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Abstract: In geographical epidemiology, disease counts are typically avail-
able in discrete spatial units and at discrete time-points. For example, surveil-
lance data on infectious diseases usually consists of weekly counts of new in-
fections in pre-defined geographical areas. Similarly, but on a different time-
scale, cancer registries typically report yearly incidence or mortality counts
in administrative regions.

A major methodological challenge lies in building realistic models for space-
time interactions on discrete irregular spatial graphs. In this paper we will
discuss an observation-driven approach, where past observed counts in neigh-
boring areas enter directly as explanatory variables, in contrast to the parameter-
driven approach through latent Gaussian Markov random fields (Rue and
Held, 2005) with spatio-temporal structure. The main focus will lie on the
demonstration of the spread of influenza in Germany, obtained through the
design and simulation of a spatial extension of the classical SIR model (Huf-
nagel et al., 2004).

Zusammenfassung: In der räumlichen Epidemiologie liegen Fallzahlen typ-
ischerweise für diskrete Gebiete und diskrete Zeitpunkte vor. Bei der Er-
fassung infektiöser Krankheiten beispielsweise zählt man die wöchentlichen
Inzidenzen in vorgegebenen Regionen. Ähnlich, aber auf einer anderen Zeit-
skala, werden Krebsfälle jährlich registriert.

Eine besondere Herausforderung liegt darin, eine Methode zur realistischen
Modellierung von räumlich-zeitlichen Zusammenhängen auf diskreten, un-
regelmäßigen räumlichen Graphen zu entwickeln. In diesem Artikel beschäfti-
gen wir uns mit einem Ansatz, der bereits erfasste Fälle in angrenzenden
Gebieten direkt als erklärende Variablen einbezieht, im Gegensatz zur Mod-
ellierung durch latente Gauß-Markov-Zufallsfelder (Rue and Held, 2005) mit
räumlich-zeitlicher Struktur. Dazu stellen wir die Ausbreitung von Influenza
in Deutschland mittels einer räumlichen Erweiterung des klassichen SIR-
Modells (Hufnagel et al., 2004) in Computersimulationen nach.

Keywords: Space-Time Interaction, Gaussian Markov Random Fields, Epi-
demic Modelling, Stochastic Differential Equations, Global SIR Model, In-
fluenza.

1 Introduction
There has been much recent interest in space-time models for disease counts collected
in discrete spatial units and discrete time points. While most of the work has mainly fo-
cused on non-infectious diseases, in particular on cancer, recently models for infectious
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disease data have been developed. For non-infectious diseases, hierarchical Bayesian ap-
proaches have been proposed, where latent parameters follow Gaussian Markov random
field (GMRF) models (Waller et al., 1997, Knorr-Held and Besag, 1998, Knorr-Held,
2000a, Lagazio et al., 2001, Lagazio et al., 2003, Schmid and Held, 2004). Common to
these models is the assumption that the observed counts are conditionally independent,
given the latent parameters.

However, the allowance for realistic space-time interaction in GMRFs is non-trivial,
one approach that dates back to Clayton (1996) is to use Kronecker product structures
(see also Rue and Held, 2005, Section 3.4.3) for interaction parameters while keeping
main effects for overall spatial and temporal trends.

In this paper we will focus on a different modelling strategy, where past counts enter
explicitly in the disease rate and hence the conditional independence assumption is lost.
This class of models, called observation-driven (Cox, 1981), is motivated by the fact that
parameter-driven models, such as the GMRF models mentioned above, are not able to
capture the epidemic trends observable in data on infectious diseases. Indeed, epidemic
models have used such observation-driven models for decades; in particular the class of
SIR models (susceptible-infected-removed) has been extensively studied. However, this
has been done mainly in a purely temporal and simplistic context, ignoring the fact that
global epidemics spread in a spatio-temporal fashion.

