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Abstract: Binary-choice regression models such as probit and logit are typ-
ically estimated by the maximum likelihood method. To improve its robust-
ness, various M-estimation based procedures were proposed, which however
require bias corrections to achieve consistency and their resistance to outliers
is relatively low. On the contrary, traditional high-breakdown point methods
such as maximum trimmed likelihood are not applicable since they induce the
separation of data and thus non-identification of estimates by trimming obser-
vations. We propose a new robust estimator of binary-choice models based
on a maximum symmetrically trimmed likelihood estimator. It is proved to be
identified and consistent, and additionally, it does not create separation in the
space of explanatory variables as the existing maximum trimmed likelihood.
We also discuss asymptotic and robust properties of the proposed method and
compare all methods by means of Monte Carlo simulations.
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1 Introduction
The binary-choice regression models such as probit and logit are used to describe the
effect of explanatory variables xi ∈ Rp on a binary response variable yi ∈ {0, 1};

P (yi = 1|xi) = F (x>i β) , i = 1, . . . , n , (1)

where F is a known link function (e.g., the standard normal distribution function Φ for
probit and the logistic distribution function Λ for logit) and β ∈ Rp is a vector of un-
known parameters. Applications include estimating probability of a firm’s bankruptcy
and modelling decisions to work, retire, or have children.

Model (1) is typically estimated by maximum likelihood (MLE), which is defined by

β̂MLE = arg max
β

n∑
i=1

l(yi, xi; β) , (2)

where the log-likelihood contributions are

l(yi, xi; β) = yi log F (x>i β) + (1− yi) log{1− F (x>i β)} . (3)

This estimator is identified only if the two parts of data given by the values of the response
variable, {xi|yi = 1} and {xi|yi = 0}, are not separated in the space of explanatory
variables (Albert and Anderson, 1984). MLE is also asymptotically normal and efficient,
but it can behave rather poorly if data are contaminated (Croux et al., 2002); for example,
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if data contain misclassified observations with extreme values of explanatory variables
or exhibit an unknown form of heteroscedasticity. Several robust alternatives have been
therefore proposed and studied.

In this context, traditional robust (high-breakdown point) methods such as nonlinear
least trimmed squares (LTS; Stromberg and Ruppert, 1992; Čı́žek, 2005) and maximum
trimmed likelihood (MTLE; Müller and Neykov, 2003) are not generally applicable since,
by trimming observations, they induce the separation of data and thus non-identification
of estimates. The only exception are data sets containing large strata, where the num-
ber of observations at any observed point xi grows with sample size Christmann (1994).
Therefore, most recent results rely on M-estimation to achieve robustness: the likeli-
hood contribution function l(y, x; β) is replaced by another function φ(y, x; β), which is
bounded and possibly contains “weighting” part w(x; γ) depending only on the explana-
tory variables x and some nuisance parameters γ. Recent examples include Copas (1988),
Carroll and Pederson (1993), Bianco and Yohai (1996), Kordzakhia et al. (2001), Croux
and Haesbroeck (2003), and Gervini (2005).

The described approach based on M-estimation has in many cases two important de-
ficiencies: asymptotic bias causing inconsistency and relatively low robustness. First, the
inconsistency of these estimators was noted, e.g. in Carroll and Pederson (1993) and can
be remedied only by finding and including a bias-correction term into the objective func-
tion of a respective estimator (see e.g. Bianco and Yohai, 1996). A disadvantage stemming
from this approach lies in low flexibility of such procedures: consistent robust estimators
are often designed for logit and their adaptation to other (more flexible) models like in
Hausman et al. (1998) can require redesign of the estimation procedure. Next, the low
robustness of M-estimators to misclassified observations with extreme value of explana-
tory variables was observed and remedied, for example, by Croux and Haesbroeck (2003)
and Gervini (2005). A typical remedy unfortunately relies on simple down-weighting of
distant observations in the space of explanatory variables irrespective to whether they are
misspecified or not and to what influence they have on the model.

We propose a new robust estimator of binary-choice models. Even though it relies
on a symmetrically trimmed form of maximum likelihood estimator, it is proved to be
identified and consistent in a very general setting. Thus, it does not exhibit any asymp-
totical bias, it is widely applicable, and additionally, it does not create separation in the
space of explanatory variables as LTS and MTLE do. In the rest of this paper, we first
identify the source of non-identification of MTLE caused by trimming and motivate a so-
lution in Section 2. Further, we discuss conditions under which the proposed solution is
consistent in Section 3 and we mention some important robust properties in Section 4. Fi-
nally, we compare the proposed method with some existing solutions using Monte Carlo
simulations in Section 5.

