
AUSTRIAN JOURNAL OF STATISTICS

Volume 35 (2006), Number 2&3, 105–120

Uniform in Bandwidth Consistency of Local Polynomial
Regression Function Estimators

Julia Dony1, Uwe Einmahl1, and David M. Mason2

1Vrije Universiteit Brussel, Belgium
2University of Delaware, U.S.A.

Abstract: We generalize a method for proving uniform in bandwidth con-
sistency results for kernel type estimators developed by the two last named
authors. Such results are shown to be useful in establishing consistency of
local polynomial estimators of the regression function.

Keywords: Consistent Estimators, Kernels, Density, Local Polynomial Ap-
proach.

1 Introduction
Let X, X1, X2, . . . be i.i.d. Rd (d ≥ 1) valued random variables and assume that the
common distribution function of these variables has a Lebesgue density function, which
we shall denote by fX . A kernel K will be any measurable function which satisfies the
following conditions:

(K.i)
∫

Rd

K(s)ds = 1 , and

(K.ii) ‖K‖∞ := sup
x∈Rd

|K(x)| = κ < ∞ .

The kernel density estimator of fX based upon the sample X1, . . . , Xn and bandwidth
0 < h < 1 is

f̂n,h(x) :=
1

nh

n∑
i=1

K

(
x−Xi

h1/d

)
, x ∈ Rd .

It is well known that if one chooses a suitable bandwidth sequence hn → 0 and the density
fX is continuous, one obtains a strongly consistent estimator f̂n := f̂n,hn of fX , i.e. one
has with probability 1, f̂n(x) → fX(x), x ∈ Rd. It is also natural to investigate other
modes of convergence, for instance uniform convergence and to ask what convergence
rates are feasible.

For proving such results, one usually writes the difference f̂n(x)−fX(x) as the sum of
a probabilistic term f̂n(x)−Ef̂n(x) and a deterministic termEf̂n(x)−fX(x), the so-called
bias. The order of the bias depends on smoothness properties of fX only, whereas the first
(random) term can be studied via empirical process techniques as has been pointed out by
Stute (1982a), Stute (1982b), Stute (1984) and Pollard (1984), among other authors.

Giné and Guillou (2002) (see also Deheuvels, 2000 for the one-dimensional case) have
shown that if K is a regular kernel, the density function fX is bounded and hn satisfies
the regularity conditions hn ↘ 0, hn/h2n is bounded, and

log(1/hn)/ log log n →∞ and nhn/ log n →∞ ,
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one has with probability 1,

‖f̂n − Ef̂n‖∞ = O
(√

| log hn|/nhn

)
,

where || · ||∞ denotes the supremum norm on Rd. Moreover, this rate cannot be improved.
Interestingly one does not need continuity of fX for this result. (Continuity of fX is of
course needed for controlling the bias.)

Recently, Einmahl and Mason (2005) have provided a uniform in h version of this
result, i.e., they have proved that

lim sup
n→∞

sup
c log n

n
≤h≤1

√
nh‖f̂n,h − Ef̂n,h‖∞√
| log hn| ∨ log log n

=: K(c) < ∞ . (1)

This result implies that if one chooses the bandwidth depending on the data and/or the
location x, as is usually done in practice, one has the same order of convergence as in the
case of a deterministic bandwidth sequence.

Now let Y, Y1, Y2, . . . be a sequence of r-dimensional random vectors (r ≥ 1) so that
the random vectors (X, Y ), (X1, Y1), . . . are i.i.d. with common joint Lebesgue density
function f . In this case it is also of great interest to estimate E [ψ(Y )|X = x], where
ψ : Rr → R is a suitable mapping. A possible kernel type estimator which reduces to the
classical Nadaraya-Watson estimator if r = 1, ψ(y) = y, is given by

m̂n(x, ψ) =

∑n
i=1 ψ(Yi)K((x−Xi)/hn)∑n

i=1 K((x−Xi)/hn)
. (2)

Likewise by setting in the one-dimensional case for t ∈ R, ψt(y) = I]−∞,t](y), y ∈ R, we
obtain the kernel estimator of the conditional empirical function

F (t|x) := P{Y ≤ t|X = x}
given by

F̂n(t|x) :=

∑n
i=1 1(Yi ≤ t)K((x−Xi)/hn)∑n

i=1 K((x−Xi)/hn)
.

