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Abstract: Three correlated frailty models are used to analyze bivariate time-
to-event data by assuming gamma, log-normal and compound Poisson dis-
tributed frailty. All approaches allow to deal with right censored lifetime data
and account for heterogeneity as well as for a non-susceptible (cure) fraction
in the study population. In the gamma and compound Poisson model tra-
ditional ML estimation methods are used, whereas in the log-normal model
MCMC methods are applied. Breast cancer incidence data of Swedish twin
pairs illustrate the practical relevance of the models, which are used to es-
timate the size of the susceptible fraction and the correlation between the
frailties of the twin partners. We discuss future directions of development of
the methods and additional thoughts concerning their advantages and use.

Zusammenfassung: Drei korrelierte Frailty-Modelle werden benutzt um bi-
variate Lebensdauerdaten zu analysieren. Dabei werden die Gamma, Log-
Normal und compound Poisson Verteilung für die Frailty-Variable angenom-
men. Alle Modelle sind auf rechts zensierte Daten anwendbar und erlauben
die Modellierung einer Subpopulation, die dem interessierenden Ereignis ge-
genüber geschützt ist. Im Gamma und compound Poisson Modell werden
traditionelle ML Schätzungen verwendet, während im Log-Normal Modell
MCMC Methoden angewendet werden. Daten über Brustkrebs bei schwedi-
schen Zwillingen illustrieren die praktische Anwendbarkeit der Modelle, die
insbesondere genutzt werden, um die Größe der geschützten Subpopulation
und die Korrelationen zwischen den Frailties der Zwillingspartner zu schätzen.
Vorteile, Nachteile und offene Fragen der Forschung im Bereich dieser Mo-
delle werden diskutiert.
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1 Introduction
The Cox proportional hazards model (Cox, 1972) is commonly used in the analysis of
survival time data. An often unstated assumption of the proportional hazards model and
of traditional frailty models (with the exception of those that use the compound Pois-
son distribution (Aalen, 1988, Aalen, 1992)) is that all individuals will experience the
event of interest. However, in some situations a fraction of individuals is not expected to
experience the event of interest; that is, these individuals are not at risk. The terminol-
ogy to describe the never-at-risk group varies from field to field, but includes ‘long-term
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survivors’ or ‘cured’ in epidemiology, ‘non-susceptibles’ in toxicology, ‘stayers’ in fi-
nite Markov transition models of occupational mobility, the ‘non-fecundable’ in fertility
models, and ‘non-recidivists’ among convicted criminals. In epidemiology and medicine,
researchers may be interested in analyzing the occurrence of a disease. Many individuals
may never experience that disease; therefore, there exists a fraction in the population that
is protected. Cure models are survival models which allow for a cured fraction in the
study population.

These models extend the understanding of time-to-event data by allowing for the for-
mulation of more accurate and informative conclusions than previously made. These
conclusions would otherwise be unobtainable from an analysis that fails to account for a
cured fraction in the population. If a cured component is not present, the analysis reduces
to standard approaches of survival analysis. Most cure models assume that the susceptible
individuals are homogeneous in risk. This paper deals with cure models which include
a frailty variable in order to allow for heterogeneity among the fraction under risk. Or,
depending on the point of view, this paper deals with frailty models including a non-
susceptible (or cured) fraction in the study population. In this case, the distribution of the
frailty is a combination of discrete and continuous distributions.

In cure models, the population is divided into two sub-populations so that an individ-
ual is either cured with probability 1 − φ, or has a proper survival function S(t), with
probability φ. Here, proper survival function means limt→∞ S(t) = 0. Individuals re-
garded as cured will never experience the event of interest and their survival time will
be defined as infinity. Therefore, the hazard and survival functions of cured individuals
are set to zero and one, respectively, for all finite values of t. A univariate time-to-event
model that incorporates a cure fraction is given by

S̄(t) = (1− φ) + φS(t) .

Longini and Halloran (1996) have proposed frailty cure models that extend standard
frailty models. The frailty random variable in the former has point mass at zero with
probability 1 − φ while heterogeneity among those experiencing the event of interest is
modelled via a continuous distribution with probability φ. Price and Manatunga (2001)
gave an excellent introduction to this area and applied leukaemia remission data to dif-
ferent cure, frailty and frailty cure models. They found that frailty models are useful in
modelling data with a cured fraction and that the gamma frailty cure model provides a
better fit to their remission data compared to the standard cure model.