2 Identification

Let us first demonstrate why the classical trimmed estimators such as MTLE are not cor-
rectly identified in model (1), which will later motivate our proposal. Maximum trimmed
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likelihood estimator (MTLE) is defined by

β̂(MTLE,hn) =arg max
β∈B

n∑
j=1

log l(xi, yi; β)I
(
log l(xi, yi; β)≥ log l[n−hn+1](xi, yi; β)

)
, (4)

where l[j](xi, yi; β) denotes the jth order statistics of likelihood contributions l(xi, yi; β),
i = 1, . . . , n, and hn ∈ {[n/2] + 1, . . . , n} is the trimming constant. The trimming
constant determines how many observations hn are kept in the objective function and how
many observations n − hn are excluded from estimation to protect the estimator against
errors in data. The rule used for trimming in (4) is described by the indicator function

I
(
log l(xi, yi; β) ≥ log l[n−hn+1](xi, yi; β)

)

and keeps in the objective function the hn “most likely” observations, that is, hn observa-
tions with the largest likelihood.

If MTLE as an extremum estimator is identified, the expectation of its objective func-
tion (see Čı́žek, 2004, for derivation)

IC(β) = E [log l(xi, yi; β) · I(log l(xi, yi; β) ≥ qλ(β))]

has to have a local maximum at the true value β0 of parameter vector β; qλ(β) refers
here to the λ-quantile of the distribution of log l(xi, yi; β), where λ = 1− limn→∞ hn/n.
Therefore, if the MTLE estimator is identified, the first-order conditions ∂IC(β)/∂β = 0
should hold at β0.

To verify the first-order conditions, let f denote the density function corresponding to
F in (1) and note that (3) and the law of iterated expectation implies (see Čı́žek, 2004 for
details)

∂IC(β0)

∂β
=E

[{
yif(x>i β0)

F (x>i β0)
xi − (1− yi)f(x>i β0)

1− F (x>i β0)
xi

}
I(log l(xi, yi; β0) ≥ qλ(β0))

]

=Ex

[
P (yi = 1|xi)

f(x>i β0)

F (x>i β0)
xiI(log l(xi, 1; β0) ≥ qλ(β0))

]
(5)

−Ex

[
P (yi = 0|xi)

f(x>i β0)

1− F (x>i β0)
xiI(log l(xi, 0; β0) ≥ qλ(β0))

]
(6)

=Ex

{
f(x>i β0)xi

[
I
(
log F (x>i β0) ≥ qλ(β0)

)−I
(
log{1−F (x>i β0)} ≥ qλ(β0)

)]}
.

Hence, the first-order condition is satisfied in general only if it holds for all possible values
of the random vector x that

I
(
log F (x>β0) ≥ qλ(β0)

)
= I

(
log{1− F (x>β0)} ≥ qλ(β0)

)
; (7)

that is, only in the case of the MLE objective function with no trimming, qλ(β0) = −∞
and λ = 0, and in the case of the constantly zero objective function, qλ(β0) = 0 and
λ = 1. Thus, the MTLE estimator is not identified at any λ ∈ (0, 1).

On the other hand, this derivation hints that the necessary identification condition
would hold if the rule used for trimming observations has the same form both in (5) and
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(6). In other words, the first-order condition would hold if the trimming rule is indepen-
dent of the value yi, which motivates the following proposal: instead of the log-likelihood
contributions, let us compare the minimum of the log-likelihood contributions taken over
all possible values of yi ∈ {0, 1} and trim observations with low values of

min
{
log F (x>β0), log[1− F (x>β0)]

}
.

The resulting maximum symmetrically trimmed likelihood estimator (MSTLE) is then
defined by

β̂(MSTLE,hn) = arg max
β∈B

n∑
j=1

log l(xi, yi; β) · I(
r(xi, yi; β) ≥ r[n−hn+1](xi, yi; β)

)
, (8)

where r(xi, yi; β) = min
{
log F (x>β), log[1− F (x>β)]

}
. The first-order conditions for

the local identification of the parameter estimates in model (1) are then satisfied as follows
from (5)–(6), where qλ(β) has to refer now to the λ-quantile of the distribution Gβ of
r(xi, yi; β). Complete verification of both the first-order and second-order identification
conditions is done in Čı́žek (2001).

3 Asymptotic Properties
The maximum symmetrically trimmed likelihood estimator defined by (8) can be identi-
fied in binary-choice models as argued in Section 2. In this section, we demonstrate that
it is also consistent under rather general conditions, and therefore, does not require any
asymptotic bias correction as many existing M-estimators. We first discuss the sufficient
conditions for the consistency of MSTLE and provide the corresponding theoretical result.
Later, we mention additional conditions that might be necessary to prove

√
n-consistency

and asymptotic normality of this estimator.
The assumptions sufficient for the MSTLE consistency form three groups: distribu-

tional assumptions D, assumptions F concerning the MSTLE objective function, and iden-
tification assumptions I.