A recent approach described in Hufnagel et al. (2004) fills this gap, proposing a
spatio-temporal model on two scales (local and global) to describe the spread of the SARS
epidemic based on stochastic differential equation models. Watts et al. (2005) developed
a metapopulation model which incorporates mixing even at multiple scales. We adopt and
extend the model of Hufnagel et al. (2004) and use it to investigate if it is able to describe
an influenza epidemic in Germany 2005.

A major requirement in SIR models is knowledge of the number of susceptibles. In
surveillance applications, often the whole population is considered as susceptible, due
to the lack of available data (e.g. Knorr-Held and Richardson, 2003). An alternative
approach is to use a branching process model as an approximation to the SIR model. This
class of models has the advantage that it does not require knowledge of the number of
susceptibles, however, some form of stationarity is needed to ensure that the stochastic
process, describing the number of counts at each time point, does not explode to infinity.
Held, Höhle, and Hofmann (2005) have used an extended version of this model in a
series of applications from surveillance data. In particular, they showed that maximum
likelihood estimation is straightforward and extended the model to the space-time domain
using a multivariate branching process formulation. However, the application of this class
of model to highly infectious diseases such as influenza is perhaps not suitable, due to the
underlying assumption of stationarity.

In the next section, we will start with the classical SIR model and then describe the
approach by Hufnagel et al. (2004) to model the spatio-temporal spread of infectious dis-
eases. In Section 3, we develop an algorithm for simulating this model. A central feature
of the formulation is that the dispersal of infected cases in space is not necessarily solely
local but also global, if necessary. For example, infected cases might travel through air
traffic large distances in a small amount of time. Based on data on air and train traffic in
Germany, we define such a dispersal rate matrix for administrative regions in Germany
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and investigate whether simulations from such a model show similar patterns as an in-
fluenza epidemic in Germany in 2005. Model parameters are chosen based on external
knowledge.

2 From the Standard Deterministic to a Global Stochas-
tic SIR Model

2.1 Standard SIR Model
In the SIR model, we divide a population into three categories: Those who are susceptible
to the disease (S), those who are infected and infectious (I), and those who are removed
from the system because they are recovered and immune, or quarantined, or dead (R).
With s, j, and r we denote the fractions of susceptible, infectious, and removed individu-
als of the total population N . Transitions from one category to another happen according
to

S + I
α−→ 2I , I

β−→ R ,

where α is the rate of an individual’s contacts per day which are sufficient to spread the
disease, and β−1 is the average infectious period. The infection dynamics in the standard
deterministic SIR model is given by the set of differential equations

ds/dt = −αsj , dj/dt = αsj − βj . (1)

Hence, while recovery follows a linear process, infections occur on high rate only when
both the numbers of susceptibles and infectives are sufficiently large. Since we assume
a closed population, i.e. ignoring births, non-related deaths, and migration during the
relatively short duration of an influenza epidemic, we expect the size of the population
to be constant. The fraction of recovered individuals thus reads r = 1 − s − j. The
ratio ρ = α/β is called the basic reproduction number and states a decisive parameter for
the course of the epidemic: When ρ−1 is greater than the initial fraction of susceptibles s0,
no epidemic will develop. Otherwise, the epidemic will fall off as soon as the decreasing
function s(t) drops below ρ−1.

In case of influenza, an infected individual acquires immunity to the strain he was
affected by and can hence not become susceptible during the same wave of flu again.
Therefore, there is no need for a transition from state R back to S. However, there are
steadily new antigen mutants of the influenza virus coming up, which is why at the begin-
ning of the next epidemic the whole population will be susceptible again.

2.2 Stochastic SIR Model
Bearing in mind that the infection and recovery processes are of rather stochastic than
deterministic character, we write (1) in terms of stochastic Langevin equations:

ds

dt
= −αsj +

1√
N

√
αsj ξ1(t)

dj

dt
= αsj − βj − 1√

N

√
αsj ξ1(t) +

1√
N

√
βj ξ2(t),
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where ξ1(t) and ξ2(t) are independent Gaussian white noise forces, modelling fluctuations
in transmission and recovery matters. These are of particular importance during the initial
phase when the number of infected individuals is relatively small.