This kernel estimator is called the conditional empirical distribution function and was
first extensively studied by Stute (1986). Exact convergence rates uniformly on compact
subsets of Rd have been obtained for both Nadaraya-Watson type estimators as in (2)
and the conditional empirical distribution function by Einmahl and Mason (2000) in the
case of deterministic bandwidth sequences. Recently, Einmahl and Mason (2005) have
established uniform in bandwidth results for these estimators which are of a similar type
as result (1). The proof of these results requires establishing a suitable version of a result
of type (1) for processes of the form

1

nh

n∑
i=1

{
ϕ(Yi)K

(
x−Xi

h1/d

)
− E

[
ϕ(Y )K

(
x−Xi

h1/d

)]}
,

where x ∈ I (I a compact subset of Rd or I = Rd) and ϕ ∈ Φ, where Φ is a suitable class
of functions.
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For certain applications, however, this class of processes could be too small. One of
the purposes of this paper is to establish such uniform in bandwidth consistency results
for a larger class of processes. As an application of our results, we shall prove uniform
in bandwidth consistency of local polynomial regression estimators. Such estimators are
generalizations of the classic Nadaraya-Watson estimator (see, especially, Fan and Gi-
jbels, 1996 and Tsybakov, 2004). In Section 2 we will state two general consistency
results, one of which will be proved in Section 3. In Section 4 we treat the local polyno-
mial regression estimators. In an appendix we gather together some facts needed in our
proofs.

2 General Consistency Results
We shall begin by stating a result proved in Einmahl and Mason (2005), which will be
instrumental in establishing uniform in bandwidth consistency of local polynomial regres-
sion function estimators. Let Φ denote a class of measurable functions on Rr with a finite
valued measurable envelope function F ,

F (y) ≥ sup
ϕ∈Φ

|ϕ(y)| , y ∈ Rr .

Further assume that Φ is pointwise measurable and satisfies (A.2) in the Appendix with
G replaced by Φ. (For the definition of pointwise measurable also refer to the Appendix.)
Consider the following class of functions

K =
{
K((x− ·)/h1/d) : h > 0 , x ∈ Rd

}
, (3)

and assume that K is pointwise measurable and satisfies (A.2) with G replaced by K.
Introduce the class of continuous functions on a compact subset J of Rd indexed by Φ:

C := {cϕ : ϕ ∈ Φ} .

We shall always assume that the class C is relatively compact with respect to the sup-norm
topology, which by the Arzela-Ascoli theorem is equivalent to being uniformly bounded
and uniformly equicontinuous.

For any ϕ ∈ Φ and continuous functions cϕ on a compact subset J of Rd, set for
x ∈ J ,

ηϕ,n,h(x) =
n∑

i=1

cϕ(x)ϕ(Yi)K

(
x−Xi

h1/d

)
,

where K is a kernel with support contained in [−1/2, 1/2]d such that (K.i) and (K.ii)
hold. The following result was proved in Einmahl and Mason (2005), where it is stated
as Proposition 2. (‖·‖I denotes the supremum norm on I .)

Theorem 1. Let I be a compact subset of Rd such that J = Iη, for some 0 < η < 1.
Also assume that

f is continuous and strictly positive on J . (4)

Further assume that the envelope function F of the class Φ satisfies

∃M > 0 : F (Y )1 {X ∈ J} ≤ M , a.s. (5)
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or for some p > 2

α := sup
z∈J
E[F p(Y )|X = z] < ∞ . (6)

Then we have for any c > 0 and 0 < h0 < (2η)d, with probability 1,

lim sup
n→∞

sup
c(log n/n)γ≤h≤h0

supϕ∈Φ ‖ηϕ,n,h − Eηϕ,n,h‖I√
nh (| log h| ∨ log log n)

=: Q(c) < ∞ ,

where γ = 1 in the bounded case (5) and γ = 1− 2/p under assumption (6).
The next result generalizes Theorem 1 in the bounded case. Its proof is illustrative of

how that of Theorem 1 goes using an empirical process approach based upon an inequality
of Talagrand coupled with a moment bound for the supremum of the empirical process.
These basic tools are stated in the Appendix.

In the following, || · ||∞ denotes the supremum norm on Rd or Rd+r, whichever is
appropriate. Let G denote a class of measurable real valued functions g of (u, t) ∈ Rd ×
Rr = Rd+r. We shall assume that G satisfies:

(G.i) supg∈G ||g||∞ =: κ < ∞;
(G.ii) supg∈G

∫
Rd+r g2(x, y)dxdy =: L < ∞.