D Let random variables {yi, xi}i∈N form an independent and identically distributed
sequence of random vectors with finite second moments. Further, assume that the
distribution function Gβ of r(xi, yi; β) is absolutely continuous with density gβ for
any β ∈ B and that it holds for mG = infβ∈B qλ(β) and MG = supβ∈B qλ(β) that

Mgg = sup
β∈B

sup
z∈(mG−δ,MG+δ)

gβ(z) < ∞ (9)

and
mgg = inf

β∈B
inf

z∈(−δ,δ)
gβ(qλ(β) + z) > 0 (10)

for some δ > 0.

F Let l(xi, yi; β) be continuous (uniformly over any compact subset of the support of
(xi, yi)) in β ∈ B. Further, let the expectation E supβ∈B |l(xi, yi; β)|1+δ exist and
be finite for some δ > 0.
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I Let B be a compact parametric space, and for any ε > 0 and U(β0, ε) such that
B\U(β0, ε) is compact, let α(ε) > 0 exist such that

min
β∈B\U(β0,ε)

E [l(xi, yi; β) · I(r(xi, yi; β) ≤ qλ(β))]

−E [l(xi, yi; β0) · I(r(xi, yi; β0) ≤ qλ(β0))] > α(ε) .

Whereas some assumptions are well-known from the literature, such as the existence of
the finite first or second moments of random variables and the identification assumptions
I mentioned already in Section 2, there is one less usual regularity assumption. It stems
from the generality of the model specification, which does not require anything but con-
tinuity of the link function F . Assumptions (9) and (10) formalize two things: (i) the
density function gβ has to be bounded uniformly in β ∈ B, which prevents distribution
Gβ to be arbitrarily close to a discrete one within the parametric space B; and (ii) the
density function gβ has to be positive in a neighborhood of the λ-quantile of Gβ , that is,
around the chosen “trimming” point of the r(xi, yi; β) distribution. This type of assump-
tions is standard in literature on asymptotics of trimmed estimators, see Čı́žek (2005) for
more details. Under these conditions, it is possible to prove the following result.

Theorem 1 Let Assumptions D, F, and I hold. Then the MSTLE estimator β̂(MSTLE,hn)

is weakly consistent, i.e., β̂(MSTLE,hn) → β0 in probability as n →∞.

Proof: The theorem is a direct consequence of Čı́žek (2004, Theorem 2). ¤
As shown in Čı́žek (2004), this result can be extended to derive the

√
n-rate of con-

vergence of the MSTLE estimator if additional assumptions regarding differentiability of
l(xi, yi; β) and some other regularity assumptions are satisfied. Even though it is seems
that the same conditions should be sufficient for proving the asymptotic normality of MS-
TLE, no such result is currently available.

4 Robust Properties
After proving that MSTLE is a valid estimator of model (1), we concetrate now on the
robustness of the proposed solution. Traditionally, the global robustness of an estimator
is measured by the breakdown point. It can be defined as the largest fraction (m−1)/n of
sample observations that can be arbitrarily changed without making the estimator “use-
less” (and naturally, changing then m observations in a right way can make the estimator
“useless”), that is, without making estimator a constant, non-random function (Genton
and Lucas, 2003).

One of the first results concerning the breakdown point in the binary-choice regression
is by Christmann (1994), who shows that the breakdown point ε∗n of most estimators is
design (sample) specific,

ε∗n ≤
1

n

[
min

{
n∑

i=1

yi, n−
n∑

i=1

yi

}
− 1

]
,

and depends on the relative number of observations with responses yi = 1 and yi = 0,
respectively. The following theorem complements this general result by providing upper
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bounds for the breakdown point of MSTLE. They are not sample specific and indicate
that, contrary to linear regression, trimming more observations does not necessarily result
in a higher breakdown point.

Theorem 2 The breakdown point of MSTLE estimator (8) with trimming hn ∈ {[n/2] +
1, . . . , n} is in model (1) bounded by ε∗n ≤ [hn/2]/n.

Proof: Consider a sample (xi, yi)
n
i=1 and define a contaminated sample (x∗i , y

∗
i ) = (xi, yi)

for i = 1, . . . , n − [hn/2] − 1 and (x∗n−i, y
∗
n−i) = (xi, 1 − yi) for i = 1, . . . , [hn/2] + 1.

