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Abstract: The classical maximum likelihood estimation fails to estimate the
simple linear measurement error model, with or without equation error, unless
additional assumptions are made about the structural parameters. In the liter-
ature there are six different assumptions that could be added in order to solve
the measurement error models. In this paper, we proposed an entropy-type
estimator based on the generalized maximum entropy estimation approach,
which allows one to abstract away from the additional assumptions that are
made in the classical method. Monte Carlo experiments were carried out in
order to investigate the performance of the proposed estimators. The simu-
lation results showed that the entropy-type estimator of unknown parameters
has outperformed the classical estimators in terms of mean square error cri-
terion.
Zusammenfassung: Ohne zusätzliche Annahmen über die Strukturparame-
ter zu treffen versagt die klassische Maximum Likelihood Methode bei der
Schätzung im einfachen linearen Measurement Error Modell mit oder ohne
Gleichungsfehler. In der Literatur gibt es sechs verschiedene Annahmen,
die herangezogen werden können um das Messfehlermodell zu lösen. In
diesem Aufsatz schlagen wir einen Schätzer basierend auf den Ansatz der
generalisierten Maximum Entropie Schätzung vor, der es uns erlaubt ohne
zusätzliche Annahmen auszukommen, welche bei der klassischen Methode
gemacht werden. Um die Güte des vorgeschlagenen Schätzers zu unter-
suchen wurden Monte Carlo Experimente durchgeführt. Die Ergebnisse der
Simulation zeigten, dass der auf die Entropie basierende Schätzer für die
Parameter die klassischen Schätzer bezüglich des mittleren quadratischen
Fehlers übertrifft.
Keywords: Generalized Maximum Entropy, Maximum Likelihood Estima-
tion, Equation-Error Model and No-Equation-Error Model.

1 Introduction
Consider a bivariate random variable (ξ, η) satisfying a linear relationship η = α + βξ,
where α and β are unknown parameters, ξ and η are unobservable latent variables that can
only be observed with additive errors. Thus, instead of observing ξ and η directly, one
observes the variables x = ξ+δ and y = η+ε. Such relationship is a generalization of the
regression model and well known as measurement error model (MEM) without equation
error. For a sample of size n, {(xi, yi) : i = 1, . . . , , n}, the no-equation-error-model can
be formulated as

xi = ξi + δi

yi = ηi + εi

(1)
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where
ηi = α + βξi , i = 1, . . . , n (2)

and (ξi, ηi) are unobservable true variables and (δi, εi) are additive errors.
We make the customary assumptions that ξ ∼ N(µ, σ2), i.e., we are dealing with

structural relationships, where ε and δ are uncorrelated N(0, σ2
1) and N(0, σ2

2), respec-
tively, and distributed independently of ξ. Thus, the joint distribution of (x, y) is bivariate
normal N(µ, α + βµ, σ2 + σ2

2, β
2σ2 + σ2

1, ρ), where

ρ =
βσ2

√
(β2σ2 + σ2

1) (σ2 + σ2
2)

. (3)

Consider the situation in which (ξ, η) are not perfectly linearly related and there is an
error in the equation, say ζ . Hence, a no-equation-error model can be modi�ed such that
(2) is replaced by

ηi = α + βξi + ζi , i = 1, . . . , n ,

where ζ ∼ N(0, σ2
3) is independent of ξ. Furthermore, it is assumed that ξ, ζ and ε, δ

are independent. Thus, the joint distribution of (x, y) for the equation-error model is also
bivariate normal N(µ, α + βµ, σ2 + σ2

2, β
2σ2 + σ2

1 + σ2
3, ρ1), where

ρ1 =
βσ2 + σ12√

(β2σ2 + σ2
1 + σ2

3) (σ2 + σ2
2)

(4)

and σ12 is the covariance between ε and δ.
Lindley (1947) �rst demonstrated the inability to obtain maximum likelihood estima-

tors (MLE) due to the fact that these parameters are unidenti�ed, and remarked on the
need to make some additional assumption(s) about the parameter values to alleviate this
dif�culty. Extensive bibliographies that clari�ed this problem were given by Madansky
(1959), Kendall and Stuart (1979), Cheng and Ness (1999), and Fuller (1987). The later
state that there are six side assumptions found in the literature, any one of which will make
the normal structural no-equation-error model is identi�able. The most common assump-
tion is that the ratio of the residual variances λ = σ2

