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Abstract: Let P = {Pθ1,θ2 , (θ1, θ2) ∈ Θ1 × Θ2} be a family of probability
measures on a measurable space (X ,A) parameterized by a pair of abstract
valued parameters θ1, θ2. A statistic T1 is called profile sufficient for θ1 if for
any fixed θ2 ∈ Θ2, T1 is sufficient for θ1.

For a dominated family P , a necessary and sufficient condition in the form of
a factorization theorem is proved for T1 to be profile sufficient for θ1 and for
a statistic T2 to be profile sufficient for θ2. The classical (Halmos - Savage)
factorization theorem is its special case corresponding to T1 = T2.

If Ti is profile sufficient for θi , i = 1, 2 and a statistic S is independent of T1

and (separately) of T2 (but S is not assumed independent of (T1, T2)) for all
θ1, θ2, then S is ancillary.

Keywords: Factorization Theorem, Ancillarity.

1 Introduction and Basic Definitions
A triple (X ,A,P) where (X ,A) is a measurable space and P = {Pθ, θ ∈ Θ} is a family
of probability measures on A, is called a model for an observation X if

Pθ(X ∈ A) = Pθ(A) , A ∈ A .

A statistic T is a map of (X ,A) into another measurable space, T : (X ,A) → (T ,B). A
statistic T is called sufficient for P (or for the parameter θ) if for every (bounded) statistic
ϕ : (X ,A) → (R, Bor) (Bor stands for the standard Borel sigma-algebra) there exists a
statistic ϕ̃ with

Eθ(ϕ|T ) = ϕ̃ .

A sufficient statistic T is often identified with the subalgebra Ã = T−1(B) of A called a
sufficient subalgebra.

The concept of sufficiency is due to Fisher and is one of the foundations of statisti-
cal inference. Many basic concepts and results (e.g., likelihood, Rao-Blackwellization,
completeness, exponential families) are directly related to sufficiency and many more are
related indirectly. For the role of sufficiency in different problems of statistical infer-
ence, see monographs of Lehmann (1986), Kagan et al. (1973) and Witting (1985). The
monograph of Huzurbazar (1976) treats sufficiency from the fiducial point of view.

Suppose that all Pθ are absolutely continuous with respect to a σ-finite measure µ (in
this case the family P is called dominated) with densities

p(x; θ) =
dPθ

dµ
(x) .
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The classical factorization theorem (Halmos and Savage, 1949) gives a necessary and
sufficient condition for a statistic T to be sufficient for P; the density p(x; θ) is to be
factorized as

p(x; θ) = R(T (x); θ)r(x) , x ∈ X , θ ∈ Θ . (1)

Being a function of T (x) simply means Ã-measurability.
In this paper a concept of profile sufficiency is introduced; it is related to sufficiency

in the same way as profile likelihood is related to likelihood.
Suppose that a family P is parameterized by a “bivariate” parameter

θ = (θ1, θ2) ∈ Θ1 ×Θ2 = Θ .

A statistic T1 : (X ,A) → (T1,B1) is called profile sufficient for θ1 if for any fixed θ2 ∈
Θ2, T1 is sufficient for the family P1 = {Pθ1,θ2 , θ1 ∈ Θ1}.

Note that profile sufficiency of T1 for θ1 is weaker that “sufficiency of T1 for θ1 in
presence of nuisance θ2”, a useful tool in constructing most powerful tests of statisti-
cal hypotheses (see, Rao, 1965 or Lehmann, 1986, Chapter 3, Problem 31)). The latter
requires that (i) T1 be profile sufficient for θ1 and (ii) the (marginal) distribution of T1

depend only on θ1.
Bondesson (1983) showed that if T1 is profile sufficient for θ1 and complete in the

Lehmann-Scheffé sense, then any statistic g(T1) with finite second moment is a uniformly
minimum variance unbiased estimator (UMVUE).

