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Abstract: Testing the possibility of determining the geographical origin (coun-
try) of wines on the base of chemico-analytical parameters was the aim of the
European project ”Establishing of a wine data bank for analytical param-
eters for wines from Third countries (G6RD-CT-2001-00646-WINE DB)”
supported by the European Commission. Therefore a data base containing
400 samples of commercial and authentic wines from Hungary, Czech Re-
public, Romania and South Africa was created. For each of those samples
around 100 analytical parameters, among them rare earth elements and iso-
topic ratios were measured.

Besides other multivariate statistical methods of discrimination and classifi-
cation the method of regularized discriminant analysis (RDA) was used to
distinguish the wines of the different countries on the base of a minimal
number of the most important parameters. A MATLAB-program, developed
by Vandev (2004) which allows an interactive stepwise discriminant model
building on the base of an optimal choice of the “nonlinearity” parameter
alpha was used. This program will be described shortly and models for com-
mercial wines with corresponding classification and prediction error rates will
be given.

As a result of using RDA it was possible to reduce the number of analytical
parameters to the eight to infer the geographical origin of these commercial
wines.

Zusammenfassung: Das Prüfen der Möglichkeit der geographischen Her-
kunftsbestimmung von Weinen auf der Basis chemisch-analytischer Param-
eter war das Ziel des von der Europäischen Kommission unterstützten Eu-
ropäischen Projektes ,,Errichtung einer Weindatenbank für analytische Pa-
rameter von Weinen aus Drittländern (G6RD-CT-2001-00646-WINE DB)“.
Hierfür wurde eine Datenbasis, die 400 kommerzielle und authentische Wein-
proben aus Ungarn, Tschechien, Rumänien und Süd Afrika enthält, erhoben.
Für jede dieser Proben wurden ca. 100 analytische Parameter gemessen, unter
ihnen seltene Erden und Isotopendaten.

Neben weiteren multivariaten Methoden der Diskriminierung und Klassifika-
tion wurde die Regularisierte Diskriminanzanalyse (RDA) verwendet, um
die Weine verschiedener Länder mit minimaler Anzahl der wichtigsten Pa-
rameter zu unterscheiden. Ein von Vandev (2004) entwickeltes MATLAB-
Programm, das eine interaktive schrittweise Diskriminanzmodellbildung bei
optimaler Wahl des ,,Nichtlinearitäts-Parameters“ α gestattet, fand hierbei
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Anwendung. Dieses Programm wird kurz beschrieben und es werden Mod-
elle für kommerzielle Weine mit den entsprechenden Klassifikations- und
Vorhersagefehlern angegeben.

Als Ergebnis der Anwendung der RDA konnte die Anzahl der analytischen
Parameter auf die für die Unterscheidung nach ihrer geographischen Herkunft
(Land) wichtigsten acht reduziert werden.

Keywords: Regularization, Classification.

1 Introduction
The responsible wine controlling authorities are often confronted with products which are
not correctly marked with regard to their origin, vintages and quality parameters. To find
out such adulterations of wines, the identification of the geographical origin of wines is
of great interest to wine consumers and producers (Römisch et al., 2001). This was the
background for creating a data base of wines from Hungary, Czech Republic, Romania
and South Africa over a period of three years (2001-2003) in the scope of a European
project.

Every year 400 commercial and authentic wine samples were collected based on a
sample plan. Commercial wines were purchased directly from the wine producers of the
respective countries, whereas authentic wines were produced under standardized condi-
tions in a laboratory. For each of these samples of the first year around 100 chemical
parameters were analyzed. After these first analyzes, taking the experiences of involved
oenologists into consideration, it was possible to reduce this number to 63: regular 58
parameters plus 5 rare earth ratios, the chemists suggested to include.

Data management included data handling of missing and censored data, log-transfor-
mations of 90% of the data and the identification of univariate and multivariate outliers.
Then descriptive and inferential univariate methods, variance and correlation analyzes
and multivariate classification and projection methods were applied to all wine data and
separately to authentic as well as commercial red and white wines.