Thus, we changed only [hn/2]+1 observations so that the new sample contains [hn/2]+1
pairs of observation with identical values xi and complementary values yi. The MSTLE
estimator applied to (x∗i , y

∗
i ) trims all non-paired observations and results in β̂ = 0 be-

cause both the joint likelihood and trimming rule r(x∗i , y
∗
i ; β) = log(1/2) of all paired

observations reach its maximum at β = 0. Thus, all other (non-paired) observations are
trimmed from the objective function. ¤

On the one hand, the breakdown point is thus bounded by (n− hn)/n because n− hn

determines the number of observations that can be trimmed from the objective function.
On the other hand, misspecification of the values of the dependent variable described in
Theorem 2 imposes another bound [hn/2]/n. Consequently, trimming constant hn should
not be chosen smaller than hn = [2n/3], which follows from equating the two bounds,
(n − hn)/n = hn/(2n), and indicates ε∗n ≤ 1/3. Due to further data-specific limits on
the breakdown point (as in Christmann, 1994), hn ≥ [3n/4] will probably be a realistic
choice in applications.

Finally, note the breakdown point describes a method’s behavior only in the extreme
situation of its failure. The influence of a point-mass contamination at various locations
on the estimation can be however quantified by the so-called bias curve. Because it is
difficult to obtain an analytic expression for the bias curve, we will evaluate it by means
of Monte Carlo simulations in Section 5 and compare it with bias curves of other existing
estimators.

5 Simulation Study
To compare the performance of various methods for estimating binary-choice regression
models in finite samples, Monte Carlo simulations are used. In this section, we com-
pare the proposed MSTLE method with MLE and the Bianco and Yohai (1996) estimator
(BYE), which is based on a bias-corrected M-estimator and was implemented by Croux
and Haesbroeck (2003). We also consider weighted forms of MLE and BYE based on
weights defined by

W wi = I(RD2
i ≤ χ2

p,0.975), where χ2
p,0.975 denotes the 97.5% quantile of the χ2 distri-

bution with p degrees of freedom and RDi represents the Mahalanobis distance of
the ith observation based on the robust MCD estimate of location and covariance
(see Croux and Haesbroeck, 2003, for details);

WT wi = min{c, exp(r(xi, yi; β))} = min{c, F (x>β0), 1− F (x>β0)}, where
r(xi, yi; β) is the rule used for trimming in (8) and c = 0.1, for instance.
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The first choice defines weights just by the position of observations in the space of ex-
planatory variables and downweights all distant observations. It is frequently used in the
literature (e.g., Croux and Haesbroeck, 2003; Gervini, 2005). The latter choice relies on
the initial robust fit by MSTLE and downweights only observations with low values of
r(xi, yi; β). The precise choice of weights is arbitrary at this moment and optimal weight-
ing scheme has to be further researched. The weighted MLE estimator using weights WT
from an initial robust fit represents however an initial attempt to find a balance between
the very robust and inefficient MSTLE and the efficient and non-robust MLE.

As BYE is currently implemented only for logit, we compare all methods using a
logistic model as a data-generating process. Specifically, we generate two explanatory
variables x1, x2 ∼ N(0, 1), and for a given parameter vector b = (b0, b1, b2), we define
y = I(b0 + b1x1 + b2x2 + ε ≥ 0), where ε ∼ Λ(0, 1) (N(µ, σ) and Λ(µ, s) refer to the
Gaussian and logistic distributions, respectively). If a generated data set is not further
modified, we refer to it as CLEAN. Next, to examine robust properties of all estimators,
we also use contaminated data: a given fraction α ∈ (0, 1) of observations is shifted
by (∆1, ∆2) ∈ R2 and misclassified, which corresponds to transformations x∗1 = x1 +
∆1, x

∗
2 = x2 + ∆2, and y∗ = I(b0 + b1x

∗
1 + b2x

∗
2 < 0). Such data sets are referred

to as OUTLIERS(α; ∆1, ∆2). Finally, to estimate bias curves of all estimators, we use
data with a point-mass contamination: a given fraction α ∈ (0, 1) of observations is set
to (∆1, ∆2) and misclassified, which corresponds to setting x∗1 = ∆1, x

∗
2 = ∆2, and

y∗ = I(b0 + b1x
∗
1 + b2x

∗
2 < 0). These data sets are denoted POINTCONT(α; ∆1, ∆2).

Let us note that the results discussed here are obtained for n = 100 observations,
trimming constant hn = 75, and 500 simulations. Although we also experimented with
larger sample sizes, it seems that the performance of MSTLE at smaller samples is worse
relative to other methods than at larger samples, and thus, we present less favorable results
for MSTLE.