1/σ
2
2 is known. Other assumptions are:

the reliability ratio is known, either σ2
1 , σ2

2 or both are known and the last prior assump-
tion that could be added is that the intercept is known. However, for the equation-error
model, the new formulation of the main equation by adding the error term might mean
that at least some of the side assumptions no longer imply the identi�ably of the slope.
In fact, among the six side assumptions that can be used in the no-equation-error model,
λ = σ2

1/σ
2
2 and σ2

1 are not enough to be known in order to identify the slope. The typical
assumption used is that σ2

3 is unknown but the measurement error covariance matrix

Ω =

[
σ2

2 σ12

σ12 σ2
1

]

is known. More details can be found in Chen and Van Ness (1999). The MLE solutions
for the normal structural MEM under different assumptions are given in Table 1. Therein
we use the quantities

x̄ = n−1

n∑
i=1

xi , ȳ = n−1

n∑
i=1

yi ,
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Table 1: MLE of the slope for normal structural MEM models

No-Equation-Error Model Equation-Error Model
Known

Parameter β̂ β̂

λ

[
syy − λsxx +

√
(syy − λsxx)

2 + 4λs2
xy

]
/2sxy, Unidenti�ed

sxy 6= 0

Reliability κ−1
ξ sxy/sxx κ−1

ξ sxy/sxx

Ratio sxx 6= 0 sxx 6= 0

σ2
1 (syy − σ2

1) /sxy
∗ Unidenti�ed

σ2
2 sxy/ (sxx − σ2

2)
∗∗

sxy/ (sxx − σ2
2)
∗∗

σ2
1 and σ2

2

[
syy − λsxx +

√
(syy − λsxx)

2 + 4λs2
xy

]
/2sxy, sxy/ (sxx − σ2

2)
∗∗

sxy 6= 0

α (ȳ − α) /x̄, (ȳ − α) /x̄,
(Intercept) x̄ 6= 0 x̄ 6= 0

∗ assumes that syy > σ2
1 and sxx ≥ s2

xy/(syy − σ2
1),

∗∗ assumes that sxx > σ2
2 and syy ≥ s2

xy/(sxx − σ2
2).

sxx = n−1

n∑
i=1

(xi − x̄)2 , syy = n−1

n∑
i=1

(yi − ȳ)2 , sxy = n−1

n∑
i=1

(xi − x̄)(yi − ȳ)

κξ = σ2/(σ2 + σ2
2) , α̂ = ȳ − β̂x̄ .

However, when the data exist in terms of noisy observations, the generalized maxi-
mum entropy (GME) estimator proposed by Golan et al. (1996) allows one to abstract
away from the distribution and additional assumptions that are made in the traditional
MLE method.

The remainder of this paper is divided into three sections. Section 2 presents the
Generalized maximum entropy estimation approach to MEM with and without equation-
error. Section 3 presents Monte Carlo evidence on the numerical performance of GME
and MLE. Section 4 presents concluding remarks and suggestions for future works.

2 Methodology: GME Estimation Procedure
Entropy is a concept in probability theory and the maximum entropy is applicable when
we are determining a function that can be regarded as probability distribution. The En-
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tropy of a distribution has a rich history dating back to Shannon (1948), Jaynes (1957b),
Jaynes (1957a), Kullback (1959), Levine (1980), Skilling (1989), Csiszar (1991), Donho
et al. (1992), Golan et al. (1996), Golan et al. (1997), Al-Nasser (2003a), Al-Nasser
(2003b), and Al-Nasser (2004).

The idea underling the GME approach is to view each unknown parameters, and error
terms as the expected value of some proper probability distribution de�ned over some
supports. The researcher supplies these supports. Then by maximizing the joint entropies
(Shannon's entropy) subject to the data, represented by each unobserved values, and the
requirement for proper probability distributions, we can achieve better estimates than the
traditional one with less assumptions. Note that the no-equation-error model given in (1)
and (2) can be rewritten as

yi = α + βxi − βδi + εi , i = 1, . . . , n .