For the case of commercial wines some results of linear, quadratic and regularized
discriminant analyzes will be presented.

2 Discriminant Analysis
Discriminant analysis is used to analyze differences of two or more groups with respect
to a set of variables measured on the objects of these groups. Two questions are to be
answered:

1. Which variables are the most important to discriminate between the groups? (dis-
crimination problem)

2. In which groups objects (elements, cases), whose group membership is unknown,
will be classified based on their variable values? Which correct classification rates
can be found with the estimated discriminant model? (classification and prediction
problem)
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The influence of the independent variables on the groups is to be investigated. Dis-
criminant functions, which contain significant variables, are estimated and objects will
be classified on the base of the estimated discriminant model. Different methods of dis-
crimination (e.g. linear, quadratic, regularized, nonparametric, . . .) can be used. “Good”
discriminant models contain the most important variables for separating groups with min-
imal misclassification rates.

Here we restrict to presenting the results of an one-parameter based regularized dis-
criminant analysis, including the linear and quadratic case.

2.1 Classification
Methods of discriminant analysis (McLachlan, 1992; Fahrmeir et al., 1996) allow as-
signing objects to one of K (K ≥ 2) distinct groups on the base of a feature vector
x = (x1, . . . , xp), containing the measurements from each object. Moreover, the separa-
bility of groups in the feature space will be analyzed.

Let the categorical variable Y denote the group membership of the object, where
Y = k implies that it belongs to the group with index k (k = 1, . . . , K). Moreover, each
object is characterized by the p-dimensional feature vector X . Let pk = P (Y = k) be
the prior probabilities, that an object belongs to the group with index k and f(x|k) be the
conditional density of X given Y = k. The unconditional distribution of X is then

f(x) =
K∑

k=1

pkf(x|k) .

Of special interest for classification problems is the posterior probability p(k|x), i.e.
the probability, that an object with observed feature vector x belongs to group k. Then
according to the formula of Bayes this conditional probability of Y given X = x can be
written as

p(k|x) = P (Y = k|X = x) =
pkf(x|k)

f(x)
.

Two well known allocation rules can be derived:

• Allocation rule of Bayes

p(k̂|x) ≥ p(j|x) , resp. pk̂f(x|k̂) ≥ pjf(x|j) , j = 1, . . . , K , (1)

• Maximum Likelihood allocation rule for the special case that pk = p, ∀k,

f(x|k̂) ≥ f(x|j) , j = 1, . . . , K .

That is, an object with feature vector x will be assigned to that group with index k̂ which
has the largest posterior probability. The Bayes rule achieves minimal misclassification
risk among all possible rules. All allocation rules considered have the general structure

dk̂(x) ≥ dj(x) , j = 1, . . . , K , (2)

where dj(x) are called discriminant functions.
In practice the conditional densities f(x|k) and sometimes also the prior probabilities

pk are unknown and have to be estimated on the base of a learning sample. For this
purpose an assumption about the group distribution can be used for example.
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2.2 Linear, Quadratic, and Regularized Discriminant Analysis
We assume normality for the p-dimensional feature vector Xk in group k

Xk ∼ N(µk, Σk) , k = 1, . . . , K ,

where µkdenote the group mean and Σk the group covariance matrix. Then the conditional
distribution of X given Y = k can be described by the density of the normal distribution

f(x|k) = (2π)−p/2|Σk|−1/2 exp
(−1/2(x− µk)

′Σ−1
k (x− µk)

)
, k = 1, . . . , K . (3)

Substituting equation (3) into dk(x) = f(x|k)pk (see (1) and (2))and taking the logarithm
leads to the discriminant function of the form

dk(x) = −1

2

(
(x− µk)

′Σ−1
k (x− µk) + log |Σk|

)
+ log pk , k = 1, . . . , K . (4)

Using allocation rule (2) with equation (4) minimizes the misclassification risk and is
called Quadratic Discriminant Analysis (QDA), since it separates the disjoint regions of
the feature space corresponding to each group assignment by quadratic boundaries.