The following example provides an extension of the above model to include censored
observations. Consider two types of expressions for a disease, the incidence and the age
of disease onset. Risk models for overall susceptibility (lifetime risk) that consider only
the first expression by treating the disease as a binary trait of being affected or not can give
wrong results because, for individuals without the disease, due to censoring, it is often not
known whether they will eventually develop the disease. On the other hand, models from
survival analysis typically assume that everyone has the same susceptibility to the disease
and will eventually be effected if the follow-up is sufficiently long. These models possibly
do not accurately describe the disease risk factors. In models dealing with both types of
expressions, the effect of a covariate can act on either the overall susceptibility or the age
at onset or both. In general, cure models are special cases of the binary (two-point) frailty



A. Wienke et al. 69

model.
Chatterjee and Shih (2001) considered an extension of such univariate frailty cure

models to a bivariate setting. They used three different copulas in their two-step analysis
procedure. Wienke et al. (2003b) suggested the use of a correlated gamma frailty model
(Yashin and Iachine, 1995; Yashin et al., 1995; Wienke et al., 2003a).

The main task of the present paper is the estimation of the size of the susceptible
fraction with respect to breast cancer by comparing the results of the correlated gamma
cure, the correlated log-normal cure and the correlated compound Poisson frailty model.

In the next section we describe the proposed models, then provide an application of
the models to breast cancer data from the Swedish Twin Registry in section three. The
paper concludes with a discussion of further applications, drawbacks and advantages of
the models.

2 Statistical Models

2.1 Correlated Gamma Frailty Cure Model
A bivariate shared frailty cure model for familiar association in diseases was established
by Chatterjee and Shih (2001). We use their notation here and define for a pair of individ-
uals

Vj =

{
1 if the j-th individual is susceptible,
0 otherwise (1)

and let Tj denote the age at onset for the j-th individual when Vj = 1 (j = 1, 2). In terms
of hazard rates, the model is given by the relation

λj(t|Vj, Zj) = VjZjλ0(t) ,

with Zj denoting the frailty of the j-th individual in the pair.
Chatterjee and Shih (2001) used three different copulas in their approach: the shared

gamma frailty model (Clayton, 1978), Frank’s copula and Hougaard’s shared positive
stable frailty model (Hougaard, 1986). A two step estimation procedure was applied.
Their model was partly extended by Wienke et al. (2003b), who substituted the shared
gamma frailty model by the correlated gamma frailty model. Furthermore, all parameters
were estimated in a one-step maximum likelihood procedure. The form of the baseline
hazard is important because all methods described below are parametric. In principle, any
parametric formula for a hazard rate is possible (e.g., Gompertz, Gompertz-Makeham,
Weibull, exponential, piecewise constant). A vast literature on human mortality and time
to onset of specific diseases suggests using the Gompertz hazard rate. For that reason
and to save space, we investigate only bivariate frailty models that have the Gompertz
baseline hazard rate. Let φ11 = P({V1 = 1, V2 = 1}), φ10 = P({V1 = 1, V2 = 0}), φ01 =
P({V1 = 0, V2 = 1}), and φ00 = P({V1 = 0, V2 = 0}) describe the joint distribution of
(V1, V2). The general bivariate survival function after integrating out the random variables
V1, V2, Z1, Z2 looks like

S̄(t1, t2) = φ11S(t1, t2) + φ10S(t1) + φ01S(t2) + φ00 .
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The bivariate survival function S(t1, t2) is the conditional survival function of pairs
with both individuals susceptible, e.g. given the event {V1 = 1, V2 = 1}. The likelihood
function of bivariate right censored lifetime data in this model is given by

L(t1, t2, δ1, δ2) =
(
δ1δ2φ11St1,t2(t1, t2)

+δ1(1− δ2)(φ11St1(t1, t2) + φ10St1(t1))

+(1− δ1)δ2(φ11St2(t1, t2) + φ01St2(t2))

+(1− δ1)(1− δ2)(φ11S(t1, t2) + φ10S(t1) + φ01S(t2) + φ00)
)

.