Then by using the GME the problem can be solved after some reformulation of the un-
knowns α, β, δi, εi, i = 1, . . . , n, by reparameterizing their possible outcome values
probabilistically as a convex combination of random variables. This combination is pre-
sented as an expected value of some proper probability distribution.

Consistent with this speci�cation, let α be represented by a discrete random vari-
able, ar, r = 1, . . . , R with R ≥ 2 possible realizations and corresponding probabilities
q1, . . . , qR

α =
R∑

r=1

arqr , where qr ∈ (0, 1) , and
R∑

r=1

qr = 1 .

Similarly we can rewrite β as

β =
K∑

k=1

zkpk , where pk ∈ (0, 1) , and
K∑

k=1

pk = 1 .

The restriction imposed on the parameter space through (a, z) for (α, β), re�ects a prior
knowledge about these parameters. However, if we know the possible values of the pa-
rameters from the theory then we specify (a, z) accordingly. If we don't, then we specify
them to be uniformly symmetric around 0 with high lower upper bounds. For example,
z = (−c, 0, c), with c being a large value. Moreover, assuming one speci�es (a, z) to span
the true values of (α, β), then the GME is a consistent estimator. Which is an advantage
of this method. Furthermore, the empirical GME literature indicates that, in general, the
values of R and K are 5.

The disturbance δi can be treated in a similar fashion. For each observation the as-
sociated disturbance, δi, is assumed to be bounded between two �nite values, v∗t and v∗T ,
with corresponding probability weights w∗

1t and w∗
nT . That is, each disturbance may be

modelled as

δi =
T∑

t=1

v∗t w
∗
it , where w∗

it ∈ (0, 1) and
T∑

t=1

w∗
it = 1 , i = 1, . . . , n .

In a similar fashion, we can reparameterize the other disturbance part

εi =
J∑

j=1

vjwij , where wij ∈ (0, 1) and
J∑

j=1

wij = 1 , i = 1, . . . , n .
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The actual bounds for v∗t and vj depend on the observed sample as well as any concep-
tual or empirical information about the underlying error. However, if such conceptual or
empirical information does not exist, then v∗t , vj may be speci�ed to be uniformly and
symmetrically distributed around zero. Chebychev's inequality may be used as a conser-
vative means of specifying sets of error bounds. For any random variable X , such that
E(X) = 0 and var(X) = θ2, the inequality provides

Pr(|X| < dθ) ≥ 1− 1/d2 , d ≥ 1 .

Then the Chebchyev's error bounds are v∗1 = −dθ and v∗T = dθ. One can use a 3σ rule
(see Pukelsheim, 1994) to specify the error bounds, which state that the probability for X
falling away from the mean by more than 3 standard deviations is at most 5%. Hence, the
bound of v∗t can be chosen such that v∗t ∈ [−3Sx, 3Sx], where Sx is the sample standard
deviation associated with xi. Further, vj can be observed from yi by using the same rules.
The empirical GME literature indicates that, in general, the values of J and T are 3.
Moreover, the unobservable ξi can be obtained from the differences between the observed
data values xi and its correspondent disturbance term δi.

2.1 GME Formulation and Solution for the No-Equation-Error
Model

Using the maximum entropy formalism, the generalized stochastic nonlinear maximum
entropy principle may be stated in scalar summations with four nonnegative probability
components, as

max
q,p,w,w∗

H(q, p, w, w∗) = −
R∑

r=1

qr log(qr)−
K∑

k=1

pk log(pk)

−
n∑

i=1

J∑
j=1

wij log(wij)−
n∑

i=1

T∑
t=1

w∗
it log(w∗

it) ,

subject to the following constraints

yi =
R∑

r=1

arqr +
K∑

k=1

zkpk

(
xi −

T∑
t=1

v∗t w
∗
it

)
+

J∑
j=1

vjwij , i = 1, . . . , n

R∑
r=1

qr = 1 ,

K∑

k=1

pk = 1 ,

J∑
j=1

wij = 1 ,

T∑
t=1

w∗
it = 1 , i = 1, . . . , n .