The above equations can be derived as a Gaussian approximation to the general stochas-
tic epidemic model (see e.g. Daley and Gani, 1999, Section 3.3, and Andersson and Brit-
ton, 2000, Section 5.5) in which the total population size tends to infinity.

2.3 Excursus: SLIR Model
It is possible to also incorporate a latent status in our considerations, which yields the
following transitions, the so-called SLIR model:

S + I
α−→ L + I , L

ε−→ I , I
β−→ R ,

where ε−1 is the average latent period. Let l denote the fraction of latent individuals of
the total population. The differential equations then read

ds/dt = −αsj , dl/dt = αsj − εl , dj/dt = εl − βj

in the deterministic case and

ds

dt
= −αsj +

1√
N

√
αsj ξ1(t)

dl

dt
= αsj − εl − 1√

N

√
αsj ξ1(t) +

1√
N

√
εl ξ3(t)

dj

dt
= εl − βj − 1√

N

√
εl ξ3(t) +

1√
N

√
βj ξ2(t)

in the stochastic model, where ξ3(t) accounts for noise in the duration of the latent period.
Since our objective is the modelling of the spread of influenza, where an individual can

normally pass on the virus from the moment of infection, we from now on suppress the
consideration of latency. Nevertheless, the following observations can easily be adjusted
to the SLIR model (cf. http://www.statistik.lmu.de/ d̃argatz/publications).

2.4 Global SIR Model
So far, our model describes the spread of a disease in a single closed population under the
assumption of homogeneous mixing. But this condition applies only as long as individuals
cover relatively short distances–an assumption that is not given in our fully connected
world anymore, even if we restrict our focus to a comparatively small area like Germany.
As suggested in Hufnagel et al. (2004), we introduce a network of subregions 1, . . . , n of
the primarily observed area, each region i having a population size Ni being composed of
Si, Ii, and Ri susceptible, infectious and removed individuals. Whilst the local infection
dynamics within a subregion is given by the stochastic SIR model as introduced above,
the global dispersal between the knots of the network is rated in a connectivity matrix γ =
(γij)ij:

Si + Ii
α−→ 2Ii , Ii

β−→ Ri , Si
γij−→ Sj , Ii

γij−→ Ij .
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The system of stochastic differential equations now changes to
dsi

dt
= −αsiji −

∑

k

γiksi +
∑

k

γkisk +
1√
Ni

√
αsiji ξ

(i)
1 (t)

+
1√
Ni

√∑

k

γiksi ξ
(i)
4 (t)− 1√

Ni

√∑

k

γkisk ξ
(i)
5 (t)

dji

dt
= αsiji − βji −

∑

k

γikji +
∑

k

γkijk − 1√
Ni

√
αsiji ξ

(i)
1 (t) +

1√
Ni

√
βji ξ

(i)
2 (t)

+
1√
Ni

√∑

k

γikji ξ
(i)
4 (t)− 1√

Ni

√∑

k

γkijk ξ
(i)
5 (t) (2)

dri

dt
= βji − 1√

Ni

√
βji ξ

(i)
2 (t).

for i = 1, . . . , n. Here, ξ1(t) = (ξ
(1)
1 (t), . . . , ξ

(n)
1 (t)), ξ2(t), ξ4(t), and ξ5(t) are inde-

pendent vector-valued white noise forces which stand for fluctuations in transmission,
recovery, and outbound and inbound traffic, respectively.

Since in the global model the single populations are not closed anymore due to mi-
gration, the property si + ji + ri = 1, i = 1, . . . , n, does not necessarily hold. Instead,
si, ji, and ri indicate the fractions of susceptible, infectious and removed individuals as
measured by the original population Ni. That is why in (2) we also declared the formula
for ri.

3 Implementation

3.1 Keeping the System Closed
Let us focus on the Gaussian white noises ξj. The components of ξ1(t) and ξ2(t) (and
also of ξ3(t)) are all stochastically independent of each other, but we have to introduce
a weak form of dependence to the components of ξ4(t) and ξ5(t) due to the following:
Since we assume the area of our n regions to be closed, we have to require

n∑
i=1

(
dsi

dt
+

dji

dt
+

dri

dt

)
= 0 .