The form of S(t1, t2) depends on the frailty distribution. The correlated gamma frailty
model (Pickles et al., 1994; Yashin and Iachine, 1995; Yashin et al., 1995) is developed for
the analysis of multivariate failure time data, in which two associated random variables
are used to characterize the frailty effect for each cluster. To be more specific, let k0, k1

be some real positive variables. Set λ = k0 + k1 and let Y0, Y1, Y2 be independent gamma
distributed random variables with Y0 ∼ Γ(k0, λ), Y1 ∼ Γ(k1, λ), and Y2 ∼ Γ(k1, λ).
Consequently,

Z1 = Y0 + Y1 ∼ Γ(k0 + k1, λ) = Γ(λ, λ) (2)
Z2 = Y0 + Y2 ∼ Γ(k0 + k1, λ) = Γ(λ, λ) (3)

are the frailties of individual 1 and 2 in a pair. The bivariate survival function of this
model is given by

S(t1, t2) = S(t1)
1−ρS(t2)

1−ρ
(
S(t1)

−σ2

+ S(t2)
−σ2 − 1

)−ρ/σ2

, (4)

where S(t) denotes the marginal univariate survival function, assumed to be equal for
both twin partners and 0 ≤ ρ ≤ 1 holds. Furthermore, it holds that ρ = corr(Z1, Z2),
E(Zj) = 1 and σ2 = var(Zj). Obviously, the shared gamma frailty model by Clayton
(1978) is a special case of (4) when ρ = 1.

2.2 Correlated Log-Normal Frailty Cure Model
The correlated log-normal model is much more flexible than the correlated gamma one,
because it is not based on the additive composition of the two frailties as used in (2) and
(3). However, the log-normal distribution does not allow an explicit representation of the
likelihood function, which requires more sophisticated estimation strategies. We assume
that the two frailties of individuals in a pair are given by

(
Z1

Z2

)
∼ LogN

((
m
m

)
,

(
s2 rs2

rs2 s2

))
, (5)

where LogN denotes the (bivariate) log-normal distribution. Here, m, s2, and r denote
the mean, variance and correlation of the respective normal distribution. This distribution
can be obtained by assuming a bivariate normal distribution on the logarithm of the frailty
vector (

W1

W2

)
= log

(
Z1

Z2

)
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with
(

W1

W2

)
∼ N

((
m
m

)
,

(
s2 rs2

rs2 s2

))
, (6)

and N denotes the bivariate normal distribution whose parameters are some functions of
the frailty parameters µ, σ2, and ρ (see, e.g., Hutchinson and Lai, 1991)

µ = E(Zj) = exp(m + s2/2) (7)
σ2 = var(Zj) = exp(2m + s2)(exp(s2)− 1) (8)
ρ = corr(Z1, Z2) = ( exp(rs2)− 1)/( exp(s2)− 1) . (9)

For reasons of identifiability of the model let µ = 1. It follows from (7) to (9) that

m = E(log Zj) = −s2/2

s2 = var(log Zj) = log(1 + σ2) .

There exists no closed form expression for the bivariate survival function S(t1, t2).

2.3 Correlated Compound Poisson Frailty Model
The third bivariate model which we consider here is the correlated compound Poisson
frailty model. The univariate compound Poisson distribution was introduced by Aalen
(1988, 1992) as a frailty distribution. An interesting property of the model is that it yields
a subgroup of individuals with zero frailty, who survive forever. Despite the fact that the
density of the continuous part is only given as an infinite series which has to be calculated
numerically, the distribution is mathematically convenient. It may also be seen as a natural
choice. The distribution can be constructed as the sum of a Poisson distributed number of
independent and identical gamma distributed random variables. The Laplace transform
of the compound Poisson distribution is given by

L(s) = exp

(
−k

γ

(
(λ + s)γ − λγ

))
.

The notation cP(γ, k, λ) is used for a compound Poisson distribution. Expectation and
variance of a compound Poisson distributed random variable Z are

E(Z) = kλγ−1 , var(Z) = k(1− γ)λγ−2 . (10)

The Laplace transform given above implies the marginal survival and hazard function
in case of a compound Poisson frailty model

S(t) = exp

(
−k

γ

(
(λ + Λ0(t))

γ − λγ
))

, λ(t) = kλ0(t)(λ + Λ0(t))
γ−1 .

Using the constraint E(Z) = 1 and relationship σ2 = (1− γ)/λ (see (10)) it holds

S(t) = exp

(
−1− γ

γσ2

((
1 +

σ2

1− γ
Λ0(t)

)γ

− 1

))
, λ(t) =

λ0(t)(
1 + σ2

1−γ
Λ0(t)

)1−γ .
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It should be noted that the integral of λ(t) over [0,∞) is finite when γ < 0. Conse-
quently, the survival function is incomplete because a fraction of individuals have zero
frailty, who could never experience the event under study.