Here, we have 3n+2 constraints and R+K +n(T +J) unknowns. To solve this system,
we have to �nd the �rst order conditions, which can be obtained from the Lagrangian
function given by

L = H(q, p, w, w∗) +
n∑

i=1

γi

[
yi −

R∑
r=1

arqr −
K∑

k=1

zkpk

(
xi −

T∑
t=1

v∗t w
∗
it

)
−

J∑
j=1

vjwij

]
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+µ1

(
1−

R∑
r=1

qr

)
+ µ2

(
1−

K∑

k=1

pk

)

+
n∑

i=1

ψi

(
1−

J∑
j=1

wij

)
+

n∑
i=1

τi

(
1−

T∑
t=1

w∗
it

)

where γi, µ1, µ2, τi, ψi, i = 1, . . . , n, are Lagrangian multipliers. Then using Lagrange's
method of undetermined multipliers, this leads to the solution

q̂r =

exp

(
−ar

n∑
i=1

γ̂i

)

R∑
h=1

exp

(
−ah

n∑
i=1

γ̂i

) , r = 1, . . . , R (5)

p̂k =

exp

(
−zk

n∑
i=1

γ̂i

(
xi −

T∑
t=1

vtŵ
∗
it

))

K∑
j=1

exp

(
−zj

n∑
i=1

γ̂i

(
xi −

T∑
t=1

vtŵ∗
it

)) , k = 1, . . . , K (6)

ŵij =
exp(−γ̂ivj)

J∑
h=1

exp(−γ̂ivh)

, i = 1, . . . , n , j = 1, . . . , J (7)

ŵ∗
it =

exp

(
−γ̂iv

∗
t

K∑
k=1

zkp̂k

)

T∑
j=1

exp

(
−γ̂iv∗j

K∑
k=1

zkp̂k

) , i = 1, . . . , n , t = 1, . . . , T (8)

Hence, the estimated parameters can be obtained from

α̂ =
R∑

r=1

arq̂r , β̂ =
K∑

k=1

zkp̂k , δ̂i =
T∑

t=1

v∗t ŵ
∗
it ,

δ̂i =
T∑

t=1

v∗t ŵ
∗
it , ε̂i =

J∑
j=1

vjŵij , ξ̂i = xi − δ̂i , i = 1, . . . , n , (9)

where q̂r, p̂k, ŵ∗
it, and ŵij are given in (5)�(8), respectively.

Consequently, the structural parameters in (1)�(2) can be estimated based on the esti-
mators in (9) as

var(ε̂) = σ̂2
1 = var




n∑

i=1

J∑

j=1

vjŵij


 =

n∑

i=1

J∑

j=1

ŵ2
ijvar(vj)

=
n∑

i=1

J∑

j=1

ŵ2
ij




J∑

r=1

v2
r ŵik −

(
J∑

l=1

vlŵil

)2

 (10)

Similarly,

var(δ̂) = σ̂2
2 =

n∑

i=1

T∑

t=1

ŵ∗2ij




T∑

r=1

v∗2r ŵ∗ir −
(

T∑

l=1

v∗l ŵ
∗
il

)2

 . (11)
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2.2 GME Formulation and Solution for the Equation-Error Model
The estimation procedure described above can be used for the equation-error-model given
in (1) and (3), where the error term ζ can be reparameterized as

ζi =
M∑

m=1

v∗∗m w∗∗
im , where w∗∗

im ∈ (0, 1) and
M∑

m=1

w∗∗
im = 1 , i = 1, . . . , n .

Then the generalized stochastic nonlinear maximum entropy principle for equation-error
model can be stated as

max
q,p,w,w∗,w∗∗

H(q, p, w, w∗, w∗∗) = −
R∑

r=1

qr log(qr)−
K∑

k=1

pk log(pk)−
n∑

i=1

J∑
j=1

wij log(wij)

−
n∑

i=1

T∑
t=1

w∗
it log(w∗

it)−
n∑

i=1

M∑
m=1

w∗∗
im log(w∗∗

im)

subject to the following constraints

yi =
R∑

r=1

arqr +
K∑

k=1

zkpk

(
xi −

T∑
t=1

v∗t w
∗
it

)
+

J∑
j=1

vjwij +
M∑
i=1

v∗∗m w∗∗
im ,

R∑
r=1

qr = 1 ,

K∑

k=1

pk =1 ,

J∑
j=1

wij =1 ,

T∑
t=1

w∗
it =1 ,

M∑
m=1

w∗∗
im =1 , i = 1, . . . , n .