The left hand side of this equation reads

∑
i

(
−

∑

k

γiksi +
∑

k

γkisk

)
+

∑
i

(
−

∑

k

γikji +
∑

k

γkijk

)
(3)

+
∑

i

1√
Ni




√∑

k

γiksi +

√∑

k

γikji


 ξ

(i)
4 (t) (4)

+
∑

i

1√
Ni




√∑

k

γkisk +

√∑

k

γkijk


 ξ

(i)
5 (t) . (5)
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Obviously, the two sums over i in (3) both equal 0. In order to also let rows (4) and (5)
disappear, we correlate the components of ξ4(t) and those of ξ5(t) among each other such
that equality with zero holds almost surely.

For the components of ξ4, we proceed as follows (see Knorr-Held, 2000b): Define

xi(t) :=
1√
Ni




√∑

k

γiksi(t) +

√∑

k

γikji(t)


 .

We hence seek
n∑

i=1

xi(t)ξ
(i)
4 (t) = 0 a.s. for all t. (6)

Define the n× n-matrices

M := In − 1

n
1n1

′
n =




n−1
n
− 1

n
· · · − 1

n

− 1
n

n−1
n
· · · − 1

n
...

... . . . ...
− 1

n
− 1

n
· · · n−1

n


 ,

where In ∈ Rn×n denotes the identity matrix and 1n = (1, . . . , 1)′ ∈ Rn×1. Furthermore,

Σ(t) := diag
(
x2

1(t), . . . , x
2
n(t)

)

and

Q(t) := MΣ(t)M =
(
qij(t)

)
ij

with

qii =

(
1

n2

∑

k 6=i

x2
k(t) +

(n− 1

n

)2

x2
i (t)

)
,

qij =

(
1

n2

∑

k 6=i,j

x2
k(t)−

n− 1

n2

(
x2

i (t) + x2
j(t)

)
)

for i 6= j,

and let
u(t) :=

(
x1(t)ξ

(1)
4 (t), . . . , xn(t)ξ

(n)
4 (t)

)′ ∼ N
(
0,Q(t)

)
, (7)

i.e. Q(t) is the covariance matrix of u(t). Then, as required,

var
(
xi(t)ξ

(i)
4 (t)

)
= qii(t) ≈ x2

i (t) for n large and i = 1, . . . , n

(xi(t) remains constant for t fixed, hence var(xi(t) ξ
(i)
4 (t))

!
= x2

i (t)). Moreover,

E

(
n∑

i=1

xi(t)ξ
(i)
4 (t)

)
= 0 and var

(
n∑

i=1

xi(t)ξ
(i)
4 (t)

)
= 1′

nQ(t)1n = 0 ,
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yielding (6). Unfortunately, the desired property
∑

i,j qij(t) = 0 yields the drawback
that Q(t) is not positive definite and hence unsuitable as covariance matrix. Instead
of u(t), we hence consider a linear transformation Lu(t) with

L :=

(
In−1 −1n−1

1′n−1 1

)
∈ Rn×n ,

whose first n− 1 components have dispersion

P(t) := diag
(
x2

1(t), . . . , x
2
n−1(t)

)
+ x2

n(t)1n−11
′
n−1 ∈ R(n−1)×(n−1) .

Draw π(t) = (π1(t), . . . , πn−1(t), 0)′ with

(
π1(t), . . . , πn−1(t)

)′ ∼ N
(
0,P(t)

)

and retransform u(t) = (u1(t), . . . , un(t))′ = Mπ(t). We obtain

ξ
(i)
4 (t) =

ui(t)

xi(t)
, i = 1, . . . , n .

Note that, for any i, we have xi(t) > 0 as long as ri(t) < 1, since for all i ∈ {1, . . . , n}
there is a k ∈ {1, . . . , n} with γik > 0 (i.e. each district is directly connected to at least
one other). However, if xi(t) = 0, the value of ξ

(i)
4 (t) does not matter since in (4) it will

be multiplied by xi(t).
Obtain ξ5 in the same way as ξ4, replacing xi(t) by

yi(t) :=
1√
Ni




√∑

k

γiksk(t) +

√∑

k

γikjk(t)


 .

3.2 Numerical Scheme

Given initial conditions si(0), ji(0), and ri(0), i = 1, . . . , n, as well as fixed values for
the transmission rate α and the reciprocal average infectious period β, we simulate the
epidemic process at discrete, equidistant instants in the time domain [0, tmax]. Define
functions ap and bpk, p ∈ {s, j, r}, 1 ≤ k ≤ 5, such that the system of SDEs (2) becomes

dsi

(
t
)

dt
= as

(
t, si(t)

)
+

5∑

k=1

bsk

(
t, si(t)

)
ξ

(i)
k (t)

dji

(
t
)

dt
= aj

(
t, ji(t)

)
+

5∑

k=1

bjk

(
t, ji(t)

)
ξ

(i)
k (t) (8)

dri

(
t
)

dt
= ar

(
t, ri(t)

)
+

5∑

k=1

brk

(
t, ri(t)

)
ξ

(i)
k (t)
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for i = 1, . . . , n. Let δ be the (suitably small) time step. For the approximation of the
differential equations (8), we apply the Euler-Maruyama approximation scheme

si

(
tm) = si

(
tm−1

)
+ as

(
tm−1, si(tm−1)

)
δ +

5∑

k=1

bsk

(
tm−1, si(tm−1)

)4ξ
(i)
k (m)

√
δ

ji

(
tm) = ji

(
tm−1

)
+ aj

(
tm−1, ji(tm−1)

)
δ +

5∑

k=1

bjk

(
tm−1, ji(tm−1)

)4ξ
(i)
k (m)

√
δ (9)

ri

(
tm) = ri

(
tm−1

)
+ ar

(
tm−1, ri(tm−1)

)
δ +

5∑

k=1

brk

(
tm−1, ri(tm−1)

)4ξ
(i)
k (m)

√
δ,

for m ≥ 1 and i = 1, . . . , n, where tm = mδ and 4ξ
(i)
k (m) = ξ

(i)
k (tm) − ξ

(i)
k (tm−1) (cf.

Kloeden and Platen, 1999).

3.3 Algorithm

After having fixed the parameters α, β, and γ, the time step δ and initial values for si,
ji, and ri, i = 1, . . . , n, the proceeding for each instant of time now reads as follows
(m = 0, . . . , btmax/δc − 1):

1. For i = 1, . . . , n, calculate

µi := α si(tm) ji(tm), νi := β ji(tm),

and

ηi :=
n∑

k=1

γiksi(tm), ζi :=
n∑

k=1

γkisk(tm), ρi :=
n∑

k=1

γikji(tm), τi :=
n∑

k=1

γkijk(tm).

2. For i = 1, . . . , n, compute xi = mi(
√

ηi +
√

ρi ) and yi = mi(
√

ζi +
√

τi ), where
mi :=

√
Ni

−1.

3. Set P4 = diag
(
x2

1, . . . , x
2
n−1

)
+ x2

n1n−11
′
n−1 and P5 = diag

(
y2

1, . . . , y
2
n−1

)
+

y2
n1n−11

′
n−1.

4. Generate π(j) =
(
π

(j)
1 , . . . , π

(j)
n

)
, j = 4, 5, with

(
π

(j)
1 , . . . , π

(j)
n−1

) ∼ N(0,Pj)

and π
(j)
n = 0.

5. Compute u = (u1, . . . , un)′ = Mπ(4) and v = (v1, . . . , vn) = Mπ(5)with M =
In − n−11n1

′
n.

6. Evaluate ξ1, ξ2 ∼ N(0, In) and ξ4, ξ5 with ξ
(i)
4 = ui/xi, ξ

(i)
5 = vi/yi, i = 1, . . . , n.

