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Abstract: We discuss a problem of testing simple statistical hypotheses on
the nonidentically distributed observations. A possibility of using the method
Monte-Carlo for choosing the critical value in Neyman – Pearson test is
pointed out. We propose also an approach permitting to reduce the problem
considered to a problem of testing hypotheses on uniformity vs nonunifor-
mity of distributions on the interval (0,1).

Keywords: Hypotheses Testing, Nonhomogeneous Observations, Likelihood
Ratio Ordering, Variational Distance.

1 Introduction

Let us consider a classical problem: we observe a sequenceξ1, . . . , ξn of random variables
(the structure of the set of their values is unessential) and wish to test two statistical
hypotheses (H0 andH1) on the distributions of these random variables. According to the
Neyman – Pearson fundamental lemma (see Lehmann, 1986) the most powerful test in
this problem should be based on the likelihood ratio

Ln = Ln(ξ1, . . . , ξn) =
p0(ξ1, . . . , ξn)

p1(ξ1, . . . , ξn)
,

wherep0 andp1 are densities (probabilities in discrete case) of the outcome(ξ1, . . . , ξn).
Given the probabilityα of choosingH1 whenH0 is valid we have to find a numberc(α)
such thatP{Ln ≤ c(α) |H0} = α (with possible randomization if the distribution ofLn

has an atom atc(α)). If such anc(α) is found (and randomization is unnecessary) we may
choose the hypothesisH0 if Ln > c(α) and chooseH1 in the opposite case. This criterion
has minimal probability of choosingH0 whenH1 is valid in the set of all criteria such that
the probability of choosingH1 whenH0 is valid equals toα.

From a practical viewpoint a serious drawback of Neyman – Pearson criterion is the
necessity to computec(α). This problem has an exact solution if the equation forc(α)
is solvable. In the case of independent identically distributed observations (with known
mean and variance oflog L1) and largen it is possible to use normal approximation for
the distribution oflog Ln. But just in the simple case whenξ1, . . . , ξn are independent but
nonidentically distributed (for example, ifξ1, . . . , ξn correspond to different characteris-
tics of random objects) the computation ofc(α) may become a hard problem.

This note consists of two parts. The content of the first part is an almost trivial idea
to use the Monte-Carlo method to estimatec(α). In the second part we suggest a hint
permitting to reduce the statistical problem with nonidentically distributed observations
to a problem of testing hypothesis on uniformity vs nonuniformity of distributions on the
interval (0,1).
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2 Monte-Carlo Estimates

First of all note that it is possible to use Monte-Carlo approximation toc(α). Indeed,
let us simulateN independent samples(η(j)

1 , . . . , η(j)
n ), j = 1, . . . , N, according to the

hypothesisH0. For eachj = 1, . . . , N we computeλj = Ln(η
(j)
1 , . . . , η(j)

n ). These
random variables are independent and identically distributed:

P{λj ≤ x} = F0(x) := P{Ln ≤ x |H0}.
So, P{F0(λj) < y} ≤ y for all y ∈ [0, 1], andP{F0(λj) < y} = y if F−1

0 (y) :=
sup{x : F0(x) < y} is a continuity point ofF0. For largeN the empirical distribution
function ofλ1, . . . , λN will approximate the distribution functionF0(x). For example, let
λ1:N ≤ λ2:N ≤ . . . ≤ λN :N be the order statistics ofλ1, . . . , λN . If we chooseλ[αN ]:N ([x]
denotes an integer part ofx) as an approximation toc(α) then

P{F0(λ[αN ]:N) < α− ε} = P





N∑

j=1

I(F0(λj) < α− ε) ≥ [αN ]



 ≤ P{βN,α−ε ≥ αN},

P{F0(λ[αN ]:N) > α + ε} = P





N∑

j=1

I(F0(λj) ≤ α + ε) < [αN ]



 ≤ P{βN,α+ε < αN},

whereβN,p denotes random variable having the binomial distribution with parameters
(N, p). These equations may be used to estimate the accuracy of approximation ofc(α)
as a function ofα andN .

The same idea of using the Monte-Carlo method may be applied notbefore, butafter
observing the sequenceξ1, . . . , ξn. Let us simulateN independent samples

(η
(j)
1 , . . . , η(j)

n ), j = 1, . . . , N,

according to the hypothesisH0 and compute the numberνN of j = 1, . . . , N such that
λj ≤ Ln(ξ1, . . . , ξn). Then the valueνN

N
is a consistent (asN →∞) statistical estimate of

F0(Ln(ξ1, . . . , ξn)). So the inequalityνN

N
≥ α is asymptotically (asN → ∞) equivalent

to the Neyman – Pearson criterion. It may be shown that

− max
0≤y≤1

P{F0(Ln) = y} ≤ P{νN ≤ m} − m + 1

N + 1
≤ 0, m = 1, . . . , N.

Computation of estimatesνN

N
for each observation ofξ1, . . . , ξn takes more time but it

rules out inevitable systematic bias appearing when a single Monte-Carlo estimate of
c(α) is used.