Similarly to T1, we say that T2 : (X ,A) → (T2,B2) is profile sufficient for θ2 if for
any fixed θ1 ∈ Θ1, T2 is sufficient for the family P2 = {Pθ1,θ2 , θ2 ∈ Θ2}. We shall refer
to the subalgebra Ãi = T−1

i (Bi) of A as profile sufficient for θi, i = 1, 2. A statistic
S : (X ,A) → (S, C) is called a subordinate of T if S : (T ,B) → (S, C). Less formally,
S is a subordinate of T if S = S(T ).

A statistic T̂ is called the upper subordinate of T1 and T2 if
(i) T̂ is a subordinate of Ti, i = 1, 2,
(ii) any subordinate S of Ti, i = 1, 2 is also a subordinate of T̂ .
If (i) and (ii) hold, we shall write T̂ = T1 ∧ T2. If Ãi = T−1

i (Bi), i = 1, 2 is a
subalgebra of A generated by Ti, the subalgebra generated by T̂ is Â = Ã1 ∩ Ã2.

The main result of the paper is that if P = {Pθ1,θ2 , (θ1, θ2) ∈ Θ1×Θ2} is a dominated
family of probability measures with positive densities p(x; θ1, θ2), a necessary and suffi-
cient condition for profile sufficiency of Ti for θi, i = 1, 2 is the following factorization:

p(x; θ1, θ2) = Q(T1 ∧ T2; θ1, θ2)R1(T1; θ1)R2(T2; θ2)r(x) . (2)

The first factor on the right hand side of (2) may depend on both θ1 and θ2 but, as a
function of x, is measurable with respect to the subalgebra Â generated by the upper
subordinate of the profile sufficient statistics. The second and third factors depend each
on one parameter component and, as functions of x, are Ã1- and Ã2-measurable, respec-
tively. The last factor does not contain the parameter and, as function of x, may be an
arbitrary A-measurable function. The condition

p(x; θ1, θ2) > 0 , x ∈ X , (θ1, θ2) ∈ Θ1 ×Θ2

seems technical and likely can be omitted.
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Note that if Ti is profile sufficient for θi, i = 1, 2, the pair (T1, T2) = T is sufficient for
(θ1, θ2) but the former property is much stronger. That is why the classical factorization

p(x; θ1, θ2) = R(T ; θ1, θ2)r(x) (3)

holding for some R and r when (T1, T2) is sufficient for (θ1, θ2) is a special case of (2). In
particular, if T1 = T2 = T , say, then (T1, T2) = T and (2) becomes (3). Another special
case of interest is when T1 ∧ T2 is constant, i.e., the subalgebra Â is trivial in which case
(2) takes the form of

p(x; θ1, θ2) = C(θ1, θ2)R1(T1; θ1)R2(T2; θ2)r(x) . (4)

This occurs, for example, when T1, T2 are profile sufficient and independent for all
(θ1, θ2). The subalgebra Â is trivial. Indeed, if A ∈ Â, then A = A ∩ A where the
first A is a set in Ã1 while the second is a set in Ã2 so that

Pθ1,θ2(A) = Pθ1,θ2(A ∩ A) = {Pθ1,θ2(A)}2 ,

and hence Pθ1,θ2(A) = 0 or 1.
To illustrate the concept of profile sufficiency, let

{p(x(1), x(2), x(3); θ1, θ2), (θ1, θ2) ∈ Θ1 ×Θ2}

be a family of probability densities on a measurable (product) space (X (1) × X (2) ×
X (3),A(1) ⊗A(2) ⊗A(3)).

Example 1. T1 = (x(1), x(2)) is profile sufficient for θ1, T2 = (x(2), x(3)) is profile
sufficient for θ2. Then T̂ = T1 ∧ T2 = x(2) and (2) becomes

p(x(1), x(2), x(3); θ1, θ2) =

Q(x(2); θ1, θ2)R1(x
(1), x(2); θ1)R2(x

(2), x(3); θ2)r(x
(1), x(2), x(3)) . (5)

Example 2. T1 = x(1) is profile sufficient for θ1, T2 = x(2) is profile sufficient for θ2.
In this case, T̂ = T1 ∧ T2 is constant and (2) becomes

p(x(1), x(2), x(3); θ1, θ2) = C(θ1, θ2)R1(x
(1); θ1)R2(x

(2); θ2)r(x
(1), x(2), x(3)) . (6)

Turn now to a family P = {p(x; θ), θ ∈ Θ} of product densities generated by a
sample x = (x1, . . . , xn) from a “univariate” population with density f(x; θ), i.e.,

p(x; θ) =
n∏

i=1

f(xi; θ) . (7)

If f(x; θ) belongs to an exponential family,

f(x; θ) = exp

{
M∑
i=1

ci(θ)ϕi(x) + ϕ0(x) + c0(θ)

}
, (8)
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the statistic

T = (T1, . . . , TM) , Ti(x1, . . . , xn) =
n∑

j=1

ϕi(xj) , i = 1, . . . ,M (9)

is sufficient for P . As is well known (see, e.g., Barndorff-Nielsen, 1979; Brown, 1985),
in the so called regular case the exponential families are the only source of nontrivial
sufficient statistics in product families. If θ = (θ1, θ2) and some coefficients ci(θ) in
(8) depend only on θ1, some other only on θ2 and the remaining on both θ1 and θ2, the
sufficient statistic (9) can be split into profile sufficient statistics T1, T2. Using sub- and
superscripts for convenience, assume that M = J + K + L and

cj(θ) = c
(1)
j (θ1) , j = 1, . . . , J

cJ+k(θ) = c
(2)
k (θ2) , k = 1, . . . , K

cJ+K+l(θ) = c
(12)
l (θ1, θ2) , l = 1, . . . , L .

With these notations,

p(x; θ1, θ2) =

exp

{
J∑

j=1

c
(1)
j (θ1)T

(1)
j +

K∑

k=1

c
(2)
k (θ2)T

(2)
k +

L∑

l=1

c
(12)
l (θ1, θ2)T

(12)
l +T0+nc0(θ1, θ2)

}
(10)

where

T0 =
n∑

i=1

ϕ0(xi) ; T
(1)
j = Tj , j = 1, . . . , J ;

T
(2)
k = TJ+k , k = 1, . . . , K ; T

(12)
l = TJ+K+l , l = 1, . . . , L

and T1, . . . , TJ+K+L are given in (9). On setting

T (1) = (T
(1)
1 , . . . , T

(1)
J ; T

(12)
1 , . . . , T

(12)
L ) , T (2) = (T

(2)
1 , . . . , T

(2)
K ; T

(12)
1 , . . . , T

(12)
L )

one sees from (10) that T (i) is profile sufficient for θi, i = 1, 2 and T̂ = T (1) ∧ T (2) =

(T
(12)
1 , . . . , T

(12)
L ).

Example 3. x = (x1, . . . , xn); xi = (x
(1)
i , x

(2)
i ) is a sample from a population with

density

f(x(1), x(2); θ1, θ
2) = exp

{(
θ1x

(1) + θ2x
(2)

)2
+ ϕ0(x

(1), x(2)) + c0(θ1, θ2)
}

where (θ1, θ2) ∈ R2, ϕ0(x
(1), x(2)) makes the integral

∫ ∫
f(x(1), x(2); θ1, θ2)dx(1)dx(2)

convergent and C0(θ1, θ2) makes f a probability density. The profile sufficient statistic for
θ1 is T (1)(x) =

(∑
(x

(1)
i )2,

∑
x

(1)
i x

(2)
i

)
, the profile sufficient statistic for θ2 is T (2)(x) =(∑

(x
(2)
i )2,

∑
x

(1)
i x

(2)
i

)
and T̂ (x) =

∑
x

(1)
i x

(2)
i .
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There is a relation between profile sufficiency and ancillarity. We call a family P =
{Pθ1,θ2 , (θ1, θ2) ∈ Θ1 × Θ2} linked if no two elements of P are mutually singular. If (i)
P is linked, (ii) Ti is profile sufficient for θi, i = 1, 2 and (iii) a statistic S is independent
of T1 for all (θ1, θ2) and of T2, then S is ancillary, i.e., its distribution is the same for all
(θ1, θ2). Note that independence of S of the pair (T1, T2) is not required; neither is the
family P assumed dominated.

Similarly, if P is linked and T1, T2 are profile sufficient and independent, then the
distribution of Ti depends only on θi, i = 1, 2.

In Section 2 the factorization theorem is proved and in Section 3 the relation between
profile sufficiency and ancillarity is discussed.

2 Factorization Theorem: A Necessary and Sufficient
Condition for Profile Sufficiency

We assume in this section that the elements Pθ1,θ2 of a family

P = {Pθ1,θ2 , (θ1, θ2) ∈ Θ1 ×Θ2}

of probability measures on a measurable space (X ,A) are absolutely continuous with
respect to a σ-finite measure µ and the densities

p(x; θ1, θ2) =
dPθ1,θ2

dµ
(x)

are positive,
p(x; θ1, θ2) > 0 , x ∈ X , (θ1, θ2) ∈ Θ1 ×Θ2 .

Theorem 2.1 For a statistic T1 : (X ,A) → (T1,B1) to be profile sufficient for θ1 and a
statistic T2 : (X ,A) → (T ,B2) to be profile sufficient for θ2, it is necessary and sufficient
that the following factorization hold:

p(x; θ1, θ2) = Q(T̂ (x); θ1, θ2)R1(T1(x); θ1)R2(T2(x); θ2)r(x) (11)

where T̂ = T1 ∧ T2 is the upper subordinate of T1 and T2.

In terms of subalgebras, if Ãi = T−1
i (Bi), i = 1, 2 and Â = Ã1 ∩ Ã2, the factoriza-

tion means that the first factor on the right hand side of (11), as a function of x, is Â-
measurable, the second and third factors are Ã1- and Ã2-measurable, respectively, while
the last factor is simply A-measurable but does not depend on either parameter.

Proof. Sufficiency. Assume that (11) holds. Then for any fixed θ∗2, (11) can be written as

p(x; θ1, θ
∗
2) = R(T1(x); θ1)r1(x)

with

R(T1(x); θ1) = Q(T̂ (x); θ1, θ
∗
2)R1(T1(x); θ1) , r1(x) = R2(T2(x); θ∗2)r(x) .
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Note that since T̂ is a subordinate of T1,

Q(T̂ (x); θ1, θ
∗
2) = Q̃(T1(x); θ1) .

Hence, by virtue of the classical (Halmos-Savage) factorization theorem, T1 is profile
sufficient for θ1. ¤
Necessity. From the classical factorization theorem, profile sufficiency of T1 for θ1 and of
T2 for θ2 imply the two factorizations of p(x; θ1, θ2),

p(x; θ1, θ2) = U(T1; θ1, θ2)u(x; θ2) , (12)

p(x; θ1, θ2) = V (T2; θ1, θ2)v(x; θ1) . (13)

(Here and in what follows we are skipping the argument when it does not lead to a confu-
sion.) Dividing (12) by (13) leads to

U(T1; θ1, θ2)

V (T2; θ1, θ2)
=

v(x; θ1)

u(x; θ2)
(14)

which for θ2 = θ∗2 becomes

U(T1; θ1, θ
∗
2)

V (T2; θ1, θ∗2)
=

v(x; θ1)

u(x; θ∗2)
. (15)

Combining (14) with (15) gives

U(T1; θ1, θ2)

V (T2; θ1, θ2)

V (T2; θ1, θ
∗
2)

U(T1; θ1, θ∗2)
=

u(x; θ∗2)
u(x; θ2)

. (16)

The right hand side of (16) does not depend on θ1 and, hence, neither does the left hand
side:

U(T1; θ1, θ2)

U(T1; θ1, θ∗2)
V (T2; θ1, θ

∗
2)

V (T2; θ1, θ2)
=

U(T1; θ
∗
1, θ2)

U(T1; θ∗1, θ
∗
2)

V (T2; θ
∗
1, θ

∗
2)

V (T2; θ∗1, θ2)
(17)

whence
U(T1; θ1, θ2)

U(T1; θ1, θ∗2)
U(T1; θ

∗
1, θ

∗
2)

U(T1; θ∗1, θ2)
=

V (T2; θ1, θ2)

V (T2; θ1, θ∗2)
V (T2; θ

∗
1, θ

∗
2)

V (T2; θ∗1, θ2)
. (18)

But the left hand side of (18) is a function of T1(x) (i.e., as function of x, is Ã1-measurable)
while the right hand side is a function of T2(x) (i.e., Ã2-measurable). Thus, they both are
functions of T̂ (x) = T1(x) ∧ T2(x), i.e., Â-measurable. On setting

Q1(T̂ ; θ1, θ2) =
V (T2; θ1, θ2)

V (T1; θ1, θ∗2)
V (T2; θ

∗
1, θ

∗
2)

V (T2; θ∗1, θ2)
(19)

one gets from (18)

U(T1; θ1, θ2) = Q1(T̂ ; θ1, θ2)U(T1; θ1, θ
∗
2)U(T1; θ

∗
1, θ2)/U(T1; θ

∗
1, θ

∗
2) (20)

that combined with (12) results in

p(x; θ1, θ2) = Q1(T̂ ; θ1, θ2)Ũ(T1; θ1)ũ(x; θ2) (21)
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with

Ũ(T1; θ1) = U(T1; θ1, θ
∗
2) ,

ũ(x; θ2) = u(x; θ2)U(T1; θ
∗
1, θ2)/U(T1; θ

∗
1, θ

∗
2) .

By exchanging θ1 and θ2 and proceeding as above, one comes to

p(x; θ1, θ2) = Q2(T̂ ; θ1, θ2)Ṽ (T2; θ2)ṽ(x; θ1) (22)

with Ṽ and ṽ obtained from Ũ and ũ by replacing U with V , u with v, T1 with T2 and θ1

with θ2 (actually, the explicit form of the functions on the right hand sides of (21), (22)
does not matter; only their arguments count). Now dividing (21) by (22) gives us

Q1(T̂ ; θ1, θ2)ũ(x; θ2)

Q2(T̂ ; θ1, θ2)Ṽ (T2; θ2)
=

ṽ(x; θ1)

Ũ(T1; θ1)
. (23)

Since the right hand side of (23) does not depend on θ2, neither does the left hand side
and thus,

Q1(T̂ ; θ1, θ2)ũ(x; θ2)

Q2(T̂ ; θ1, θ2)Ṽ (T2; θ2)
=

Q1(T̂ ; θ1, θ
∗
2)ũ(x; θ∗2)

Q2(T̂ ; θ1, θ∗2)Ṽ (T2; θ∗2)

whence
ũ(x; θ2) = Q̃(T̂ (x); θ1, θ2)Ṽ (T2(x); θ2)r(x) (24)

where

Q̃(T̂ ; θ1, θ2) =
Q2(T̂ ; θ1, θ2)Q1(T̂ ; θ1, θ

∗
2)

Q1(T̂ ; θ1, θ2)Q2(T̂ ; θ1, θ∗2)
,

r(x) =
ũ(x; θ∗2)

Ṽ (T2(x); θ∗2)
.

Substituting (24) into (21) gives the sought factorization (11) with

Q(T̂ (x); θ1, θ2) = Q1(T̂ (x); θ1, θ2)Q̃(T̂ (x); θ1, θ2) ,

R1(T1(x); θ1) = Ũ(T1(x); θ1) , (25)
R2(T2(x); θ2) = Ṽ (T2(x); θ2) ,

and all the functions on the right hand sides of relations (25) are defined above. ¤
As in the classical factorization theorem, factorization (11) is not unique. For example,

one may multiply R2(T2(x); θ2) by an arbitrary function h(T2(x)) and divide r(x) by the
same function without affecting (11).

