.0002) 2.0932(.0002)

Table 3: Laplace distribution, estimated p-th quantiles of the t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 2.5011(.0005) 5.0027(.0016) 10.0066(.0045)
3 1.7299(.0002) 2.4583(.0004) 3.4764(.0008)
4 1.5834(.0002) 2.1321(.0003) 2.7317(.0005)
5 1.5135(.0002) 1.9981(.0003) 2.4902(.0004)
6 1.4717(.0002) 1.9248(.0002) 2.3657(.0003)

11 1.3847(.0002) 1.7861(.0002) 2.1490(.0003)
21 1.3371(.0002) 1.7180(.0002) 2.0529(.0002)

In Table II on page 337 of Hotelling (1961) t2(0.975) has been computed as 3.48, in
accordance with our simulations in Table 3.

Hotelling (1961) derived t2(p) for the Cauchy distribution as (cf. his (6.41))

t2(p) = (1− 3tg2(π(2p− 1)/6))−1/2 , p ≥ 1
2

+ 3
π

arctg 1
2
,

which leads to t2(0.975) = 2.9412 in line with our results in Table 4 (note that t2(0.995) =
6.46 and not 3.69 as in (6.42) and Table II of Hotelling (1961)).

For the sake of validation of our simulation method we also compiled the Table 5,
which might be compared to the Table 6 with exact results. Indeed, our simulation results
support our claim that the uniform distribution is least favorable within the class of sym-
metric unimodal distributions and that heavier tails (in terms of κ(F )) result in smaller
quantiles for the t-statistic, at least for α = 0.05.
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Table 4: Cauchy distribution, estimated p-th quantiles of the t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 2.0825(.0004) 4.0779(.0012) 8.1157(.0036)
3 1.5342(.0002) 2.1265(.0003) 2.9412(.0007)
4 1.4241(.0002) 1.8558(.0002) 2.3551(.0004)
5 1.3769(.0002) 1.7485(.0002) 2.1475(.0003)
6 1.3506(.0001) 1.6908(.0002) 2.0417(.0003)

11 1.3018(.0001) 1.5881(.0002) 1.8618(.0002)
21 1.2793(.0001) 1.5422(.0002) 1.7849(.0002)

Table 5: Normal distribution, estimated p-th quantiles of the t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 3.0767(.0007) 6.3098(.0020) 12.7031(.0054)
3 1.8857(.0003) 2.9202(.0006) 4.3023(.0011)
4 1.6378(.0002) 2.3530(.0004) 3.1819(.0006)
5 1.5334(.0002) 2.1319(.0003) 2.7764(.0005)
6 1.4757(.0002) 2.0151(.0003) 2.5707(.0004)

11 1.3721(.0002) 1.8125(.0002) 2.2281(.0003)
21 1.3253(.0002) 1.7246(.0002) 2.0857(.0003)

Table 6: Normal distribution, exact p-th quantiles of the Student t-statistic
n p = 0.9 p = 0.95 p = 0.975
2 3.077684 6.313752 12.7062
3 1.885618 2.919986 4.302653
4 1.637744 2.353363 3.182446
5 1.533206 2.131847 2.776445
6 1.475884 2.015048 2.570582

11 1.372184 1.812461 2.228139
21 1.325341 1.724718 2.085963
∞ 1.281552 1.644854 1.959964