The Linear Discriminant Analysis (LDA) is used if the group covariance matrices are
identical, i.e., Σk = Σ, ∀k. In this case the rule that minimizes the misclassification risk
leads to a linear separation of the groups. The quadratic term in the discriminant function
for all groups then is the same and can be eliminated. Whether LDA or QDA should be
preferred depends on the structure of the data. If we consider real data, the parameters µk

and Σk are unknown and have to be estimated (µ̂k and Σ̂k) from a given training sample.
In practice, often LDA leads to better classification results than QDA, even when the
true group covariance matrices are not equal, because less model parameters have to be
estimated and LDA is more robust against violations of its basic assumptions.

Regularization techniques are successfully used in solving ill- and poorly posed prob-
lems. If the number of parameters to be estimated is comparable or even larger than the
sample size, the parameter estimates can be highly unstable. Friedman (1989) has pro-
posed the Regularized Discriminant Analysis (RDA) as a compromise between linear and
quadratic discriminant analyzes. He has proposed two steps of regularization. First, the
estimated group covariance matrix Σ̂k should be regularized by

Σ̂k(λ) = (1− λ)Σ̂k + λΣ̂ =
(1− λ)(nk − 1)Sk + λ(n−K)S

(1− λ)(nk − 1) + λ(n−K)
,

where Sk and S are the sample-based covariance matrix estimates and nk and n the cor-
responding sample sizes. The regularization parameter λ ∈ [0, 1] controls the degree of
shrinkage of the group covariance matrix estimates toward the pooled estimate. If n is
less than or comparable to p, the estimate of Σk should be regularized further by

Σ̂k(λ, γ) = (1− γ)Σ̂k(λ) + γckIp ,

where Ip is the p × p identity matrix, and ck = tr
(
Σ̂k(λ)

)
/p. For a given value of

λ ∈ [0, 1], the additional regularization parameter γ ∈ [0, 1] controls shrinkage toward a
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multiple of the identity matrix. The multiplier ck is the average value of the eigenvalues of
Σ̂k(λ). This shrinkage has the effect of decreasing the larger eigenvalues and increasing
the smaller ones of Σ̂k(λ), thereby counteracting the bias of the estimates. In Vandev
(2004) the covariance matrices are stabilized by one parameter α, i.e.,

Σ̂k(α) = αΣ̂k + (1− α)Σ̂ .

This parameter α ∈ [0, 1] corresponds to (1 − λ) above. The limiting cases correspond
to LDA (α = 0) and QDA (α = 1). To determine the optimal value of this parameter α,
the error rate estimation has to be minimized during the model building process. As error
rate estimations often resubstitution, cross validation or simulation methods are used. The
methods we have used are described in Section 3.

3 The MATLAB-Program “ldagui”
The MATLAB-program “ldagui” is described in detail in Vandev (2004). It can be used
by means of menus, shortcuts and listboxes. The main window of the program shows
Figure 1.

Figure 1: Main window of “ldagui”
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3.1 Menus
Five menus File, Model, Diagnostics, Use and Help can be activated.

• In File a csv-data file can be loaded and by choosing a classification and selection
variable missing data will be replaced with group means.

• Model allows to build interactively a model in dependence on a minimal classifica-
tion and test error and an optimal choice of the regularization parameter α ∈ [0, 1].

• Diagnostics contains three tools for making adequate decisions:

– Test: A small random test sample with 600 observations for each group will
be produced according estimated group means and covariance matrices and
will be classified.

– “Leave-one-out” (LOO – special case of cross validation):
Classical: For each observation in the training sample a model with the same
variables will be built but without that particular observation. Then each re-
moved observation will be classified with this model, all misclassifications are
counted and the LOO-error will be estimated.
Modification: Not only the one removed, but all observations from the train-
ing sample will be classified, all misclassifications are counted and LOO-error
will be estimated.

– Plot: Second and third canonical variables will be plotted against the first.

• In Use other (csv)-data files can be loaded for testing the model (“Hold-out” method).

