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Abstract: Nonparametric maximum likelihood (NPML) estimation for ex-
ponential families with unspecified dispersion parameter φ suffers from com-
putational instability, which can lead to highly fluctuating EM trajectories
and suboptimal solutions, in particular when φ is allowed to vary over mix-
ture components. In this paper, a damped version of the EM algorithm is
proposed to cope with these problems.
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1 Introduction
Random effects have become a standard concept in statistical modelling in the last decades.
One of the most important model classes for the use of random effects is the generalized
linear model. Assume there is given a set of explanatory vectors x1, . . . , xn and a set of
observations y1, . . . , yn sampled from an exponential family distribution f(yi|β, φi) with
dispersion parameter φi. In a generalized linear model (GLM), predictors and response
are assumed to be related through a link function h,

µi ≡ E(yi|β, φi) = h(ηi) ≡ h(x′iβ) .

While the dispersion φi is fixed e.g. for the Poisson or Binomial distributions, it may be
considered as an additional model parameter for other exponential family distributions.
For instance, in case of a normal distribution N(µ, σ2), the dispersion is given by φ =
σ2. In the case of a gamma-distribution, usually written as Γ(ν, ν/µ), with shape ν and
rate ν/µ, the dispersion takes the form φ = 1/ν. The variance σ2

i = var(yi|β, φi) =
φiv(µi) depends on a function v(µi) which is entirely determined by the choice of the
particular exponential family. However, often the actual variance in the data is larger than
the variance according to this strict mean-variance relationship. Reasons for this effect,
called overdispersion, might be correlation in the data or important explanatory variables
not included in the model. In order to account for additional unexplained variability of the
individual observations, a random effect zi with density g(z) is included into the linear
predictor

ηi = β′xi + zi .

The marginal likelihood can now be approximated by a finite mixture (Laird, 1978)

L =
n∏

i=1

∫
f(yi|zi, β, φi)g(zi) dzi ≈

n∏

i=1

{
K∑

k=1

πkfik

}
, (1)
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where fik = f(yi|zk, β, φk), zk are the mass points and πk their masses. In many applica-
tions it will be sufficient to work with a constant dispersion φ ≡ φk, k = 1, . . . , K. The
log-likelihood

` = log L =
n∑

i=1

log

{
K∑

k=1

πkfik

}
(2)

can be maximized as outlined in Section 2.1. In the special case of a normally distributed
random effect, one can employ tabulated Gauss-Hermite integration points and masses for
zk and πk and consider these values as constants (Hinde, 1982). For unspecified g(·), they
have to be calculated simultaneously with the model parameters by the EM algorithm.
As in this case no parametric specification of the random effect distribution is necessary,
one refers to this method as ’Nonparametric Maximum Likelihood’ (NPML) estimation,
which was adapted to the framework of overdispersed generalized linear models by Aitkin
(1996).

Though NPML estimation via EM is generally acknowledged to be ”impressively”
stable (Aitkin, 1996), several authors have expressed concerns. The main problem is that
the marginal log-likelihood is maximized for a fixed number of components K. However,
as Böhning (1999) clearly points out, the log-likelihood is a concave functional on the set
of all discrete distributions (i.e. leaving K unspecified), but is not concave for fixed K.
Hence, depending on the choice of the EM starting values, various local maxima may be
found, and the EM trajectories may fluctuate highly, as will be demonstrated in Section
2.2. In the GLIM4 implementation, this problem is addressed by means of an additional
scaling parameter tol (Aitkin and Francis, 1995), as explained in Section 2.1.

The novel contribution of this paper is twofold. Firstly, in Section 3 we propose a
damping procedure for fitting Gaussian mixtures with equal or unequal variances, which
stabilizes the EM algorithm, alleviates the problem of EM starting point selection, and
improves in some cases the ‘optimal’ results so far obtained with classical NPML. We
use an R implementation of Aitkin’s (1996) NPML algorithm, which was adapted from
the GLIM4 functions alldist and normvar (Aitkin and Francis, 1995). Secondly, in
Section 4 we transfer the concept to the gamma distribution. EM-based NPML estimation
for gamma-distributed response had apparently never been implemented before, possibly
due to the algorithmic problems mentioned above (GLIM4 and C.A.MAN (Böhning et al.,
1992) just support the exponential distribution, i.e. ν = 1). The R code can be found at
www.nuigalway.ie/maths/je/npml.html.