7. For i = 1, . . . , n, calculate
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as(i) = −µi − ηi + ζi aj(i) = µi − νi − ρi + τi ar(i) = νi

bs1(i) = mi
√

µi bj1(i) = −mi
√

µi br1(i) = 0
bs2(i) = 0 bj2(i) = mi

√
νi br2(i) = −mi

√
νi

bs3(i) = 0 bj3(i) = 0 br3(i) = 0
bs4(i) = mi

√
ηi bj4(i) = mi

√
ρi br4(i) = 0

bs5(i) = −mi

√
ζi bj5(i) = −mi

√
τi br5(i) = 0.

8. Approximate si(tm+1), ji(tm+1), and ri(tm+1), i = 1, . . . , n, with Euler-Maruyama
formula (9).

9. For i = 1, . . . , n, correct approximation errors by setting negative values of si, ji,
and ri equal to zero.

10. (Optional step.) Rescale si, ji, and ri, i = 1, . . . , n, via

si

(
tm+1

) ← si

(
tm+1

)(
si

(
tm+1

)
+ ji

(
tm+1

)
+ ri

(
tm+1

))−1

ji

(
tm+1

) ← ji

(
tm+1

)(
si

(
tm+1

)
+ ji

(
tm+1

)
+ ri

(
tm+1

))−1

ri

(
tm+1

) ← ri

(
tm+1

)(
si

(
tm+1

)
+ ji

(
tm+1

)
+ ri

(
tm+1

))−1
.

With this transformation, we constantly adjust the fractions of susceptible, infected,
and recovered individuals to the current population size of the respective region.

4 Initialization

We use our simulation program for the demonstration of spread of influenza in Germany
for varying resolutions: for districts (”Landkreise/Stadtkreise”), counties (”Regierungs-
bezirke”), and states (”Bundesländer”).

4.1 Dataset

The underlying data about incidences of influenza in Germany is taken from the Robert
Koch Institute (RKI): SurvStat, http://www3.rki.de/SurvStat, deadline: 8 July 2005.
We only consider cases categorized as A or A/B (i.e. no further differentiation), since it
is the influenza A virus that is most responsible for national epidemics of the flu. Un-
fortunately, the data suffers from underreporting. According to estimations of the Fed-
eral Ministry of Health and Women, Austria (http://www.bmgf.gv.at), and the Robert
Koch Institute (http://www.rki.de), the annual number of influenza cases is approx-
imately 4.5% of the total population. However, only one out of 500 of these cases is
reported to the RKI. Moreover, the number of announced cases depends on the number
of medical examinations induced and does hence not reflect the actual geographical dis-
tribution. In particular, affections will be more clustered in the dataset than in reality.
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4.2 Connectivity Matrix

The connectivity matrix γ describes the strength of traffic between the subunits of Ger-
many. For its design we take into account the dispersal between adjacent regions, caused
e.g. by commuters, and the domestic train and air traffic. Each of these three components
is provided with a weight regulating its influence.

At district level, we assume that the major part of the traffic between regions arises
from commuters. Data from the Federal Statistical Office (http://www.destatis.de/
e home.htm) about the lengths of ways to work lead us to the assumption that about 30%
of the employees work in a different district than their home town. Adding private traffic,
we obtain an estimated fraction of 16% of the total population that is migrating between
districts every day, which is reflected by γ having an average row total of 0.16. We choose
the weights of the train and of the flight network to be 1/20 and 1/80 of the traffic between
neighbored districts according to the annual amounts of travellers, which are about 200
million in the inter urban rail services and 50 million in the domestic flight connections.
Certainly, these weights depend on the kind of disease and time period under observation.
For example, the influence of the flight network will be less when considering children’s
diseases, and during school terms an increasing national mixing rate should be considered.

Within the matrix γ, the strength of migration between two adjacent districts is mea-
sured by their densities and numbers of surrounding districts. Our rail network model
consists of 57 cities which are served by ICE trains. Data about flight connections was
obtained from the OAGflights database (http://www.oagflights.com) and composed
as in Hufnagel et al. (2004).