Denote by FG the class of functions of (s, t) ∈ Rd+r formed from G as follows:

FG =
{
g(z − sλ, t) : λ ≥ 1 , z ∈ Rd and g ∈ G}

.

We shall also assume that the class of functionsFG satisfies the following uniform entropy
condition:

(F.i) for some C0 > 0 and ν0 > 0, N(ε,FG) ≤ C0ε
−ν0 , 0 < ε < 1.

Finally, to avoid using outer probability measures in all of our statements, we impose the
measurability assumption:

(F.ii) FG is a pointwise measurable class.
(For the definitions of pointwise measurable and of N(ε,FG) see the Appendix below,
where we use κ as our envelope function.)

For any g ∈ G and 0 < h < 1 define,

gn,h(x) := (nh)−1

n∑
i=1

g

(
x−Xi

h1/d
, Yi

)
, x ∈ Rd .

Theorem 2. Assuming (G.i), (G.ii), (F.i), (F.ii), and f (the joint density of (X,Y ))
bounded, we have for c > 0 and 0 < h0 < 1,

lim sup
n→∞

sup
c log n

n
≤h≤h0

sup
g∈G

√
nh ‖gn,h − Egn,h‖∞√
| log h| ∨ log log n

=: G(c) < ∞ . (7)

Remark. Theorem 2 is still valid for r = 0. In this case, g : Rd → Rd and condition
(G.ii) should be read as supg∈G

∫
Rd g2(x)dx =: L < ∞.
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3 Proof of Theorem 2
Let αn be the empirical process based on the sample (X1, Y1), . . . , (Xn, Yn), i.e. if ϕ :
Rd × Rr → R, we have

αn(ϕ) =
n∑

i=1

(
ϕ(Xi, Yi)− Eϕ(X,Y )

)
/
√

n .

Notice that in this notation

gn,h(x)− Egn,h(x) =
1

h
√

n
αn

(
g

(
x− ·
h1/d

, ·
))

, x ∈ Rd

so we get that

sup
g∈G

√
nh ‖gn,h − Egn,h‖∞√
| log h| ∨ log log n

= sup
g∈G

sup
x∈Rd

∣∣√nαn

(
g

(
x−·
h1/d , ·))

∣∣
√

nh (| log h| ∨ log log n)
,

where g((x − ·)/h1/d, ·) denotes the function (s, t) → g((x − s)/h1/d, t). We first note
that by (G.ii) and the assumption that ||f ||∞ < ∞,

E
[
g2

(
x−X

h1/d
, Y

)]
= h

∫

Rd

∫

Rr

h−1g2

(
x− s

h1/d
, t

)
f(s, t)dsdt

≤ h||f ||∞L .

Set for j ≥ 0 and c > 0,
hj,n :=

(
2jc log n

)
/n

and
Fj,n =

{
g((x− ·)/h1/d, ·) : g ∈ G , hj,n ≤ h ≤ hj+1,n , x ∈ Rd

}
.

Clearly for hj,n ≤ h ≤ hj+1,n,

E
[
g2

(
x−X

h1/d
, Y

)]
≤ 2hj,n||f ||∞L =: D0hj,n =: σ2

j,n .

We shall use Proposition A.1 in the Appendix to bound E‖∑n
i=1 εiϕ(Xi, Yi)‖Fj,n

. To
that end we note that each Fj,n satisfies (A.1) of the proposition with G = β = κ and
(A.3) with σ2 = σ2

j,n. Further, since Fj,n ⊂ FG , we see by (F.i) that each Fj,n also fulfills
(A.2). Finally (A.4) holds for large enough n and all j ≥ 0. Now by applying Proposition
A.1 we get for all large enough n and j ≥ 0,

E‖
n∑

i=1

εiϕ(Xi, Yi)‖Fj,n
≤ D1

√
nhj,n |log (D2hj,n)| ,

for some D1 > 0 and D2 > 0. Let for large enough n

ln := max {j : hj,n ≤ 2h0} ,
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then a little calculation shows that

ln ∼
log

(
nh0

c log n

)

log 2
. (8)

For k ≥ 1, set nk = 2k, and let

cj,k :=
√

nkhj,nk
(|log D2hj,nk

| ∨ log log nk) , j ≥ 0 .