3 Reduction to a Simpler Problem

Consider another possibility to test hypothesesH0 andH1 on independent nonidentically
distributed random variablesξ1, . . . , ξn.

We begin with the case when for eachj = 1, . . . , N the distributions ofξj under both
H0 andH1 are absolutely continuous with common support. Letpi,j(x) be a density ofξj
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under hypothesisHi, i = 0, 1, j = 1, . . . , N . Denoterj(x) = p0,j(x)

p1,j(x)
, j = 1, . . . , N , and

introduce distribution functions

Gj(x) = P{rj(ξj) ≤ x|H0} =
∫

u: rj(u)≤x

p0,j(u)du, j = 1, . . . , N. (1)

Definition of Gj(x) seems complex, but it may be simplified in concrete cases. For ex-
ample, ifrj(x) is monotonically decreasing andr−1

j (y) = sup{x: rj(x) ≥ y} then

Gj(x) =

∞∫

r−1
j (x)

p0,j(u)du, j = 1, . . . , N ;

if rj(x) is unimodal (i.e. rj(x) is increasing fromrj(−∞) to rj(aj) on [−∞, aj] and
decreasing fromrj(aj) to rj(∞) on [aj,∞)) and

r+
j (y) = { sup {x: rj(x) ≥ y}, rj(∞) < y ≤ rj(aj),∞, rj(0) ≤ y ≤ rj(∞),

r−j (y) = { inf {x: rj(x) ≥ y}, rj(0) ≤ y ≤ rj(aj), −∞, rj(∞) < y ≤ rj(aj),

then

Gj(x) = 1−
r+
j (x)∫

r−j (x)

p0,j(u)du, min{rj(0), rj(∞)} ≤ x ≤ rj(aj), j = 1, . . . , N.

Let ζj = Gj(rj(ξj)), j = 1, . . . , N . If distributions ofξ1, . . . , ξn satisfy the hypoth-
esisH0 then random variablesζ1, . . . , ζN are independent and uniformly distributed on
[0,1]:

Z0(x) := P{ζj ≤ x|H0} = P{Gj(rj(ξj)) ≤ x|H0} = (2)

= P{rj(ξj) ≤ G−1
j (x)|H0} = Gj(G

−1
j (x)) = x, x ∈ [0, 1], j = 1, . . . , N,

whereG−1 denotes inverse function forG.
If hypothesisH1 is valid then random variablesζ1, . . . , ζN are independent and have

nonuniform distributions. The distribution function ofζj under the hypothesisH1 takes
the form

Z1,j(x) := P{ζj ≤ x|H1} = P{Gj(rj(ξj)) ≤ x|H1} = P{rj(ξj) ≤ G−1
j (x)|H1}. (3)

Theorem 1. For any j = 1, . . . , N the functionZ1,j(x) is concave on[0, 1] and
ρj = max

0≤x≤1
(Z1,j(x)−Z0(x)) is equal to the variational distance between distributions of

ξj under hypothesesH0 andH1. Further,

E{ζj|H0} =
1

2
, E{ζj|H1} ≤ 1− ρj

2
,

D{ζj|H0} =
1

12
, D{ζj|H1} ≤ 1

4
.
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Corollary. We haveZ1,j(x) > Z0(x) = x for all x ∈ (0, 1) and all j = 1, . . . , N .
PROOF. Let

G1,j(x) = P{rj(ξj) ≤ x|H1} =
∫

u: rj(u)≤x

p1,j(u)du, j = 1, . . . , N. (4)

ThenZ1,j(x) = G1,j(G
−1
j (x)). So,

d

dx
Z1,j(x) =

d

dx
G1,j(G

−1
j (x)) =

d

dv
G1,j(v)

∣∣∣∣∣
v=G−1

j (x)

d

dx
G−1

j (x) = (5)

=

d
dv

G1,j(v)
∣∣∣
v=G−1

j (x)

d
dv

Gj(v)
∣∣∣
v=G−1

j (x)

=

lim
∆↓0

1
∆

∫
u: G−1

j (x)−∆≤rj(u)≤G−1
j (x)

p1,j(u)du

lim
∆↓0

1
∆

∫
u: G−1

j (x)−∆≤rj(u)≤G−1
j (x)

p0,j(u)du
=

1

G−1
j (x)

is nonincreasing, i.e.Z1,j(x) is concave.
Note that distribution functionsZ0(x) = x, Z1,j(x), x ∈ [0, 1], are absolutely con-

tinuous with densitiesz0(x) = 1, z1,j(x) = 1
G−1

j (x)
, x ∈ [0, 1], and satisfy conditions

Z0(0) = Z1,j(0) = 0, Z0(1) = Z1,j(1) = 1. Let cj = sup{x ∈ [0, 1]: z1,j(x) ≥ 1}. Due
to monotonicity ofz1,j(x) we have

ρj = max
0≤x≤1

(Z1,j(x)− Z0(x)) = Z1,j(cj)− