
AUSTRIAN JOURNAL OF STATISTICS

Volume 35 (2006), Number 2&3, 245–252

Insensitivity Regions and Outliers in
Mixed Models with Constraints
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Abstract: A procedure for detecting outliers in regular linear regression
models with constraints on mean value parameters is presented. A problem,
how unknown variance components influence the optimum quality of used
test statistics, is studied by sensitivity analysis. Explicit forms of insensitiv-
ity regions for testing hypotheses are given.
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1 Introduction
Let the mixed linear regression model when mean value parameters satisfy some linear
constraints be under consideration. To detect rough errors or mistakes (outliers) in obser-
vations needs a knowledge of a covariance matrix of an observation vector. If unknown
variance components occur in it, some problems arise how to recognize, whether esti-
mates or approximations of them can be used instead of their true values. Insensitivity
approach is presented in the paper.

The aim of the paper is to give a procedure how to detect outliers and to determine
proper insensitivity regions for testing hypotheses.

2 Models with Outliers
A linear regression model with constraints will be denoted as

Y ∼ Nn (Xβ,Σ) , β ∈ V = {u : b + Bu = 0} . (1)

Here Y is an n-dimensional random vector (observation vector) which is normally dis-
tributed, its mean value is E(Y) = Xβ and the covariance matrix is var(Y) = Σ. The
parametric space for β is V , β ∈ Rk is an unknown parameter, X and B are given matri-
ces of the type n× k and q × k, respectively, b ∈ Rq is a given vector.

The model (1) will be supposed to be regular, i.e., the matrix X has the full column
rank (rank(X) = k < n), Σ is positive definite (p.d.) and rank(B) = q < k.

There are several procedures to detect outliers in measurements, cf. e.g. Gnanadesikan
(1977). Here the approach given by Zvára (1989) is used. At the first step the parameter
β in the model (1) is estimated as the best linear unbiased estimator (BLUE) β̂.

Lemma 2.1. In the model (1) the BLUE β̂ of the parameter β is

β̂ = (MB′CMB′)
+X′Σ−1Y −C−1B′(BC−1B′)−1b ,

var(β̂) = C−1 −C−1B′(BC−1B′)−1BC−1 = (MB′CMB′)
+ ,

C = X′Σ−1X .
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(The symbol (MB′CMB′)
+ means the Moore-Penrose generalized inverse of the matrix

MB′CMB′ (cf. Rao and Mitra, 1971). Here MB′ = I−PB′ , PB′ = B′(B′)+.)

Proof. Proof is given, e.g. in Kubáček et al. (1995, p. 80).

The residual vector v = Y −Xβ̂ is distributed as

v ∼ Nn

[
0,Σ−X(MB′CMB′)

+X′] .

Suspicious measurements yi, i = i1, . . . , ir, can be found by testing the null hypothesis
H0 : E({v}i) = 0, i = 1, . . . , n, against the alternative hypothesis Ha : ∃i : E({v}i) 6= 0
by the help of the test statistic

T = v′[var(v)]−v ∼ χ2
n+q−k(δ1) , δ1 = E(v)′[var(v)]−E(v) .

One version of [var(v)]− is Σ−1. With respect to Scheffé (1959) it is valid

∀h ∈ Rn : |h′v| ≤
√

χ2
n+q−k(1− α)

√
h′var(v)h ⇔ v′[var(v)]−v ≤ χ2

n+q−k(1− α) ,

where χ2
n+q−k(1−α) is the (1−α) quantile of the chi-square distribution with n + q− k

degrees of freedom. Thus if

|{v}i| ≥
√

χ2
n+q−k(1− α)

√
{var(v)}ii , i ∈ {1, . . . , n}

then the ith measurement is considered to be suspicious. However χ2
n+q−k(1−α) in some

cases is rather large and therefore in practice the value u(1−α/2) (the (1−α/2)-quantile
of the normal distribution N1(0, 1)) is used instead of

√
χ2

n+q−k(1− α) > u(1− α/2).
If no suspicious large value |{v}i|, i.e., no suspicious measurement, is found, stop this

procedure. If r suspicious measurements are found, the test given in the following text is
a basis for a decision whether suspicious measurements are outliers or not. Let the model
(1) be rewritten in the form

Y ∼ Nn

[
(X,E)

(
β
∆

)
,Σ

]
, β ∈ V = {u : b + Bu = 0} , ∆ ∈ Rr , (2)

where

E = (ei1 , . . . , eir) , eij ∈ Rn , j = 1, . . . , r ,
{
eij

}
k

=

{
0, k 6= ij,
1, k = ij,

and ij is the index with suspicious large value |{v}ij |.
Lemma 2.2. The hypothesis H0 : ∆ = 0 versus Ha : ∆ 6= 0 can be tested in the model
(2) if and only if

M(XMB′) ∩M(E) = {0} ⇔ M
(
X
B

)
∩M

(
E
0

)
= {0} . (3)

(Here M(Am,n) = {Au : u ∈ Rn} is a linear subspace generated by columns of the
matrix A.)
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Proof. The hypothesis 0β + I∆ = 0 can be tested iff M ( 0
I ) ⊂M

(
X′, B′
E′, 0

)
(cf. Zvára,

1989). Thus it must be true M(E′MXMB′ ) = M(I) = Rr. Since

rank

(
MB′X

′

E′

)
= rank

(
E′MXMB′

)
+ rank(XMB′)

(cf. Rao and Mitra, 1971, p. 137), the equality rank(E′MXMB′ ) = r can be valid iff
M(XMB′) ∩M(E) = {0} (rank(E′) = r).

The equivalence (3) is implied by the following equivalence

M(XMB′) ∩M(E) = {0} ⇔ rank

(
MB′X

′

E′

)
= rank(E′) + rank(MB′X

′) ,

M
(
X
B

)
∩M

(
E
0

)
= {0} ⇔ rank

(
X, E
B, 0

)
= rank

(
X
B

)
+ rank(E) .

In both cases the equality rank(E′MXMB′ ) = rank(E′) is necessary and sufficient condi-
tion for equivalence (3).

Lemma 2.3. Let the condition (3) be fulfilled. In the model (2) BLUEs of parameters β
and ∆ are

(
β̂out

∆̂

)
=

(
β̂ − (MB′CMB′)

+X′Σ−1E∆̂[
E′ (MXMB′ΣMXMB′

)+
E

]−1

E′Σ−1(Y −Xβ̂)

)
.

Further

var(β̂out) = var(β̂) + (MB′CMB′)
+ X′Σ−1E

×
[
E′ (MXMB′ΣMXMB′

)+
E

]−1

E′Σ−1X (MB′CMB′)
+ ,

var(∆̂) =
[
E′ (MXMB′ΣMXMB′

)+
E

]−1

,

cov(β̂out, ∆̂) = −(MB′CMB′)
+X′Σ−1E

[
E′ (MXMB′ΣMXMB′

)+
E

]−1

.

Proof. At first it is to be remarked that regularity of the matrix E′(MXMB′ΣMXMB′ )
+E

is implied by the assumption (3) and rank(En,r) = r < n, respectively.
Let β0 be any solution of the equation Bβ + b = 0, i.e., β = β0 + MB′γ, γ ∈ Rk.