2 Observing the EM Trajectories

2.1 The EM Algorithm for NPML Estimation

From the log-likelihood (2) one gets the score equations

∂`

∂β
= 0 ,

∂`

∂zk

= 0 ,
∂`

∂φk

= 0 , k = 1, . . . , K , (3)



J. Einbeck and J. Hinde 235

which turn out to be weighted versions of the single-distribution score equations (Aitkin
et al., 2005, p. 84ff, 416ff, and 457ff), with weights

wik =
πkfik∑
` π`fi`

. (4)

The weights wik can be interpreted as posterior probabilities that the observation yi comes
from component k. The score equation for the mixture proportions, [∂`−λ(

∑
πk−1)]/∂πk

= 0, gives the ML estimate π̂k =
∑

i wik/n, which is the average posterior probability for
component k. The parameters β, φk, zk, and πk can now be simultaneously estimated by
the standard EM algorithm:

Starting points Select starting values β(0), φ(0), z
(0)
k , and π

(0)
k , k = 1, . . . , K.

E-Step Adjust weights using formula (4) with current parameter estimates.

M-Step Update parameter estimates fitting a weighted GLM.

We now describe the first cycle of the algorithm in more detail. Initially, a GLM
(without random effect) is fitted, giving initial estimates β(0), η

(0)
i = x′iβ

(0), and φ(0). The
mass points are usually initialized as

z
(0)
k = d · σ(0) · gk (5)

with Gauss-Hermite quadrature points gk and masses π
(0)
k , which are tabulated in standard

references as e.g. Abramowitz and Stegun (1970). The tuning parameter d corresponds to
tol in GLIM4 and scales the starting points outwards (d > 1) or inwards (0 < d < 1). As
there is not much profit in placing starting points beyond the range of the random effect
distribution, the spread of which is captured by the initial standard deviation σ(0), we
restrict this paper to the choice 0 < d ≤ 1. For a Gaussian response distribution, σ(0) is
simply given by (φ(0))1/2, otherwise it can be calculated from the ‘residuals’ on the linear
predictor scale by [

∑
(h−1(yi)−x′iβ

(0))2/n]1/2. One obtains the extended linear predictor
for the k−th component

η
(0)
ik = η

(0)
i + z

(0)
k . (6)

For the rest of this and the following section, we constrain ourselves to the special case of
a mixture of normal models N(µk, σ

2
(k)) with dispersion φ(k) = σ2

(k), where the subscript
(k) indicates that the component variances may or may not be equal. In either case, we
compute an initial value f

(0)
ik of fik via

f
(0)
ik = f(yi|h(η

(0)
ik ), β(0), (σ(0))2) . (7)

From this one gets in an ‘initial E-Step’ the weights w
(1)
ik = π

(0)
k f

(0)
ik /

∑
` π

(0)
` f

(0)
i` , and in

the subsequent M-Step one obtains the parameter estimates by solving the score equations
(3). In practice, this is done by fitting a weighted GLM with expanded design matrix
and weights w

(1)
ik as specified above (The original design matrix X = (x1, . . . , xn)′ is

replicated K times and the replicates are joined vertically. Then, K columns are added,
where each of them has entries ‘1’ for one of the components, and zero otherwise).
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From the resulting estimates of this first cycle, say z
(1)
k , β(1), and σ

(1)
(k), one gets an

updated value f
(1)
ik = f(yi|h(x′iβ

(1) + z
(1)
k ), β(1), (σ

(1)
(k))

2). The estimated masses π
(1)
k =

∑
i w

(1)
ik /n are then used together with f

(1)
ik to update the log-likelihood (2) and the weights

(4), and so on. This is continued until the change in disparity (i.e. −2`) between the
current and previous cycle falls below a certain threshold, e.g. 0.001.

2.2 Illustrative Example: the Galaxy Data
As an example, we re-analyze the galaxy data (Postman et al., 1986), which are the reces-
sion velocities, in units of 103km/s, of 82 galaxies receding from our own. The data set,
given in increasing order, is given below.

9.172 9.350 9.483 9.558 9.775 10.227 10.406 16.084 16.170 18.419
18.552 18.600 18.927 19.052 19.070 19.330 19.343 19.349 19.440 19.473
19.529 19.541 19.547 19.663 19.846 19.856 19.863 19.914 19.918 19.973
19.989 20.166 20.175 20.179 20.196 20.215 20.221 20.415 20.629 20.795
20.821 20.846 20.875 20.986 21.137 21.492 21.701 21.814 21.921 21.960
22.185 22.209 22.242 22.249 22.314 22.374 22.495 22.746 22.747 22.888
22.914 23.206 23.241 23.263 23.484 23.538 23.542 23.666 23.706 23.711
24.129 24.285 24.289 24.366 24.717 24.990 25.633 26.960 26.995 32.065
32.789 34.279