5.1 Bias Curve

To quantify influence of data contamination on estimation, we evaluate the bias curves of
all discussed estimators in the logistic model with parameters b = (0.5, 1, 0) with 10%
point-mass contamination at points from interval (−5, 5). This amount to simulating and
estimating data POINTCONT(0.1; x, 0) for x ∈ (−5, 5), which is done here using an
equidistant grid with step 0.25. Note that contamination around x = −0.5 causes only
misclassification, not real outliers.

The results are summarized on Figure 1, which depicts the absolute bias of each es-
timator as a function of contamination point x. First, the standard result indicating low
robustness of MLE and BYE is demonstrated here by bias steadily increasing with the in-
creasing distance of contamination point x from the origin. The weighted forms of these
estimators, WMLE and WBYE, behave similarly to MLE and BYE for x2 ≤ χ2

1,0.975,
but are not influenced by the contamination for x2 > χ2

1,0.975 because the contaminated
observations have then weights equal to zero. The bias curve of MSTLE looks rather dif-
ferently. On the one hand, it exhibits a comparatively large bias for contamination close
to the origin because it uses just pre-specified hn = 75 observations and trims the remain-
ing ones, that is, good ones in this case. On the other hand, the bias of MSTLE is rather
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Figure 1: Bias curves of the MLE (solid, circles), WMLE (dashed, circles), BYE (solid,
triangles), WBYE (dashed, triangles), MSTLE (thick solid), and WTMLE (thick dashed).

small and practically constant for all x 6∈ (−1, 0), that is, when data contain real outliers.
Finally, WTMLE also exhibits relatively small and constant bias, although slightly larger
than MSTLE because it does not fully reject observations, but corrects the extreme bias
of MSTLE for x ∈ (−1, 0). Hence, whereas MSTLE and WTMLE perform equally well
both in samples with moderate and large outliers, WMLE and WBYE perform well only
if outliers are far enough from the correct observations.

Table 1: Absolute value of bias and mean squared error (MSE) of (W)MLE, (W)BYE,
MSTLE, and WTMLE for clean and contaminated data.

Bias (MSE) CLEAN OUTLIERS(0.05;1.5,1.5) OUTLIERS(0.05;5.0,5.0)
MLE 0.099 (0.261) 0.764 (0.688) 1.396 (2.037)
WMLE 0.103 (0.279) 0.792 (0.749) 0.077 (0.273)

BYE 0.109 (0.281) 0.600 (0.489) 0.960 (1.333)
WBYE 0.111 (0.299) 0.626 (0.537) 0.093 (0.304)

MSTLE 0.533 (1.011) 0.539 (0.997) 0.565 (1.041)
WTMLE 0.165 (0.350) 0.018 (0.388) 0.134 (0.382)
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5.2 Estimation under Contamination

The performance of all methods is now analyzed both under clean and contaminated data
sets generated from the logistic model with b = (0.5, 1,−1). Employed data are CLEAN,
OUTLIERS(0.05; 1.5,−1.5), and OUTLIERS(0.05; 5,−5) and the contamination level is
thus 5%. The absolute value of bias and mean squared error (MSE) for each methods is
recorded in Table 1.

First, a very high sensitivity of MLE and BYE to outliers is again clearly visible,
even though BYE is slightly less affected by contamination. The corresponding weighted
versions, WMLE and WBYE, perform rather well in the case of clean data and data with
distant outliers, which can be easily detected and downweighted. Both weighted methods
however fail to withstand contaminated data if outliers are not too far from the rest of data.
On the contrary, the results of the proposed MSTLE method are practically unaffected by
contamination, but are very imprecise; the MSE of MSTLE for clean data is almost four
times higher than the MSE of MLE. This well-known inefficiency of trimmed estimators
can be overcome by using them only as an initial robust estimator for a more efficient
method. Here, MSTLE is used to construct weights for a weighted MLE. The resulting
WTMLE estimator is rather close to the performance of existing robust methods for clean
data, but is not significantly influenced by the moderate and large outliers.

6 Conclusion

The maximum symmetrically trimmed likelihood estimator proposed in this paper is
shown to be applicable in general binary-choice models, consistent, and robust to vari-
ous kinds of contamination. The combination of these properties is not currently matched
by any existing robust method. On the other hand, trimming of observations leads to an
inevitable loss of efficiency, which can be however remedied to a large extent by using
MSTLE as an initial estimator for weighted MLE. The optimal choice of weights stays as
a topic for further research. Similarly, the bias curve of MSTLE indicates that a combi-
nation with models accounting for data misspecification (Hausman et al., 1998) could be
beneficial and should be further investigated.
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