Applying Inequality A.1 in the Appendix with

M = κ and σ2
G = σ2

Fj,nk
≤ D0hj,nk

,

we get for any t > 0,

P
{

max
nk−1≤n≤nk

||√nαn||Fj,nk
≥ A1(D1cj,k + t)

}

≤ 2
[
exp

(−A2t
2/ (D0nkhj,nk

)
)

+ exp(−A2t/κ)
]

.

Set for any ρ > 1, j ≥ 0 and k ≥ 1,

pj,k(ρ) := P
{

max
nk−1≤n≤nk

||√nαn||Fj,nk
≥ A1 (D1 + ρ) cj,k

}
.

As we have cj,k/
√

nkhj,nk
≥ √

log log nk, we readily obtain for j ≥ 0,

pj,k(ρ) ≤ 2

[
exp

(
−ρ2A2

D0

log log nk

)
+ exp

(
−
√

cρA2

κ

√
log nk log log nk

)]
,

which for γ = A2/D0 ∧
√

cA2/κ implies

pj,k(ρ) ≤ 4 exp (−ργ log log nk) .

Thus

Pk(ρ) :=

lnk
−1∑

j=0

pj,k(ρ) ≤ 4lnk
(log nk)

−ργ ,

which by (8), for all large k and large enough ρ > 1

Pk(ρ) ≤ 8 (log nk)
1−ργ = 8

(
1

k log 2

)ργ−1

≤ k−2 .

Notice that by definition of ln, for large k

2hlnk
,nk

= hlnk
+1,nk

≥ 2h0 ,

which implies that we have for nk−1 ≤ n ≤ nk

[
c log n

n
, h0

]
⊂

[
c log nk

nk

, hlnk
,nk

]
.
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Thus for all large enough k and nk−1 ≤ n ≤ nk,

Ak(ρ) :=

{
max

nk−1≤n≤nk

sup
g∈G

sup
c log n

n
≤h≤h0

√
nh‖gn,h − Egn,h‖∞√
| log h| ∨ log log n

> 2A1(D1 + ρ)

}

⊂
lnk

−1⋃
j=0

{
max

nk−1≤n≤nk

||√nαn||Fj,nk
≥ A1(D1 + ρ)cj,k

}
.

It follows now for large enough ρ that

P {Ak(ρ)} ≤ Pk(ρ) ≤ k−2 ,

which by the Borel-Cantelli lemma implies our theorem. ¤

4 Application to Local Polynomial Regression Function
Estimators

In this section we shall always assume that the assumptions of Theorem 1 hold (in partic-
ular, that K has support contained in [−1/2, 1/2]) and I is a fixed compact interval in R.
We shall also assume that K ≥ 0.

4.1 Estimating the Regression Function by Local Polynomials
Let (X, Y ), (X1, Y1), . . . , (Xn, Yn) be i.i.d. two-dimensional random vectors and write

g(x) := E [Y ||X = x]

for the regression function. Suppose that g(x) is (p + 1) times differentiable on J = Iη,
then we can approximate g(x) locally around x0 ∈ I by a polynomial of order p (Taylor):

g(x) ≈ g(x0) + gt(x0)(x− x0) + . . . +
g(p)(x0)

p!
(x− x0)

p .

Then consider the weighted least-squares regression problem (WLS)

argminβ∈Rp+1

1

nh

n∑
i=1

[
Yi −

p∑
j=0

βj(Xi − x0)
j

]2

K

(
x0 −Xi

h

)
. (9)

It is clear that if β̂ ∈ Rp+1 is the solution of the WLS problem in (9), we obtain an
estimator ĝ

(p)
n,h(x0) of g(x0) by taking it be β̂0, the first component of β̂. At the same time

we obtain estimators of the derivatives of the regression function up to order p. To solve
(9), first note that it can be written in a matrix notation:

argminβ∈Rp+1 (Y −Xx0β)t Wx0 (Y −Xx0β) ,
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where Wx0 = (nh)−1diag (K ((x0 −Xi)/h)) ∈ Rn×n, and Xx0 ∈ Rn×(p+1), Y ∈ Rn×1

and β ∈ R(p+1)×1 are defined as

Xx0 :=




1 (X1 − x0) · · · (X1 − x0)
p

...
...

...
1 (Xn − x0) · · · (Xn − x0)

p


 , Y :=




Y1
...

Yn


 , β :=




β0
...

βp


 .