This is a very simple data situation with a one-dimensional response and no explanatory
variables. Writing this as a random effect model, one has a set of observations y1, . . . , yn,
where yi ∼ N(zi, σ

2
i ), i = 1, . . . , n, with zi ∼ Z, where Z is left unspecified. The ex-

pectation takes the simple form µi = E(yi|zi, σ
2
i ) = zi and the marginal mixture density

is given by
∑K

k=1 πkf(y|zk, σ
2
k), where f(y|zk, σ

2
k) is a normal density with mean zk and

standard deviation σk. For fixed K, the mass points zk, the masses πk, and the standard
deviances σk can be estimated by NPML. Our particular interest is not the actual param-
eter estimates, but rather the structure of the ‘EM trajectories’, obtained by plotting the
mass points z

(j)
k over the iteration number j. In Figure 1, we show the EM trajectories for

K = 4, 5, 6, for a choice of d minimizing the disparity

−2` = −2
n∑

i=1

log

(
K∑

k=1

πkfik

)
= −n

2
log 2π +

n∑

i=1

log

(
K∑

k=1

πk

σk

exp−(yi − zk)
2

2σ2
k

)
,

and for equal and unequal standard deviations σk. The disparity values are provided in
the first column of Table 1 and 2, respectively. One observes immediately that

• For equal variances, all trajectories except the outer ones have to pass a very narrow
bottleneck in the early phase of the EM algorithm.

• For unequal variances, the trajectories in the early cycles behave erratically and
even tend to cross. The bottleneck is also visible, though less pronounced.

• The position of the final mass points seem to have ‘nothing to do’ with the position
of the starting points!

• The number of iterations for convergence can get very large for unequal variances
and a larger number of mass points.
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Table 1: Disparities for galaxy data
(equal variances)

k −2 log L

Software R R GLIM4
Damping no yes no
1 480.8 480.8 480.8
2 480.8 461.0 480.8
3 425.4 425.4 425.4
4 416.5 416.5 416.5
5 410.7 410.7 410.9
6 394.6 394.6 394.6
7 394.6 388.9 388.9

Table 2: Disparities for galaxy data
(unequal variances)

k −2 log L

Software R R GLIM4
Damping no yes no
1 480.8 480.8 480.8
2 440.7 440.7 440.7
3 407.0 407.0 407.0
4 395.4 395.4 395.4
5 380.9 380.9 392.3
6 365.2 365.2 365.2
7 363.0 359.9 363.0

(GLIM4 values in both tables from Aitkin, 2001)

Table 1 and 2 also provide the disparities as reported by Aitkin (2001), who used an
equivalent NPML implementation in GLIM4. Comparing the first with the third column in
Table 2, one notices that the disparity we obtained for the five mass-point model (380.9)
is much better than the value 392.3 given by Aitkin. To investigate this, consider Figure
2 (middle, solid line), which shows the disparity −2` as function of d. One realizes that
the optimal solution is found if and only if d is set to exactly 0.14. This can certainly be
overlooked easily, as apparently had happened. We re-checked this and fitted this model
in GLIM4, and observed exactly the same behavior. However, the same value of d does not
necessarily and generally need to lead to the same disparity in GLIM4 and R. This is not too
surprising, as small numerical differences, e.g. due to rounding, might heavily influence
the results of a chaotic system, as the ‘classical’ EM algorithm seems to be. This may
also explain why the 7-mass-point solution for equal variances with the disparity 388.9
reported by Aitkin could not be found at all by our R function using this ‘classical’ EM
algorithm. We also re-checked this in GLIM4 and could not reproduce it either, though it
certainly exists, as will be seen in the next section.

The properties of the EM trajectories seem to be not very fortunate. They suggest
that selection of starting points or d is rather a game of luck than something that can be
optimized or steered. We try to improve this situation in the next section.