Here, we have 4n + 2 constraints and R + K + n(T + J + M) unknowns. The optimal
solution leads to the same form that obtained in no-equation-error model as given in (5)�
(8), the new estimator of the additional error term is

ζ̂i =
M∑

m=1

v∗∗m ŵ∗∗
im , i = 1, . . . , n ,

where
ŵ∗∗

im =
exp(−γ̂iv

∗∗
m )

M∑
j=1

exp(−γ̂iv∗∗j )

, i = 1, . . . , n , m = 1, . . . , M

and

σ̂2
3 = var

(
n∑

i=1

M∑
m=1

v∗∗m ŵ∗∗
im

)
=

n∑
i=1

M∑
m=1

ŵ∗∗2
im var(v∗∗m )

=
n∑

i=1

M∑
m=1

ŵ∗∗2
im




M∑
r=1

v∗∗2r ŵ∗∗
ir −

(
M∑

l=1

v∗∗l ŵ∗∗
il

)2

 . (12)
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3 Monte Carlo Evidence On Numerical Performance
To illustrate the performance of GME and MLE procedures, a simulation study was car-
ried out by generating 1000 samples according to the structural relationship yi = 1+xi+εi

and xi = ξi + δi, i = 1, . . . , n, where ξ ∼ N(0, σ2), ε ∼ N(0, σ2
1), and δ ∼ N(0, σ2

2),
with σ2

1 = σ2
2 = 0.1, σ2 = 0.5, and sample sizes n = 15, 25, 40, and 50. For the

equation-error model we assume that ζ ∼ N(0, 0.5) and σ12 = 0. Moreover, GME es-
timators were implemented with �ve support values for the parameters α and β support
interval [−100,−50, 0, 50, 100]. Based on the empirical three-standard-deviations rule,
the error terms were implemented with 3 support values in the interval [−3Sx, 0, 3Sx]
and [−3Sy, 0, 3Sy]. However, the equation error term in the case of equation-error model
were implemented with 3 support values in the interval [−3(Sy−σ1), 0, 3(Sy−σ1)]. Two
experiments were conducted in order to study the comparison between the two methods.

Experiment 1 is carried out to study the performance of GME and MLE in estimating
the intercept and the slope of the simple MEM with and without equation error in terms
of mean square error (MSE). The results of this experiment are presented in Table 2. It
can be noted that GME estimators have a lower MSE for all simulations results. Hence,
the GME approach out performs the MLE with respect to the MSE criterion.

Experiment 2 is carried out to study the performance of GME in estimating the cor-
relation coef�cient in (3) and (4), based on the structural parameters β, σ2, σ2

1 , σ2
2 , and σ2

3 .
Note that the correlation coef�cient of no-equation-error model can be estimate by

ρ̂ =
β̂σ̂2

√(
β̂2σ̂2 + σ̂2

1

)
(σ̂2 + σ̂2

2)

.

Unfortunately, the MLE (by considering the most common assumption when the ratio of
the residual variances λ = σ2

1/σ
2
2 is known) can be obtained by substituting the slope

estimate as given in Table 1. The other structural parameter estimates are σ̂2 = sxy/β̂,
σ̂2

2 = (syy − 2β̂sxy + β̂2)/(λ + β̂2), and σ̂2
1 = λσ̂2

2 as given in Chen and Van Ness (1999).
Moreover, the GME estimate of the correlation coef�cient can be obtained by substitute
the parameter estimates from equations (9)�(11).

However, the MLE for the correlation coef�cient of equation-error model, by assum-
ing that both variances are known, can be estimate by

ρ̂1 =
β̂σ̂2 + σ12√(

β̂2σ̂2 + σ2
1 + σ̂2

3

)
(σ̂2 + σ2

2)

,

where σ̂2
3 = Syy − β̂Sxy − σ2

1 . The GME estimates are obtained from (9)�(11) and (12).
According to the sampling situation described before, and for the correlation coef-

�cients |ρ| = 0.1, 0.2, . . . , 0.9, we investigate the performance of MLE and GME by
measuring the accuracy of the estimation procedure using the sample mean absolute er-
rors, MAE(ρ̂) = (1000)−1

∑1000
i=1 |ρ̂i − ρ|, in Table 3. Then comparisons between the two

methods in terms of mean square error MSE(ρ̂) = (1000)−1
∑1000

i=1 (ρ̂i − ρ)2 are given in
Table 4 for no-equation-error model and in Table 5 for the equation-error model.