Thus we obtain the model without constraints

Y −Xβ0 ∼ Nn

[
(XMB′ ,E)

(
γ
∆

)
,Σ

]
, γ ∈ Rk , ∆ ∈ Rr ,

which is not regular, however the assumption (3) ensures the estimability of vectors MB′γ
and ∆. BLUEs of MB′γ and ∆ are

(
M̂B′γ

∆̂

)
=

[(
MB′X

′

E′

)
Σ−1(XMB′ ,E)

]+ (
MB′X

′Σ−1(Y −Xβ0)
E′Σ−1(Y −Xβ0)

)
.
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The covariance matrix of the estimator (β̂
′
out, ∆̂

′
)′ is

var

(
β̂out

∆̂

)
=

[(
MB′X

′

E′

)
Σ−1(XMB′ ,E)

]+

=

(
11 , 12
21 , 22

)
,

where

11 = (MB′CMB′)
+ − (MB′CMB′)

+X′Σ−1E 21 ,

12 = −(MB′CMB′)
+X′Σ−1E

[
E′ (MXMB′ΣMXMB′

)+
E

]−1

= 21 ′ ,

22 =
[
E′ (MXMB′ΣMXMB′

)+
E

]−1

,

β0 = −C−1B′(BC−1B′)−1b .

Now outliers among suspicious measurements yi, i = i1, . . . , ir, can be found by
testing the null hypothesis H0 : ∆ = 0 against the alternative hypothesis Ha : ∆ 6= 0 by
the help of the test statistic

Tout = ∆̂
′
[var(∆̂)]−1∆̂ ∼ χ2

r(δ2) , δ2 = ∆′[var(∆̂)]−1∆ .

Similarly as in the case of selection of suspicious measurements, if

|{∆}i∗| ≥
√

χ2
r(1− α)

√{
var(∆̂)

}
i∗i∗

, i∗ ∈ {i1, . . . , ir} ,

where ij is the index with suspicious measurement, then the i∗th measurement is consid-
ered to be outlier. The value u(1 − α/2) instead of

√
χ2

r(1− α) is used sometimes in
practice. Some precaution is necessary in the case

u(1− α/2)

√{
var(∆̂)

}
i∗i∗

≤
∣∣∣{∆̂}i∗

∣∣∣ ≤
√

χ2
r(1− α)

√{
var(∆̂)

}
i∗i∗

.

At the last step outliers yi∗ are omitted from realization of the observation vector Y
and the whole procedure is repeated.

Remark 2.4. It is well known that the least squares (LS) methodology leads to an effect
that outliers significantly influence estimates in a contradiction to the robust methodology
with just opposite effect. Thus in the LS-methodology an outlier can be nonsignificantly
overlapped by a residual influenced by the outlier itself.

3 Problem of Variance Components
In this section we use the insensitivity approach. For more detail we refer to Kubáček and
Kubáčková (2000), Lešanská (2001, 2002).

Let the covariance matrix in models (1), (2) be considered in the form Σ =
∑p

i=1 ϑiVi,
ϑ = (ϑ1, . . . , ϑp)

′ ∈ ϑ ⊂ Rp. Such models are called mixed models. Here except β and
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∆ also the vector parameter ϑ is unknown. V1, . . . ,Vp are known symmetric matri-
ces. The parameter space ϑ is an open set in Rp with the property that if ϑ ∈ ϑ, then∑p

i=1 ϑiVi is p.d.
If an approximation ϑ0 of the parameter ϑ is at our disposal, outliers can be detected

by the help of the procedure given in the previous section. In this case estimators are
ϑ0-locally best linear unbiased only.

However the substitution of the true value ϑ∗ by its approximation ϑ0 can destroy the
optimum quality of used statistical inference, namely the risk of tests T and Tout. Hence
the question arises which values of ϑ0 make increase of the risk of the test α not larger
than tolerable given ε. One possible solution is to find insensitivity regions Nε and Nout,ε

of all points ϑ0 = ϑ∗ + δϑ such that if ϑ0 ∈ Nε and ϑ0 ∈ Nout,ε, then the risk of tests T
and Tout, respectively, is not larger than α + ε.

Lemma 3.1. The infinitesimal approximation of T (ϑ∗ + δϑ) is

T (ϑ∗ + δϑ) ≈ T (ϑ∗) + η′(ϑ∗)δϑ ,

where

{η(ϑ∗)}i = v′(ϑ∗)
{

2Σ−1(ϑ∗)X[MB′C(ϑ∗)MB′ ]
+X′Σ−1(ϑ∗)ViΣ

−1(ϑ∗)

−Σ−1(ϑ∗)ViΣ
−1(ϑ∗)

}
v(ϑ∗) , i = 1, . . . , p .