More detailed results are printed in the MATLAB command window, e.g.
• Ordered variables in model with their F - and p-values,

• Wilk’s Λ- and p-value,

• Results of error estimation of the training sample by methods of resubstitution,
simulation (test and theoretical error) and cross validation (classical and modified
LOO), including number and cases of misclassifications and cases classified with
probability < 0.8. The theoretical error was estimated in the same way as the test
error, but by using a large (6000 per group) simulated data sample and the LOO
error was obtained as proportion of all errors to the size of training sample.

The algorithms are based on papers of Jennrich (1977) and Einslein et al. (1977).

4 Results of Applying RDA to Wine Data

4.1 Overview about Models for Commercial Wines
Several models for commercial wines obtained by using RDA are presented in Table 1.
Here we have used the following strategy: At first we have looked for our ,,best” model
(Model 1) by choosing the optimal parameter α manually so that the model has 0 or only
a small number of classification and test errors. Then we have considered the same model
for α = 0 (LDA) and α = 1 (QDA). In a next step we wanted to find a better linear and
quadratic model and we have considered some other acceptable models for different α.
Classification and prediction errors and misclassified samples will be given.
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Table 1: Model results for commercial wines (N = 195)
RDA- LDA- QDA- LDA- QDA- RDA- RDA-
M. 1 M. 1 M. 1 M. 2 M. 2 M. 2 M. 3

Parameter α 0.7 0.95 0.0 1.0 0.0 1.0 0.8 0.8
No. of variables 8 8 8 14 9 7 11
Invert Sugar •
Gluconic Acid • • • • • •
Shikimic Acid • •
2-Methylbutanol •
Malic-L. Acid •
Sodium •
Silicon • • • • •
Calcium • • • • • •
Ethanolamine • • • • • •
Putrescine • •
Lithium
Boron •
Titanium • •
Cromium •
Nickel •
Copper •
Zinc • • • • • •
Strontium • • • • • •
Cadmium • •
Ethanol (D/H)1 • • • • •
Ethanol (D/H)2 • • • • • •
Wine δ18O • • •
Class. error 0 6 1 0 0 2 1
(Resubstitution)
(No. and %) 0 3.08 0.51 0 0 1.03 0.51
Incorrectly 100006
classified 100032
samples (ID-No.) 100068 100060 100119 100099
(Resubstitution) 100085 100120

100114
100148

No. of cases with
post. prob. < 0.8 16 13 22 12 5 10 10 18
Theor. error (%) 4.4 3.7 4.8 3.4 1.7 2.4 4.1 4.4
LOO error (class.) 10 7 9 9 5 6 10 21
(No. and %) 5.13 3.6 4.62 4.62 2.56 3.08 5.13 10.77
LOO error (modif.) 78 16 195 152 8 12 195 195
(No.)* 0.59 0.1 6.02 0.85 0.05 0.06 2.15 1.84
(No. and %)** 0.3 0.05 3.09 0.43 0.03 0.03 1.10 0.94

*No. of LOO-cases leading to one or more misclassifications of cases of the whole training sample
**LOO-mean error of misclassifications over the whole training sample
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4.2 Description of RDA-Model 1
On the base of the print results of “ldagui” our preferred model (RDA-Model 1 for
α = 0.95) will be described in more detail. Table 2 contains the variables as result of
interactive model building and Figure 2 illustrates this model.

• Wilk’s Λ: 0.0117; p-value (tail): 0.0000

Table 2: Interactive model building (variables in model: 8)

No. Name F -value p-value
55 Ethanol (D/H)1 2.9535 2.40E-07
44 Sr 2.8966 3.88E-07
26 Ethanolamine 2.2975 6.14E-05
56 Ethanol (D/H)2 1.7472 0.00531
24 Ca 0.7442 0.89076
40 Zn 0.6497 0.96337
19 Si 0.3933 0.99991

8 Gluconic Acid 0.3872 0.99993

• Method of error estimation: Resubstitution. No. of classification errors: 0
Cases classified with probability below 0.8: 100006, 100016, 100019, 100020,
100027, 100030, 100060, 100074, 100085, 100115, 100120, 100140, 100143.