For counties and states, we assume the migration between parts of Germany to be
more uniform than in the case of districts. For more details, see the supporting material.

4.3 Transmission Rate and Infectious Period

Before being able to run the simulation, we need an estimate of the parameters α and β.
Recall that α is the daily number of contacts sufficient for infection an individual has
with other individuals, and β−1 is the average infectious period of the disease. Due to
these meanings, it is easy to estimate β, but more complicated to guess α. We hence try
to estimate the basic reproduction number ρ = α/β. For that, we return to the standard
deterministic SIR: Divide the second equation of (1) by the first one and obtain the time-
independent differential equation

dj

ds
= −1 +

1

ρs
,

which has the explicit solution

j(t) = −s(t) +
1

ρ
log s(t) + c

with a constant c. At the very beginning of an influenza epidemic, almost all individuals of
the considered population are susceptible, whilst the number of infected should be about
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zero. With these assumptions, i.e. s0 = 1 and i0 = 0, we obtain c = 1. Consequently,

ρ =
log s(t)

j(t) + s(t)− 1
for all t ≥ 0. (10)

Certainly, the term on the right is not constant for the available data. Moreover, as time
goes by and safety measures like vaccination or isolation are increased, the reproduction
number is going to fall. However, we assume ρ to be constant in time, but varying in space.
From the application of formula (10) to our district-level data and limt→∞ s(t) = 0.955
(compare Section 4.1) and limt→∞ j(t) = 0, we set

ρ(di) = 10−5di + 1.0179 ,

where di is the population density of region i. This relation reflects the intuitively clear
fact that the disease is more likely to spread in areas with high population densities. Since
the infectious period of influenza usually lasts for four to five days, we assume β = 2/9
and calculate αi via βρ(di), i = 1, . . . , n.

5 Simulation Results
In this section we want to present the results of our simulations. We run the program
for different starting scenarios for both the deterministic and stochastic model and try the
effects of the parameters on the outcomes. Although we draw comparisons between the
(highly under-)reported and the simulated data, we want to emphasize that the objective
of this paper is neither to predict the future nor to exactly repeat former data, but to give
an idea of the spatio-temporal spread of influenza and the effect of stochastic fluctuations
on its outbreak.

Results of the simulations are returned as animated maps of Germany, which are avail-
able at http://www.statistik.lmu.de/ d̃argatz/publications.

5.1 Long-Term Simulations
We repeatedly run our simulation at district level with α and β as estimated in Section 4.3
and with an initial number of infectious individuals according to week 5/2005 in our
dataset (Section 4.1). Though being probabilistic, the simulations generally yield the same
pattern (see also Figure 1): From South Germany, where an increased level of prevalence
was observed in week 5, the disease bounces to Bremen and at the same time moves via
Frankfurt to North Rhine-Westphalia and Lower Saxony, from where it spreads to the
Eastern part of Germany and finally affects the whole nation. This shows surprisingly
good agreement with the actual course of the influenza epidemic in 2005 as demonstrated
at http://influenza.rki.de. In the last graphic of Figure 1, we interpret the increased
morbidity at the national borders, especially in North and East Germany, as edge effects.

As mentioned in Section 4.1, cases in our dataset appear more concentrated in one
region than they probably are, which might be due to different reporting behavior. In
contrast to that, our simulation does not leave any district unaffected. The final size of
the epidemic, which is the fraction of individuals that have been affected by the disease
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0 0.02021129 0 0.02021129 0 0.02021129

0 0.02021129 0 0.02021129 0 0.02021129

Figure 1: Stochastic simulation of the spread of influenza in Germany. The initial situation
corresponds to week 5/2005 in the dataset. Displayed are the fractions of infectives at
days 50, 70, 85, 110, 133, and 150 after the starting point.