Further

E[η′(ϑ∗)δϑ] = −a′(ϑ∗)δϑ ,

var[η′(ϑ∗)δϑ] = 2δϑ′SKδϑ ,

where
{a(ϑ∗)}i = tr

{[
MXMB′Σ(ϑ∗)MXMB′

]+
Vi

}
, i = 1, . . . , p ,

and the (i, j)th entry of the matrix SK , i, j = 1, . . . , p, is

{SK}i,j = tr
{[

MXMB′Σ(ϑ∗)MXMB′
]+

Vi

[
MXMB′Σ(ϑ∗)MXMB′

]+
Vj

}
.

Proof. Using Taylor series when the second and higher derivatives are neglected we get

T (ϑ∗ + δϑ) ≈ T (ϑ∗) +

p∑
i=1

∂T (ϑ∗)
∂ϑi

δϑi ,

{η(ϑ∗)}i =
∂T (ϑ∗)

∂ϑi

= 2v′(ϑ∗)Σ−1(ϑ∗)
∂v(ϑ∗)

∂ϑi

+ v′(ϑ∗)
∂Σ−1(ϑ∗)

∂ϑi

v(ϑ∗) .

In the following text the dependence on ϑ is not written. From equalities

∂Σ−1

∂ϑi

= −Σ−1 ∂Σ

∂ϑi

Σ−1 ,
∂Σ

∂ϑi

= Vi
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it follows

{η}i =
∂T

∂ϑi

= v′Aiv , i = 1, . . . , p ,

Ai = 2Σ−1X(MB′CMB′)
+X′Σ−1ViΣ

−1 −Σ−1ViΣ
−1 .

Thus

E [{η}i] = tr[Aivar(v)] ,

cov
[
{η}i , {η}j

]
= cov(v′Aiv,v′Ajv) = 2tr [Aivar(v)Ajvar(v)]

and the proof can be easily finished.

Let ε > 0 be a given tolerable increase of the risk α of the test T . Let δε be given as a
solution of the equation

PH0

{
T (ϑ∗) + δε ≥ χ2

n+q−k(1− α)
}

= α + ε ,

i.e.,
δε = χ2

n+q−k(1− α)− χ2
n+q−k(1− α− ε) .

The symbol PH0 means the probability in the case that the null hypothesis H0 is true. Let
t > 0 be a such real number that PH0{η′(ϑ∗)δϑ < δε} ≈ 1, i.e.,

E [η′(ϑ∗)δϑ] + t
√

var [η′(ϑ∗)δϑ] ≤ δε (4)

where t is sufficiently large. Let

Nε =
{

ϑ∗ + δϑ : E [η′(ϑ∗)δϑ] + t
√

var [η′(ϑ∗)δϑ] ≤ δε

}

be the insensitivity region for the test T . Then

ϑ∗ + δϑ ∈ Nε ⇒ PH0

{
T (ϑ∗ + δϑ) ≥ χ2

n+q−k(1− α)
} ≤ α + ε .

Theorem 3.2. The insensitivity region for the test T can be expressed as

Nε =
{

ϑ∗ + δϑ :

[
δϑ− δεD

+
t a(ϑ∗)

]′
Dt

[
δϑ− δεD

+
t a(ϑ∗)

] ≤ [
1 + a′(ϑ∗)D+

t a(ϑ∗)
]
δ2
ε

}
,

where
Dt = 2t2SK − a(ϑ∗)a′(ϑ∗) .

Proof. It is sufficient to check the inequality (4) from which it follows

t2var[η′(ϑ∗)δϑ] ≤ [δε + a′(ϑ∗)δϑ]
2

⇒ δϑ′
(
2t2SK − a(ϑ∗)a′(ϑ∗)

)
δϑ− 2δεa

′(ϑ∗)δϑ ≤ δ2
ε .