• Method of error estimation: Theoretical error by simulation (6000 per group)

Table 3: Classification matrix

% Correct Hungary Romania Czech Rep. South Africa Total
Hungary 94.73 5684 18 298 0 6000
Romania 94.87 62 5692 246 0 6000
Czech Rep. 95.67 212 48 5740 0 6000
South Africa 100.00 0 0 0 6000 6000
Total 96.32 5958 5758 6284 6000

Rows: Observed classifications, Columns: Predicted classifications

• Method of error estimation:
1. LOO (classical) error (No. and %): 7; 3.59%
Misclassified LOO-cases (ID-No.): 100020, 100030, 100060, 100068, 100085,
100115, 100120.

2. LOO (modif.) mean error (No. and %): 0.097; 0.05%
No. of LOO-cases, which lead to misclassifications: 16
Two misclassified cases for leaving out case (ID-No.): 100030, 100039, 100050.
One misclassified case for leaving out case (ID-No.): 100013, 100020, 100049,
100058, 100060, 100061, 100062, 100068, 100072, 100085, 100103, 100115,
100120.
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Figure 2: Discriminating plots for commercial wines concerning the 4 countries (RDA).

4.3 Models for White and Red Wines

Table 4 contains our preferred RDA-models for white and red wines. In both cases only
six variables were selected as being important to separate the four countries. By sim-
ulating 6000 samples per group very small “theoretical” error rates could be obtained.

5 Conclusions
The classical methods of discriminant analysis are suitable for distinguishing wines from
different countries. Discriminant models containing most important parameters and al-
lowing minimal misclassification rates can be given. Particularly, methods of regularized
discriminant analysis led to good results in our case of investigating commercial wines.

Using our preferred model 1 of RDA for all commercial wines, which is much better
than the corresponding one of LDA and comparable with that of QDA, all 195 wines
could be classified correctly by resubstitution method. Wilk’s Λ near 0 shows a high
discriminating power of the chosen model. Only 13 wines were classified with posterior
probability < 0.8. By simulating 6000 wine samples per country a “theoretical” correct
classification rate of 96.32% could be obtained. Using “Leave-One-Out” method led to
correct classification rates between 96.4% (classical LOO) and 99.95% (modified LOO).

The eight most important variables are: the isotopic ratios Ethanol (D/H)1 and Ethanol
(D/H)2, the trace elements Strontium and Zinc, the macroelements Calcium and Sili-
con and the biogenic amine Ethanolamine and the classical parameter Gluconic Acid.
Figure 2 shows the well separation of the countries by model 1.

As expected the South African wines could be separated very easily from those of
the other countries. Only the isotopic ratios could be identified as being important and
sufficient parameters in the discriminant model.

Considering only white respectively red commercial wines, RDA-models with six
variables led to very good results of discriminating the wines of the four countries.
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Table 4: Model results for white and red commercial wines.
White wines (N = 136) Red wines (N = 59)

RDA-Model 1 RDA-Model 1 RDA-Model 2
Parameter α 0.9 0.9 0.7
No. of Variables 6 6 5
Malic-L. Acid • • •
Ca •
Ethanolamine •
Li • •
B • •
Al •
Ti •
Cu •
Sr •
Ethanol (D/H)1 • •
Ethanol (D/H)2 •
Wine δ18O •
No. Class. error (Resubstitution) 0 0 0
No. of cases with 2 2 2
post. prob. < 0.8
Theor. error (%) 2.4 1.5 2.4
LOO (class.) 4 6 5
(No. and %) 2.94 10.17 8.46
LOO (modif.) 6 6 7
(No.)* 0.04 0.11 0.11
(No. and %)** 0.03 0.20 0.20

*No. of LOO-cases which lead to one or more misclassifications of cases of the whole training sample
**LOO-mean error of misclassifications over the whole training sample
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