3 Profile Sufficiency and Ancillarity
Let T be sufficient for a family P = {Pθ, θ ∈ Θ}. If P is linked, i.e., no two elements
Pθ′ , Pθ′′ are mutually singular and a statistic S is independent of T for all θ ∈ Θ, then S
is ancillary. It is a well known fact.
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Note in passing that the condition that P is linked can not simply be omitted as the
following example demonstrates. Let P = {P1, P2} consists of two mutually singular
distributions so that for some A, P1(A) = 1, P2(A) = 0. Plainly, the indicator χA = T
is sufficient for P (knowing T means knowing the distribution). Let now B ⊂ A with
P1(B) > 0. Then

P1{B ∩ (T = 1)} = P1(B)P1(T = 1) , P1{B ∩ (T = 0)} = P1(B)P1(T = 0) ,

P2{B ∩ (T = 1)} = P2(B)P2(T = 1) , P2{B ∩ (T = 0)} = P2(B)P2(T = 0),

while P1(B) > 0, P2(B) = 0.

Theorem 3.1 Let P = {Pθ1,θ2 , (θ1, θ2) ∈ Θ1 × Θ2} be a linked family and Ti is pro-
file sufficient for θi, i = 1, 2. If a statistic S is independent of T1 for all (θ1, θ2) and
(separately) of T2, then S is ancillary.

Proof. From profile sufficiency of T1 for θ1 and T2 for θ2 one has for any bounded h =
h(S)

Eθ1,θ2(h|T1) = C ′(T1, θ2) a.e. Pθ1,θ2 , (26)
Eθ1,θ2(h|T2) = C ′′(T2, θ2) a.e. Pθ1,θ2 . (27)

From independence of S and T1 and (separately) of T2, (26), (27) imply

C ′(T1, θ2) = c′(θ1, θ2) a.e. Pθ1,θ2 , (28)
C ′′(T2, θ2) = c′′(θ1, θ2) a.e. Pθ1,θ2 (29)

for some c′(θ1, θ2), c′′(θ1, θ2). Let (28) hold on a set A(θ1, θ2) with Pθ1,θ2{A(θ1, θ2)} = 1.
Since P is linked, for any θ′1, θ

′′
1 , θ2,

Pθ′1,θ2
{A(θ′1, θ2)} = 1 → Pθ′′1 ,θ2

{A(θ′1, θ2)} > 0

so that due to Pθ′′1 ,θ2
{A(θ′′1 , θ2)} = 1,

Pθ′′1 ,θ2
{A(θ′1, θ2) ∩ A(θ′′1 , θ2)} > 0 .

On the intersection A(θ′1, θ2) ∩ A(θ′′1 , θ2)

C ′(T1, θ2) = c′(θ′1, θ2) = c′(θ′′1 , θ2)

proving that
c′(θ1, θ2) = c′(θ2)

does not depend on θ1. Similarly,

c′′(θ1, θ2) = c′′(θ1)

does not depend on θ1. From (26), (27) one has

Eθ1,θ2{h(S)} = c′(θ2) = c′′(θ1)

implying
Eθ1,θ2{h(S)} = const. (30)

Since (30) holds for any bounded h(S), the distribution of S does not depend on (θ1, θ2)
so that S is an ancillary statistic. ¤
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Theorem 3.2 IfP = {Pθ1,θ2 , (θ1, θ2) ∈ Θ1×Θ2} is linked and T1, T2 are profile sufficient
and independent for all (θ1, θ2), then the distribution of Ti depends only on θi, i = 1, 2.

Proof. Take an arbitrary bounded function h(T1). Since T2 is profile sufficient for θ2,

Eθ1,θ2{h(T1)|T2} = h̃(T2, θ1) .

Independence of T1 and T2 implies that there is a constant (with respect to T2) c̃(θ1, θ2)
such that

Pθ1,θ2{h̃(T2, θ1) = c̃(θ1, θ2)} = 1 .

Following the arguments used in Theorem 2 leads to

c̃(θ1, θ2) = c̃(θ1)

whence
Eθ1,θ2{h(T1)} = c̃(θ1) .

Since h is arbitrary, it means that the distribution of T1 depends only on θ1. ¤.
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