To introduce the bivariate model, let Y0, Y1, Y2 be independent compound Poisson
distributed random variables with Y0 ∼ cP(γ, k0, λ), Y1 ∼ cP(γ, k1, λ), Y2 ∼ cP(γ, k1, λ).
Consequently,

Z1 = Y0 + Y1 ∼ cP(γ, k0 + k1, λ) (11)
Z2 = Y0 + Y2 ∼ cP(γ, k0 + k1, λ) (12)

are the frailties of individual 1 and 2 in a pair. The bivariate survival function of this
model is given by

S(t1, t2) = S(t1)
1−ρS(t2)

1−ρ exp

(
ρ(1− γ)

γσ2

(
1−

((
1− γσ2

1− γ
log(S(t1))

)1/γ

+

(
1− γσ2

1− γ
log(S(t2))

)1/γ

− 1

)γ))
,(13)

where S(t) denotes the marginal univariate survival function, assumed to be equal for
both twin partners and 0 ≤ ρ ≤ 1 holds. Furthermore, it holds that ρ = corr(Z1, Z2) and
σ2 = var(Zj).

Parameter γ divides the class of distributions in two major subfamilies. For γ ≥
0, the distribution is a power variance function distribution (PVF) or three parameter
distribution. This bivariate correlated frailty model was proposed by Yashin and Iachine
(1995) and applied to Danish twin mortality data. The inverse Gaussian model is included
as a special case by γ = 1/2. The case γ > 0 is not considered further here, because we
expect parameter estimates γ < 0 in our real data example.

The extension to γ < 0 in the univariate case was suggested by Aalen (1988, 1992)
and shown to yield the compound Poisson distribution. Parameter values of γ < 0 im-
ply the existence of a non-susceptible fraction in the population. The extended bivariate
model is applied to breast cancer data of Swedish twins to estimate the size of the sus-
ceptible fraction and results are compared to the analysis by the correlated gamma frailty
cure model.

3 Example
The data set from the Swedish Twin Register contains records of 5857 female twin pairs
with both partners being alive in 1959–61. Individuals were followed up from 1959/61
to 27 October 2000. Altogether, we have 2003 monozygotic and 3854 dizygotic twin
pairs, and 715 cases of breast cancer were identified during the follow-up. More detailed
information about the Swedish Twin Register can be found in Lichtenstein et al. (2002).
The results are given in Table 1. We consider the three different correlated frailty cure
models described in the last section. In the first and second model the susceptible status
of the individuals in a pair is assumed to be independent of each other, e.g.,

P({V1 = p1, V2 = p2}) = P({V1 = p1})P({V2 = p2})
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Table 1: Analysis of time to onset of breast cancer in 5857 Swedish twin pairs. In the
correlated gamma and log-normal model estimates are constrained by φ11 = φ2, φ10 =
φ01 = φ(1− φ), φ00 = (1− φ)2.

correlated gamma correlated log-normal correlated compound Poisson
γ – – -0.052 (0.096)
σ 2.780 (0.931) 4.865 (3.791) 7.034 (0.994)
ρMZ 0.900 (0.552) 0.717 (0.196) 0.124 (0.040)
ρDZ 0.725 (0.465) 0.645 (0.223) 0.099 (0.030)
φ 0.201 (0.081) 0.102 (0.007) 0.336∗

∗ number calculated by φ = 1− exp((1− γ)/(γσ2)).

with p1, p2 ∈ {0, 1}. The size of the susceptible fraction is uniquely described by the
probability φ = P({V1 = 1}) = P({V2 = 1}), which results in φ11 = φ2, φ10 = φ01 =
φ(1 − φ), φ00 = (1 − φ)2. The case of dependence between the susceptible status of the
twin partners was already considered in Wienke et al. (2003b) analyzing the same data.

In the first model gamma distributed frailty is used to account for heterogeneity in
the population and a cure fraction is included into the model. Parameter σ2 is a measure
of heterogeneity, which is large in this population, and φ as the size of the susceptible
fraction, which is found to be around 20%. The gamma frailty model without cured
fraction is a special case of the compound Poisson frailty model with γ = 0. A MCMC
approach was used to estimate the model parameters. More details about this case can be
found in Locatelli et al. (2004).

A log-normal distributed frailty is used and a cured fraction is included in the sec-
ond model. Parameter estimates are different from that in the gamma case with higher
heterogeneity (σ2 = 4.865) and a smaller susceptible fraction (φ = 0.102).