3 Damping the EM Algorithm
The crux of the matter is formula (7). Note that the standard deviation actually enters
twice in f

(0)
ik , namely once by means of the extended linear predictor, and once as a dis-

tribution parameter. Consider the right middle picture in Figure 1. At iteration 0, each
of these trajectories have to be imagined as the center of a normal distribution with mean
z

(0)
k and standard deviation σ(0). Obviously, when the mixture component means are very

close, the fik get blurred and lose their discriminatory power, as do the wik as a conse-
quence as well. This is in line with results from Ma and Xu (2005), who observed that
the convergence properties of the EM algorithm deteriorate when the overlap between
components of a Gaussian mixture increases. Thus, one has to adjust the standard devi-
ations of the mixture components after extending the linear predictor. Fortunately, there
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Figure 1: EM Trajectories for galaxy data with equal (left) and unequal (right) component
standard deviations σk, k = 1, . . . , K, K = 4, 5, 6 (from top to bottom). On the right hand
side of each plot the velocities yi are depicted.
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Figure 2: Disparity −2` as a function of d for K = 4, 5, and 6 with unequal variances
(galaxy data). Solid line: undamped, dashed line: damped (see Section 3).

is an obvious way how to do that. Considering (5), one sees that the Gauss-Hermite mass
points are actually multiplied by a ‘working standard deviation’ σ

(0)
d = d ·σ(0), which has

consequentially to be used at any occurrence in the likelihood. Thus, the first point of
improvement that we propose is to set

f
(0)
ik = f(yi|h(η

(0)
i + σ

(0)
d gk), β

(0), (σ
(0)
d )2) = f(yi|h(η

(0)
i + dσ(0)gk), β

(0), d2 · φ(0)) . (8)
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Figure 3: f
(0)
ik , k = 1, . . . , K, K = 6, against velocity yi (galaxy data). Points (*)

indicate starting points z
(0)
k . Left: Traditionally extended predictor without damping,

right: damped.

Figure 3 illustrates the difference between the undamped and damped f
(0)
ik . In the fur-

ther cycles damping has to be continued, as one otherwise just would have transported the
problem from the first to the second cycle. As one has to get back to the ‘true’ likelihood
at some point, the amount of ‘damping’ effected by the parameter d has to be steadily
reduced. This can be achieved by setting at iteration j

f
(j)
ik = f(yi|h(x′iβ

(j) + z
(j)
k ), β(j), d2

j · φ(j)
(k)) , (9)

with
dj = 1− (1− d)j+1

and φ
(j)
(k) =

(
σ

(j)
(k)

)2
. Thus, one has d0 = d and dj → 1 (j →∞) for 0 < d ≤ 1, implying

that the likelihood converges to the ‘true’ (i.e. undamped) likelihood when the number of
iterations gets large. To ensure a good approximation, the minimum number of iterations
is set to ten in the current implementation. For instance for d = 0.5, one has already
d10 = 0.99951 after 10 iterations.

We now apply the method described above to the galaxy data. We show the EM trajec-
tories for a disparity-minimizing choice of d in Figure 4. One observes that, for equal and
unequal variances, the smoothness of the EM trajectories improves significantly. Fluctua-
tions are reduced and the unintuitive crossings are avoided. As a by-product, the number
of iterations necessary to achieve convergence falls significantly, for k ≥ 5 dramatically.
In some few cases (e.g. for k = 2 with equal variances) one even achieves superior solu-
tions which could not been found without damping (see Table 1 and 2).

Moreover, a crucial advantage of the new method is that the sensitivity of the optimal
solution to d is reduced, as is obvious from Figure 2. Also the previously critical 7-mass
point solution for equal variances, 388.9, is now achieved for a comfortable range of d
with width 0.22. It should be noted that we observed for the ‘damped’ EM algorithm a
tendency to get trapped in so-called likelihood spikes (Aitkin et al., 2005, p. 428; Bier-
nacki and Chretien, 2003) for unequal variances and very small values of d (see Figure
2), as the damping procedure tends to hamper the EM trajectories from leaving a spike if
they get caught in it in the first iterations. This can be avoided by setting a lower bound
for the σk (as by default in the GLIM4 macro normvar), or by allowing a small amount
of smoothing of the σk among components, e.g. using the discrete kernel from Aitchison
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Figure 4: Damped EM trajectories for galaxy data with equal (left) and unequal (right)
standard deviations σk, k = 1, . . . , K, K = 4, 5, 6 (from top to bottom).

and Aitken (1976): W (x, y|λ) = λ for y = x, and (1− λ)/(K − 1) otherwise. The latter
possibility is implemented in the R function mentioned in the introduction. However, for
a value of d leading to a stable solution, which is nearly the entire range of d as can be
seen from Figure 2, neither of these measures is necessary.

4 Example: Gamma-Model for Hospital-Stay-Data
In this section we analyze a data set taken from Rosner (2000, p. 39) which is a sample
from a larger data set collected on persons discharged from a Pennsylvania hospital as part
of a retrospective chart review of antibiotic use in hospitals. A pre-analysis uncovered that
only the covariates age and temp1 have a significant influence on the duration of hospital
stay, where temp1 denotes the first measured temperature following admission, measured
in Fahrenheit. The data set, reduced to these two covariates, is given in Table 3.