at the end of the epidemic, is about 4.5% on average. Figure 2 shows the simulated final
sizes of the epidemic in each district after 100 iterations. The duration of the outbreak
in our simulations is about 150 days, which is twice as long as the actual continuance of
the influenza wave from week 5/2005 on. We see the reason for this in a slow onset of
the epidemic—caused by too small numbers of initially infectious individuals—and the
reproduction number ρ not decreasing in time but being constant, which contradicts the
real situation (see Section 4.3). Investigations show that the amount of initially infected
individuals hardly affects the final size of the epidemic—as long as the fraction of suscep-
tibles at the very beginning does not fall below ρ−1—but rather shifts the starting point
of the major outbreak. To our surprise, changes in the time step δ do not really matter
regarding the speed, course and intensity of the spread, which means that our numerical
scheme already yields good results for relatively large δ.
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Figure 2: Average final sizes of the epidemic in the 438 German districts after 100 itera-
tions, started at week 5/2005. The horizontal line indicates the mean of all bars.

5.2 One Week’s Forecasts

We initialize the computer program with data from various weeks of our dataset and sim-
ulate the following week’s spread of the epidemic repeatedly. Figure 3 compares the dis-
tributions of the proportions of infected individuals of the total population in week 7/2005
for 2000 simulations of the stochastic model with the respective deterministic result and
actual data for the three considered divisions of Germany and δ ∈ { 0.1, 1} (measured
in days). It turns out that the deterministic outcomes are similar for all resolutions and
both values of δ, but do not agree with the dataset, which is not surprising due to the
high level of underreporting mentioned in Section 4.1. On county and state level, the
stochastic results seem to be normally distributed with the deterministic value as mean,
where the variance is smaller for δ = 0.1 than for δ = 1. In contrast to that, the prob-
abilistic modelling on district level yields results that are larger than in the deterministic
case (for δ = 1 much more clearly than for δ = 0.1), though apparently also normally
distributed. We suspect the reason for this offset in the starting distribution of infectious
individuals: While there are reported affections in almost all counties and states, preva-
lences are concentrated on relatively few districts. When in our simulation the epidemic
spreads to those districts with the initial fraction of infectives being zero, the stochastic
fluctuations in this dynamics are kind of bounded to one side (compare with step 9 of
the algorithm in Section 3). Obviously, this effect is deeper for larger values of δ. If we
focus on those few districts where morbidity was already present at the beginning of the
simulation, we obtain rather satisfying results already for δ = 1 (see Figure 4). For these
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Figure 3: Distributions of the fractions of infectives after 2000 stochastic simulations
of one week’s spreads. The starting scenario corresponds to week 6/2005. The vertical
marks display the respective deterministic (bold line) and actual (thin line) outcomes ac-
cording to the dataset. Simulations were performed on state, county, and district level
(from the left to the right). The first row shows the results for δ = 1, the second one
for δ = 0.1.
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Figure 4: Distributions of the fractions of infectives in Berlin, Böblingen, and Bremer-
haven (from the left to the right) after 2000 simulations with δ = 1. The starting sce-
nario corresponds to week 6/2005. The vertical marks display the respective deterministic
(thick line) and actual (thin line) outcomes.

districts, the actual data lies within the range of the stochastic results. We conclude that
the stochastic simulation at district level is rather inappropriate as long as we consider
relatively short terms or cannot improve the quality of the underlying data.

6 Conclusion and Outlook

In this paper, we presented a global extension of the classical SIR model as well as techni-
cal details for its implementation and initialization. Computer simulations provided quite
realistic demonstrations of the spread of diseases in Germany. The model assumes that
some percentage of susceptibles and infectives of one region move to another region and
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become part of the population in the other region. Since most trips considered here are
day trips, a possible alternative model would be to keep the populations in each region
fixed and to assume that susceptibles and infectives have contacts between regions.

In future work, we will further refine the model both by considering this modification
and e.g. by involving time-dependent parameters (cf. Sections 4.3 and 5.1). Furthermore,
we intend to deal with the question of finding surveillance strategies in case of a sudden
outbreak of an epidemic, like specific isolation, vaccination or observation of migration.
One main purpose of our research will certainly involve the application of more formal
statistical inference techniques for estimating the model parameters based on available
data from surveillance databases.
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