Since a(ϑ∗) ∈M(Dt) (cf. Lešanská, 2001), Nε can be written as in the statement.
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Lemma 3.3. The infinitesimal approximation of Tout(ϑ
∗ + δϑ) is

Tout(ϑ
∗ + δϑ) ≈ Tout(ϑ

∗) + η′out(ϑ
∗)δϑ ,

where

{ηout(ϑ
∗)}i = −∆̂

′
(ϑ∗)Fi∆̂(ϑ∗)− 2∆̂

′
(ϑ∗)Givout(ϑ

∗) , i = 1, . . . , p,

Fi = E′ (MXMB′Σ(ϑ∗)MXMB′
)+

Vi

(
MXMB′Σ(ϑ∗)MXMB′

)+
E ,

Gi = E′ (MXMB′Σ(ϑ∗)MXMB′
)+

ViΣ
−1(ϑ∗) ,

vout(ϑ
∗) = Y −Xβ̂out(ϑ

∗)− E∆̂(ϑ∗) .

Further

E[η′out(ϑ
∗)δϑ] = −a′out(ϑ

∗)δϑ ,

var[η′out(ϑ
∗)δϑ] = δϑ′ (4CU − 2SZ) δϑ ,

where

{aout(ϑ
∗)}i = tr(ZVi) , i = 1, . . . , p ,

{CU}i,j = tr
[(

MXMB′Σ(ϑ∗)MXMB′
)+

ViZVj

]
,

{SZ}i,j = tr(ZViZVj) , i, j = 1, . . . , p ,

and

Z =
(
MXMB′Σ(ϑ∗)MXMB′

)+
E

[
E′ (MXMB′Σ(ϑ∗)MXMB′

)+
E

]−1

E′

× (
MXMB′Σ(ϑ∗)MXMB′

)+
.

Proof. It can be proved similarly as Lemma 3.1.

Analogously as for the test T can be stated. Let δout,ε be given by

PH0

{
Tout(ϑ

∗) + δout,ε ≥ χ2
r(1− α)

}
= α + ε

⇒ δout,ε = χ2
r(1− α)− χ2

r(1− α− ε) .

Let t > 0 be a such real number that PH0{η′out(ϑ
∗)δϑ < δout,ε} ≈ 1, i.e.,

E [η′out(ϑ
∗)δϑ] + t

√
var [η′out(ϑ

∗)δϑ] ≤ δout,ε

where t is sufficiently large. Let

Nout,ε =
{

ϑ∗ + δϑ : E [η′out(ϑ
∗)δϑ] + t

√
var [η′out(ϑ

∗)δϑ] ≤ δout,ε

}

be the insensitivity region for the test Tout. Then

ϑ∗ + δϑ ∈ Nout,ε ⇒ PH0

{
Tout(ϑ

∗ + δϑ) ≥ χ2
r(1− α)

} ≤ α + ε .

Theorem 3.4. The insensitivity region for the test Tout can be expressed as

Nout,ε =
{

ϑ∗ + δϑ :
[
δϑ− δout,εD

+
out,taout(ϑ

∗)
]′

Dout,t

[
δϑ− δout,εD

+
out,taout(ϑ

∗)
]

≤ [
1 + a′out(ϑ

∗)D+
out,taout(ϑ

∗)
]
δ2
out,ε

}
,

Dout,t = t2 (4CU − 2SZ)− aout(ϑ
∗)a′out(ϑ

∗).
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4 Conclusion
Generally insensitivity regions Nε and Nout,ε are different. Moreover, Nout,ε depends on
the number of suspicious measurements.

An information on Nε and Nout,ε, respectively, enables us to decide whether approxi-
mations of ϑ can be used in statistical inference or not. Some more detailed analysis and
a numerical example exceed the scope of the paper, it is prepared a continuation.
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