The distribution of the responses is highly skewed, as shown in Figure 5. Hence,
a gamma distribution Γ(ν, ν/µ) with density f(y|µ, ν) = (ν/µ)νyν−1eyν/µ/Γ(ν), as is
common for waiting time and duration problems, is more suitable than a normal model.
We work with a logarithmic link function, i.e. h−1(·) = log(·). Up to equation (6), NPML
works as before. The damping procedure introduced for the normal model is now adapted
straightforwardly from (8) and (9).

Since the dispersion parameter is now given by φ = 1/ν, the damped ‘working shape
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Table 3: Duration stay, age, and temperature at admission.
ID duration age temp1 ID duration age temp1 ID duration age temp1

1 5 30 99.0 10 3 50 98.0 18 4 69 98.0
2 10 73 98.0 11 9 59 97.6 19 3 47 97.0
3 6 40 99.0 12 3 4 97.8 20 7 22 98.2
4 11 47 98.2 13 8 22 99.5 21 9 11 98.2
5 5 25 98.5 14 8 33 98.4 22 11 19 98.6
6 14 82 96.8 15 5 20 98.4 23 11 67 97.6
7 30 60 99.5 16 5 32 99.0 24 9 43 98.6
8 11 56 98.6 17 7 36 99.2 25 4 41 98.0
9 17 43 98.0

F
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cy
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0
4

8

Figure 5: Histogram of duration

parameter’ at iteration j, j ≥ 0, is obtained by

ν
(j)
d =

1

d2
j

ν(j) ,

whereby the shape parameter is obtained from the initial GLM (i.e. ν(0) = 1/φ(0)) in the
initial cycle , and is estimated by

ν(j) =

∑
i,k w

(j)
ik

∑
i,k w

(j)
ik

(
yi−µ

(j)
ik

µ
(j)
ik

)2 (10)

with µ
(j)
ik = exp(x′iβ

(j) + z
(j)
k ), in the subsequent cycles. In the case of unequal shape

parameters νk, the summations in (10) are taken for fixed k.
Firstly, a simple GLM with gamma-distributed response was fitted to the hospital data,

using age and temp1 as covariates. The shape parameter was assumed to be constant over
components. This model led to a deviance of 5.785, or correspondingly, to a disparity
−2` = 135.2. Allowing for overdispersion improved this result drastically, yielding the
disparity 121.3 for three mass points. Note that, without using the damping procedure,
the disparity only fell to 134.5, as illustrated in Figure 6. Thus, the large overdispersion
in the data would not have been captured by the undamped EM algorithm.

Given the large drop in disparity for overdispersion, one could ask whether the covari-
ates are necessary at all. Fitting a GLM without covariates yields the disparity 145.3. The
best overdispersed model is then a four mass point model with disparity 136.7 (damped)
or 137.4 (undamped). However, the disparity 136.7 is still worse than the value 121.3



242 Austrian Journal of Statistics, Vol. 35 (2006), No. 2&3, 233–243

0.0 0.2 0.4 0.6 0.8 1.0

12
5

13
0

13
5

d 

−
2l

og
L 

Figure 6: Dependence of disparity on d for 3-mass-point model with covariates (solid:
undamped, dotted: damped)

obtained in the presence of covariates, meaning that age and temp1 are still relevant when
overdispersion is properly modelled.

By analogy to the unequal variances for the normal model, one can fit a model with
unequal shape parameters. However, this turns out to be very unstable, as likelihood
spikes occur here as well, with the shape parameter tending to infinity. Thus, smoothing
across the component shape parameters with a discrete kernel here is not simply a minor
improvement, but is essential to enable convergence (whether damping is applied or not).
The best solution without covariates was achieved by a damped four mass point fit with
smoothing parameter λ = 0.9, yielding −2` = 135.3 and shape parameters 14.5, 44.4,
30.8, 35.8. For comparison, the overall shape parameter for a four mass point model is
21.9, and for the null model 2.26.

5 Conclusion

We have set up some guidelines on how to perform NPML estimation for exponential
families with unknown dispersion parameter and illustrated them by means of the normal
and gamma model. There seems to be no reason why the introduced techniques should
not be applied to other exponential family distributions, as e.g. Inverse Gaussian IG(µ, λ),
where the dispersion parameter is given by φ = 1/λ. The damping procedure would then
be applied on λ just as was outlined for the shape parameter of the gamma distribution.
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