7 Relation to the Literature and some History
Besides deriving the t-distribution, Gosset in his paper Student (1908) already started the
discussion about the behavior of the t-statistic under nonnormality. On his page 19 he
writes: ‘If the distribution is not normal, the mean and the standard deviation of a sample
will be positively correlated, so that although both will have greater variability, yet they
will tend to counteract each other, a mean deviating largely from the general mean tending
to be divided by a larger standard deviation.’ Subsequently he states to believe that in
many practical situations distributions are sufficiently close to normal to have reliable
results via the student distribution (2), even for small sample sizes. Nevertheless, he
suggested Fisher, who in Fisher (1915) proved the validity of (2) in a mathematically
rigorous way, to also study the distribution of the t-statistic for uniformly distributed
random variables. See Lehmann (1999) for a beautiful analysis of the discussions between
Gosset, Fisher, and Egon Pearson on the Student t-statistic, its distribution, its robustness,
and the ideas on testing hypotheses.
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Over the years, many authors have derived asymptotic results as n → ∞. Based
on an asymptotic expansion of the variance Geary (1936) notes that deviation from the
Student distribution is larger for asymmetric distributions and he studies the behavior of
Student’s t under such distributions. Chung (1946) is the first to prove an Edgeworth
expansion for the distribution of the t-statistic, but Hall (1987) does so under minimal
moment conditions. Gayen (1949) computes correction terms on the Student density (2)
based on skewness and kurtosis of the underlying nonnormal distribution.

Many results have been derived for finite n as well. Benjamini (1983) studies the
conservatism of the t-test and confidence interval (3) with the value of t equal to the
quantile of the t-distribution from (2). He proves that this interval is conservative for
t ≥ n − 1 if the underlying distribution is stretched in the sense of (12) with respect
to the normal distribution. His study of (13) is based on a geometric interpretation of the
t-statistic as in Hotelling (1961). Efron (1969) presents Hotelling’s approach to the geom-
etry of the Student statistic and discusses its behavior under so-called orthant symmetry.
Hotelling (1961) derives the distribution of the t-statistic in some non-normal cases, and
he presents and studies (11). Hotelling’s geometric interpretation has predecessors in
Laderman (1939) and Rider (1929), and actually dates back to page 509 of Fisher (1915).

Hyrenius (1950) also notes that the behavior of the t-statistic under non-normal dis-
tributions varies considerably and that this shows that characterizing distributions via a
couple of parameters doesn’t suffice to predict the finite sample behavior of the t-statistic.
Bowman et al. (1977) reviews the literature up to 1977 and discusses several approximat-
ing procedures for the performance of the t-statistic under nonnormality, these procedures
depending on characteristics of the underlying distribution.

In contrast, Edelman (1990a) presents a bound on the tail probability of Student’s
t-statistic valid for all symmetric distributions, where the observations need not be identi-
cally distributed; his bound does not depend on these distributions. Furthermore, Edelman
(1990b) proves an inequality that yields a confidence interval for the location parameter
of a unimodal distribution based on just one observation. In this inequality the uniform
distribution attains equality, that is, it is least favorable.

Our approach differs somewhat from most of the literature in that we don’t try to
identify the distribution for which the normal theory t-confidence interval is conserva-
tive or liberal, but we try to identify a least favorable distribution in a natural class of
distributions, namely the class of symmetric unimodal distributions.

8 Conclusion

Consider the location problem with an unknown symmetric distribution. Confidence in-
tervals for the location parameter may be based on Student’s t-statistic. If the underlying
distribution of the observations is known to have a unimodal density this can be done in
a conservative way by assuming uniformity of the underlying distribution, if (6) holds.
In other words, if the t-value in (3) is chosen according to the third column of Table 1
then the coverage probability will be at least 2p − 1 = 1 − α = 0.95, whatever the un-
known symmetric unimodal distribution of the observations. This claim is supported by
the Edgeworth expansion of Section 2 and its consequence of Section 3, by the finite sam-
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ple analysis of the far tails in Section 4, by the finite sample analysis of the moderately
far tails in Section 5, and by the Monte Carlo results of Section 6. However, to prove this
claim we need Theorem 5.1 under a much weaker condition than t ≥ n− 1.

Standard approaches like the bootstrap (i.e. estimating F ) and empirical Edgeworth
expansion (i.e. estimating κ(F ) in (4)) are based completely on asymptotic considerations
as n →∞. Consequently, for small sample sizes these techniques are not reliable whereas
for large sample sizes the gain in efficiency as compared to our recommendation of using
the uniformity assumption, is not dramatic; compare Tables 1 and 6 and note that for
n = 21 the relative difference in interval length is less than 0.7%.
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