A.D. Al-Nasser 291

Table 2: Comparison between GME and MLE with different samples sizes

No-equation-Error Model Equation-Error Model
Known

n Method Parameter(s) MSE(α̂) MSE(β̂) MSE(α̂) MSE(β̂)

GME 9.0978E-03 6.2656E-04 1.130E-03 4.1646E-03

15 MLE λ 4.0108E-02 3.4488E-03 ** **
σ2

1 9.9188E-03 8.4778E-04 ** **
σ2

2 1.0158E-02 9.3788E-04 1.414E-03 2.3783E-02
σ2

1, σ
2
2 4.0108E-02 3.4488E-03 1.414E-03 2.3783E-02

κξ 9.6745E-03 7.3721E-04 1.2145E-03 6.1510E-03
α * 3.1536E+02 * 15.639E+01

GME 1.2708E-04 1.1057E-06 5.1957E-04 1.1968E-03

25 MLE λ 1.4447E-02 2.1468E-04 ** **
σ2

1 3.6615E-03 2.3921E-04 ** **
σ2

2 3.7451E-03 2.3948E-04 6.1666E-04 5.6262E-03
σ2

1, σ
2
2 1.4447E-02 2.1468E-04 6.1666E-04 5.6262E-03

κξ 3.6766E-03 2.1191E-04 5.4819E-04 2.5533E-03
α * 4.8400E+02 * 1.0384E+02

GME 1.2215E-04 1.7003E-07 5.2240E-05 6.9453E-04

40 MLE λ 6.1793E-03 1.3624E-04 ** **
σ2

1 1.2286E-03 9.4598E-05 ** **
σ2

2 1.2341E-03 9.6983E-05 6.3685E-05 2.0932E-03
σ2

1, σ
2
2 6.1793E-03 1.3624E-04 6.3685E-05 2.0932E-03

κξ 1.2220E-03 8.7264E-05 6.1095E-05 2.0930E-03
α * 7.5165E+02 * 2.8462E+01

GME 2.4136E-05 7.7712E-08 3.6815E-05 1.2354E-04

50 MLE λ 4.3291E-03 1.0937E-05 ** **
σ2

1 8.4385E-04 6.4090E-05 ** **
σ2

2 8.4438E-04 6.2260E-05 5.3674E-05 9.2148E-04
σ2

1, σ
2
2 4.3291E-03 1.0937E-05 5.3674E-05 9.2148E-04

κξ 8.3576E-04 5.6538E-05 4.9606E-05 8.4136E-04
α * 1.4433E+02 * 2.2571E+01
*Intercept is known. **Unidenti�ed Case

Table 3 represents the sample MAE for both methods. It should be noted that the sam-
ple MAEs are not the estimates of the true MAEs, they are just measures of the accuracy
of the estimates with 1000 replications. The results suggested that the estimates of ρ are
quite reasonable; for example for sample size 50 the MAE for GME approach when the
true correlation is 0.9 is 0.8942 and for the MLE is 0.8837.
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Table 3: Sample Mean Absolute Errors (MAE) of correlation coef�cient
n 15 25 40 50
|ρ| GME MLE GME MLE GME MLE GME MLE
0.1 0.0831 0.0457 0.0847 0.0475 0.0776 0.0480 0.0846 0.0488
0.2 0.1573 0.1506 0.1729 0.1526 0.1656 0.1532 0.1747 0.1536
0.3 0.2765 0.2583 0.2844 0.2591 0.2620 0.2597 0.2637 0.2608
0.4 0.3727 0.3625 0.3750 0.3653 0.3522 0.3665 0.3286 0.3653
0.5 0.4973 0.4687 0.4849 0.4685 0.4338 0.4701 0.4162 0.4699
0.6 0.5656 0.5718 0.5766 0.5735 0.5097 0.5732 0.5089 0.5729
0.7 0.6811 0.6743 0.6792 0.6765 0.6388 0.6765 0.6655 0.6765
0.8 0.7155 0.7790 0.7841 0.7797 0.7552 0.7800 0.7534 0.7802
0.9 0.8539 0.8834 0.8900 0.8836 0.8930 0.8835 0.8942 0.8837