If we set

L(x0) :=
1

nh

n∑
i=1

[
Yi −

p∑
j=0

βj(Xi − x0)
j

]2

K

(
x0 −Xi

h

)
,

it is not too difficult to see that for k = 0, . . . , p, the partial derivatives can be written as

∂L(x0)

∂βk

= −2(Y −Xx0β)tWx0Xx0e
t
k ,

where ek is the k-th unit vector in Rp+1. So by setting the partial derivatives equal to zero,
we obtain that the solution β̂ of the WLS problem (9) must satisfy

YtWx0Xx0 = β̂
t
Xt

x0
Wx0Xx0 .

Assuming that
Sx0 := Xt

x0
Wx0Xx0 ,

is invertible, we can compute the solution by

β̂x0
=

(
Xt

x0
Wx0Xx0

)−1
Xt

x0
Wx0Y .

We shall show that asymptotically the inverse matrix of Sx0 always exists. To see this,
consider for 0 ≤ j ≤ 2p the functions

H(j)(u) := (−u)jK(u) .

Since we assume K to be bounded with support contained in [−1/2, 1/2], we see that
each H(j) ∈ L1(R) and has support contained in [−1/2, 1/2]. Now for each j ≥ 0 define
the bounded function

φj(u) = (−u)j1 {u ∈ [−1/2, 1/2]} .

Since this function is of bounded variation, the class

{φj((x− ·)/h) : h > 0 , x ∈ R}

satisfies (A.2). (See Lemma 22 of Nolan and Pollard (1987).) Thus the classK, as defined
in (3) is assumed to be pointwise measurable and satisfies (A.2). By Lemma A.1 in the
Appendix, for each j = 0, . . . , 2p, the class

Gj :=
{
H(j)((x− ·)/h) : h > 0 , x ∈ R}
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also fulfills (A.2). Moreover, it is easily checked that each Gj is pointwise measurable.
Hence the assumptions of Theorem 2 hold and we can infer that for each 0 ≤ j ≤ 2p, and
sequence an satisfying

an ↘ 0 and nan/ log n →∞ , (10)

we have
sup
x0∈I

sup
an≤h≤h0

∣∣∣H(j)
n,h(x0)− EH

(j)
n,h(x0)

∣∣∣ → 0 , a.s. , (11)

where

H
(j)
n,h(x0) :=

1

nh

n∑
i=1

H(j)

(
x0 −Xi

h

)
.

Notice that

EH
(j)
n,h(x0) =

1

h

∫

R
H(j)

(
x0 − t

h

)
f(t)dt =: f ∗H

(j)
h (x0) ,

and since f is continuous on J = Iη with I being a compact interval, we can use Lemma
A.2 in the Appendix to get that as h ↘ 0,

sup
x0∈I

∣∣∣∣EH
(j)
n,h(x0)− f(x0)

∫

R
(−u)jK(u)du

∣∣∣∣ → 0 . (12)

Hence, it follows immediately by (11) and (12), that uniformly in x0 ∈ I and for an < bn

with an satisfying (10) and bn ↘ 0,

sup
an≤h≤bn

∣∣∣∣H
(j)
n,h(x0)− f(x0)

∫

R
(−u)jK(u)du

∣∣∣∣ → 0 , a.s.

Next consider the Hilbert space L(R, Kdλ) consisting of all the measurable functions
φ : R→ R such that ∫

R
φ2(u)K(u)du < ∞ .

As usual, φ1 = φ2 if
∫
R(φ1−φ2)

2(u)K(u)du = 0; that is, each φ ∈ L(R, Kdλ) represents
an equivalence class of functions. Now let

G :=

(∫

R
(−u)j+kK(u)du

)p,p

j=0,k=0

,

then G is the Gramian matrix of the set of functions {ϕj : ϕj(x) = (−x)j , j = 0, . . . , p}
and these functions belong to L(R, Kdλ) since K has compact support. It is known that
G is nonsingular if the functions are linearly independent. Hence, in our case, G will
always be invertible. (Here we use K ≥ 0 and 0 <

∫
RK(u)du < ∞.) To see that

Sx0 is invertible as well, recall that the function M → det M with M ∈ Mp+1(R) is
continuous, and that by (11) and (12), with probability one, the components of

Ax0 :=
(
H

(j+k)
n,h (x0)

)p,p

j=0,k=0
,
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converge uniformly in x0 ∈ I and an ≤ h ≤ bn with bn ↘ 0 to those of f(x0)G. Hence,
since we assume f to be strictly positive on J = Iη, for n large enough, uniformly in
x0 ∈ I , we have det Ax0 > 0. Now let Hp := diag{1, h, . . . , hp}, note that