In the compound Poisson model (third column) the parameter estimates are larger than
in the gamma and log-normal model (φ = 0.336, σ2 = 7.034).

4 Discussion
In the present paper three different models are applied to the Swedish breast cancer data
set. In all three bivariate models the association between the lifetimes of the twins is
accounted for. Furthermore, it is possible to estimate the correlation between the frailties
of the twin partners, which is large in the correlated gamma frailty cure and the correlated
log-normal frailty cure model. It should be noted, that in the gamma and log-normal
model this correlation is estimated from pairs only, where both partners are susceptible,
which is the reason for the high correlations. In the correlated compound Poisson frailty
model the frailty variable is a mixture of a continuous and a discrete part. Consequently,
in this model the frailty Z plays the role of V Z in the gamma and the log-normal model.
That is why the correlation in the compound Poisson model is much lower, because it is
the correlation in all pairs including non-susceptible individuals. This problem is already
discussed by Chatterjee and Shih (2001) in detail. The correlated gamma and log-normal
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frailty cure model incorporate two types of association, one between the lifetime risk or
the overall susceptibility of two individuals (corr(V1, V2)) and one between the frailties of
onset between susceptible individuals (corr(Z1, Z2)). In the correlated compound Poisson
frailty model these two types of correlation are combined and can not be separated. In
all models correlations in monozygotic pairs are higher than in dizygotic pairs, but the
differences are small. This is in line with the well known fact that the influence of genetic
factors on susceptibility to breast cancer is small (5 - 10 %).

The estimates of the size of a susceptible fraction (due to breast cancer) are close to
the estimate φ = 0.22 (0.0093) in the parametric model found by Chatterjee and Shih
(2001) in a study population that is completely different.

Interestingly, parameter estimates are quite different depending on whether the frailty
distribution among the susceptible individuals is chosen as gamma, log-normal or com-
pound Poisson. In all considered cases only a relatively small fraction (10% - 34%) of
all women is indicated to be susceptible to breast cancer. Nevertheless, the estimates of
the susceptible fraction in all three models in Table 1 are close to the figures obtained by
Farewell (1977) for different combinations of four risk factors. The authors found that,
if none of the risk factors is present the susceptible fraction is around 0.015, if all risk
factors are present, the estimate increases to 0.272.

The size of the fraction of woman susceptible to breast cancer is given by the model
parameter φ in the gamma and log-normal frailty cure model. This parameter does not
exist in the compound Poisson frailty model. Here in this model the size of the susceptible
fraction can be calculated by φ = 1 − exp((1 − γ)/(γσ2)). The estimates for the size
of the susceptible fraction have to be compared with the overall lifetime risk of breast
cancer, which is around 8% - 12% in current western populations (Harris et al., 1992;
Feuer et al., 1993; Rosenthal and Puck, 1999; Ries et al., 1999). The twin population
considered here was born between 1886 and 1925 when the lifetime risk for breast cancer
was lower because of competing causes of death like infections, which are much less
important today.

The newly introduced correlated compound Poisson frailty model offers a very ele-
gant approach to integrate the concept of cure models into frailty modelling. The survival
function is explicitly available and of easy form which allows traditional maximum likeli-
hood parameter estimation. This is the most important advantage of the suggested model
compared to the recently introduced model by Moger and Aalen (2005). Important frailty
models like the gamma model (γ = 0) and the inverse Gaussian model (γ = 1/2) are
included in this model family and provide a great flexibility of the model. Simulation
studies are needed to analyze the behavior of the parameter estimates in this model. Dif-
ferent parameter estimation strategies (ML, ML with numerical integration, MCMC) are
already analyzed in correlated frailty models without a cure fraction by Wienke et al.
(2005). Of great interest would be a non-parametric version of the correlated compound
Poisson frailty model, where the baseline hazard functions are not specified. This will be
part of future research in this direction.

Cure models suffer from an inherent identifiability problem with right censored obser-
vations: The event under study has not occurred either because the person is insusceptible
or the person is susceptible, but follow-up was not long enough to observe the event.
The identifiability problem is growing with increasing censoring, but is reduced by the
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parametric modelling of the baseline hazard. In cure models with fixed censoring times
(caused by ending the study) censoring is no longer non-informative even in case where
the censoring and the survival times are independent. The proportion of censored obser-
vations contains important information about the parameters in the model. For example,
in the (usual ideal) case of no censoring, it holds φ = 1.
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