Table 4: Mean Square Error of correlation coef�cient: No-Equation-Error Model
n 15 25 40 50
|ρ| GME MLE GME MLE GME MLE GME MLE
0.1 0.3766 0.7730 0.3119 0.7809 0.4172 0.7830 0.3155 0.7819
0.2 0.4634 0.6276 0.4357 0.6279 0.4943 0.6284 0.4396 0.6280
0.3 0.4117 0.4830 0.3993 0.4831 0.4268 0.4834 0.4015 0.4832
0.4 0.3209 0.3557 0.3161 0.3558 0.3298 0.3559 0.3175 0.3558
0.5 0.2292 0.2472 0.2278 0.2473 0.2349 0.2474 0.2289 0.2473
0.6 0.1488 0.1583 0.1488 0.1583 0.1526 0.1584 0.1497 0.1583
0.7 0.0841 0.0890 0.0846 0.0890 0.0866 0.0892 0.0853 0.0890
0.8 0.0371 0.0395 0.0377 0.0395 0.0387 0.0396 0.0382 0.0396
0.9 0.0089 0.0098 0.0093 0.0098 0.0095 0.0099 0.0096 0.0099

Table 5: Mean Square Error of correlation coef�cient: Equation-Error Model
n 15 25 40 50
|ρ| GME MLE GME MLE GME MLE GME MLE
0.1 0.0119 0.0188 0.0075 0.0115 0.0049 0.0072 0.0039 0.0056
0.2 0.0070 0.0124 0.0044 0.0076 0.0029 0.0048 0.0024 0.0037
0.3 0.0034 0.0073 0.0022 0.0045 0.0015 0.0028 0.0012 0.0022
0.4 0.0012 0.0036 0.0008 0.0022 0.0005 0.0014 0.0004 0.0011
0.5 0.0003 0.0012 0.0001 0.0007 0.0001 0.0005 0.0000 0.0003
0.6 0.0008 0.0001 0.0003 0.0001 0.0001 0.0000 0.0001 0.0000
0.7 0.0026 0.0004 0.0012 0.0002 0.0007 0.0001 0.0005 0.0001
0.8 0.0057 0.0020 0.0030 0.0011 0.0017 0.0007 0.0013 0.0006
0.9 0.0102 0.0049 0.0055 0.0028 0.0033 0.0017 0.0025 0.0014

Table 4 and Table 5 represent the MSE of correlation coef�cients using GME and
MLE methods and for different sample sizes. It can be noted that, for the true correla-
tion |ρ| ≤ 0.5 the GME estimates outperform the MLE; while increasing the degree of
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associations |ρ| > 0.5 the MLE estimates begin slowly to out perform the GME for all
sample sizes. These results support the GME as a good alternative to the traditional MLE
in estimating the correlation coef�cient when both variables are subject to error.

4 Concluding Remarks and Future Works
In this paper, we have suggested the using of GME method to estimate the simple mea-
surement error model with and without equation error.

The theory of GME allow us to abstract away the additional assumptions that could be
added by using the traditional MLE in recovering the unknowns from the MEM, and in
estimating the correlation coef�cient when both variables are subject to error. The main
advantage of GME over MLE, it does not require any additional distributional assumption,
and it does not require any assumption about the disturbance variances ratio or other
structural parameters. Thus, all what the GME methods needs to be applicable can be
obtained from the sample. In fact, the GME estimators appear to be succeeding where the
MLE failed.

Simulation results (see Table 2 � Table 5) showed that the GME dominated the MLE
estimators according to the mean square error criterion. Clearly, the potential of the GME
method has not been fully explored here. To examine the robustness of the GME esti-
mators the simulation experiments could be repeated using non-normal alternatives. Ad-
ditional investigation should be made about the �nite sample and asymptotic properties
of the GME estimators. Moreover, its needed to explore the useful parameterizations
of higher dimensional MEM such as semiparametric measurement error models or non-
linear measurement error models, see (Carroll et al., 1995) and Roeder et al. (1996); and
this will consider as a future work.

Although the GME method is used to estimate the costumer satisfaction index (see,
Al-Nasser (2003a)), it may be also regarded as a contribution to the MEM literature.
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