Sx0 = HpAx0Hp ,

and observe that detSx0 = hp(p+1) det Ax0 , so for n large enough, uniformly in x0 ∈ I
and an ≤ h ≤ bn, Sx0 will have a positive determinant, showing that asymptotically, Sx0

is nonsingular and invertible.
From the above it follows that with probability one, for all large n, uniformly in x0 ∈ I

and an ≤ h ≤ bn, the local polynomial regression estimator of g(x0) is given by

ĝ
(p)
n,h(x0) = e1S−1

x0
Xt

x0
Wx0Y .

The difficulty is to determine S−1
x0

explicitly, especially when p becomes large. Moreover,
it is not possible to find a nice general formula for ĝ

(p)
n,h(x0), since the calculation of S−1

x0

and ĝ
(p)
n,h(x0) becomes more complex as p increases. However, we shall see in the next

section that ĝ
(p)
n,h(x0) can be easily computed for p = 0, 1, 2.

4.2 Uniform in Bandwidth Consistency

We shall now discuss uniform in bandwidth consistency of ĝ
(p)
n,h on a compact interval I .

Define the functions

f̃n,h,j(x) :=
1

nh

n∑
i=1

(
Xi − x

h

)j

K

(
x−Xi

h

)
, j = 0, . . . , 2p ,

r̃n,h,j(x) :=
1

nh

n∑
i=1

Yi

(
Xi − x

h

)j

K

(
x−Xi

h

)
, j = 0, . . . , p .

By Theorem 2,

lim sup
n→∞

sup
c log n

n
≤h≤h0

max
0≤j≤2p

√
nh

∥∥∥f̃n,h,j − Ef̃n,h,j

∥∥∥
I√

| log h| ∨ log log n
< ∞ , a.s.

and by Theorem 1 with obvious identifications and K replaced by H(j),

lim sup
n→∞

sup
c(log n/n)γ≤h≤h0

max
0≤j≤p

‖r̃n,h,j − Er̃n,h,j‖I√
nh(| log h| ∨ log log n)

< ∞ , a.s.

For j ≥ 0, set

µj :=

∫

R
(−u)jK(u)du ,

and define

fj(x) := µjfX(x) , j = 0, . . . , 2p ,

rj(x) := µj

∫

R
yf(x, y)dy , j = 0, . . . , p .
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Lemma A.2 gives (also see (12)) that for all 0 ≤ j ≤ 2p,

sup
an≤h≤bn

‖Ef̃n,h,j − fj‖∞ → 0 .

Now define the function

ϕ(x) :=

∫

R
yf(x, y)dy , x ∈ J ,

and introduce the assumption:

∀x ∈ J , lim
x′→x

f(x′, y) = f(x, y) for almost every y ∈ R.

Then by an argument based on the Lebesgue dominated convergence theorem, using as-
sumptions (4) along with (5) or (6), one readily shows that ϕ is bounded and continuous
on J . Applying Lemma A.2, we get that for all 0 ≤ j ≤ p,

sup
an≤h≤bn

‖Er̃n,h,j − rj‖I → 0 .

From these observations, we easily conclude that for all smooth functions Φ : R3p+2 →
R and suitable sequences 0 < an < bn depending on Theorem 1 and whether (5) or (6)
holds, with probability 1,

sup
an≤h≤bn

∥∥∥Φ
(
f̃n,h,0, . . . , f̃n,h,2p, r̃n,h,0, . . . , r̃n,h,p

)
− Φ (f0, . . . , f2p, r0, . . . , rp)

∥∥∥
I
→ 0 .

(13)
When (5) is in force, we assume that an satisfies (10), and when (6) holds that an =
c(log n/n)γ for γ > 1.

Calculation for p = 0. In this case we get the usual Nadaraya-Watson regression esti-
mator:

ĝ
(0)
n,h(x0) =

∑n
i=1 YiK

(
x0−Xi

h

)
∑n

i=1 K
(

x0−Xi

h

) =
r̃n,h,0(x0)

f̃n,h,0(x0)
.

So applying (13) with Φ(x1, x2) = x2/x1, we get that uniformly in x0 ∈ I ,

sup
an≤h≤bn

∥∥∥ĝ
(0)
n,h − g

∥∥∥
I
→ 0 , a.s. ,

proving the uniform in bandwidth consistency of the Nadaraya-Watson estimator.

From now on, for ease of notation we shall omit the subscripts x0, as well as the
argument (x0) in all the functions that we defined above.
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Calculation for p = 1. This is the local linear regression estimator, where S and
XtWY are given by

S =

(
nhf̃n,h,0 nh2f̃n,h,1

nh2f̃n,h,1 nh3f̃n,h,2

)
, XtWY =

(
nhr̃n,h,0

nh2r̃n,h,1

)
,

such that

S−1XtWY =
1

f̃n,h,0f̃n,h,2 − f̃ 2
n,h,1

(
f̃n,h,2r̃n,h,0 − f̃n,h,1r̃n,h,1

f̃n,h,0r̃n,h,1 − f̃n,h,1r̃n,h,0

)
.

Hence, the local linear estimator of the regression function is given by

ĝ
(1)
n,h =

f̃n,h,2r̃n,h,0 − f̃n,h,1r̃n,h,1

f̃n,h,0f̃n,h,2 − f̃ 2
n,h,1

.

So applying (13) with Φ(x1, . . . , x5) = (x3x4−x2x5)/(x1x3−x2
2), we obtain after a little

algebra based on the definitions of fj and rj , the uniform in bandwidth consistency of this
local linear estimator:

sup
an≤h≤bn

∥∥∥ĝ
(1)
n,h − g

∥∥∥
I
→ 0 , a.s.

Calculation for p = 2. As we have seen in the case p = 1, the main work in deriving
ĝ

(2)
n,h is to determine S−1. Now S is a 3× 3-matrix, so we can still write down the inverse

without difficulties. After some calculations, we obtain (disregarding nhj factors):

S−1 =

1
detS




f̃n,h,2f̃n,h,4 − f̃2
n,h,3 f̃n,h,2f̃n,h,3 − f̃n,h,1f̃n,h,4 f̃n,h,1f̃n,h,3 − f̃2

n,h,2

f̃n,h,2f̃n,h,3 − f̃n,h,1f̃n,h,4 f̃n,h,0f̃n,h,4 − f̃2
n,h,2 f̃n,h,1f̃n,h,2 − f̃n,h,0f̃n,h,3

f̃n,h,1f̃n,h,3 − f̃2
n,h,2 f̃n,h,1f̃n,h,2 − f̃n,h,0f̃n,h,3 f̃n,h,0f̃n,h,2 − f̃2

n,h,1


 ,

and

XtWY =




r̃n,h,0

r̃n,h,1

r̃n,h,2


 ,

eventually yielding
ĝ
(2)
n,h =

(f̃n,h,2f̃n,h,4 − f̃2
n,h,3)r̃n,h,0 + (f̃n,h,2f̃n,h,3 − f̃n,h,1f̃n,h,4)r̃n,h,1 + (f̃n,h,1f̃n,h,3 − f̃2

n,h,2)r̃n,h,2

f̃n,h,0f̃n,h,2f̃n,h,4 − f̃n,h,0f̃
2
n,h,3 − f̃2

n,h,1f̃n,h,4 + 2f̃n,h,1f̃n,h,2f̃n,h,3 − f̃3
n,h,2

.

So using the function

Φ(x1, . . . , x8) =
(x3x5 − x2

4)x6 + (x3x4 − x2x5)x7 + (x2x4 − x2
3)x8

x1x3x5 − x1x2
4 − x2

2x5 + 2x2x3x4 − x3
3

in (13), we infer after some algebra based on the definitions of fj and rj , the uniform in
bandwidth consistency of this local quadratic regression function estimator.
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Calculation for larger p. In principle it is possible to write down an explicit formula
for the local polynomial estimator ĝ

(p)
n (x0) for any p ≥ 0, by first computing the inverse of

Sx0 , multiplying it by Xt
x0

Wx0Y and then by taking the first component of the resulting
vector. But the difficulty lies in determining S−1

x0
.

Remark. It was pointed in Einmahl and Mason (2005) and Blondin et al. (2005) that
these methods can be used to study the uniform in bandwidth consistency of local poly-
nomial regression estimators.

5 Appendix
Let X,X1, . . . , Xn be i.i.d. from a probability space (X ,A, P ) with common distribution
µ. Let G be a pointwise measurable class of real valued functions defined on X , i.e. we
assume that there exists a countable subclass G0 of G so that we can find for any function
g in G a sequence of functions {gm} in G0 for which gm(x) → g(x), x ∈ X . (See
Example 2.3.4, van der Vaart and Wellner (1996).) Further let ε1, . . . , εn be a sequence of
independent Rademacher random variables independent of X1, . . . , Xn.

The following inequality is essentially due to Talagrand (1994) (see Einmahl and Ma-
son, 2000).

Inequality A.1 Let G be a pointwise measurable class of functions satisfying for some
0 < M < ∞

||g||∞ ≤ M , g ∈ G ,

then for all t > 0 we have for suitable finite constants A1, A2 > 0,

P

{
max

1≤m≤n
||√mαm||G ≥ A1

(
E||

n∑
i=1

εig(Xi)||G + t

)}

≤ 2(exp(−A2t
2/nσ2

G) + exp(−A2t/M)) ,

where σ2
G = supg∈G V ar(g(X)).

It enables us to reduce many problems on almost sure convergence to investigating the
moment quantity

µn := E||
n∑

i=1

εig(Xi)||G .

The following proposition proved in Einmahl and Mason (2000) is very helpful for
obtaining bounds on this quantity, when the class G has a polynomial covering number.
Let G be a finite valued measurable function satisfying for all x ∈ X

G(x) ≥ sup
g∈G

|g(x)| ,

and define
N(ε,G) := sup

Q
N

(
ε
√

Q(G2),G, dQ

)
,
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where the supremum is taken over all probability measures Q on (X ,A) for which 0 <
Q(G2) < ∞ and dQ is the L2(Q)-metric. As usual N(ε,G, d) is the minimal number of
balls {g : d(g, f) < ε} of d-radius ε needed to cover G.

Proposition A.1 Let G be a pointwise measurable class of bounded functions such that
for some constants β, ν, C > 1, σ ≤ 1/(8C) and function G as above, the following four
conditions hold:

E[G2(X)] ≤ β2 ; (A.1)

N(ε,G) ≤ Cε−ν , 0 < ε < 1 ; (A.2)

σ2
0 := sup

g∈G
E[g2(X)] ≤ σ2 ; (A.3)

sup
g∈G

||g||∞ ≤ 1

2
√

ν + 1

√
nσ2/ log(β ∨ 1/σ) . (A.4)

Then we have for a universal constant A

E||
n∑

i=1

εig(Xi)||G ≤ A
√

νnσ2 log(β ∨ 1/σ) .

Another version of Proposition A.1 has been proved by Giné and Guillou (2001). For
refinements, consult Einmahl and Mason (2005) and Giné and Koltchinskii (2005).

We shall also require the following two lemmas. The first is proved in Einmahl and
Mason (2000).

Here is Lemma A.1 of Einmahl and Mason (2000).

Lemma A.1 Let F and G be two classes of real valued measurable functions on X satis-
fying

|f(x)| ≤ F (x) , f ∈ F , x ∈ X
where F is a finite valued measurable envelope function on X ;

‖ g ‖∞≤ M , g ∈ G ,

where M > 0 is a finite constant. Assume that for all p-measures Q with 0 < Q(F 2) <
∞,

N(ε
√

Q(F 2),F , dQ) ≤ C1ε
−ν1 , 0 < ε < 1 ,

and for all p-measures Q,

N(εM,G, dQ) ≤ C2ε
−ν2 , 0 < ε < 1 ,

where ν1, ν2, C1, C2 ≥ 1 are suitable constants. Then we have for all p-measures Q, with
Q(F 2) < ∞,

N(εM
√

Q(F 2),FG, dQ) ≤ C3ε
−ν1−ν2 , 0 < ε < 1 ,

for some finite constant 0 < C3 < ∞.

The next lemma can be inferred from results in Stein (1970, pp. 62-65).
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Lemma A.2. Let ϕ be a measurable function on Rd, which for some γ > 0 is bounded
and uniformly continuous on Dγ , where D is a closed subset of Rd and

Dγ =
{
x ∈ Rd : |x− y| ≤ γ , y ∈ D

}
.

Then for any L1(Rd) function H , which is equal to zero for x /∈ Id

sup
z∈D

|ϕ ∗Hh(z)− I(H)ϕ(z)| → 0 , as h ↘ 0 ,

where I(H) =
∫
Rd H(u)du and ϕ ∗Hh(z) := h−1

∫
Rd ϕ(x)H

(
h−1/d(z − x)

)
dx.
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Poincaré, 37, 503-522.
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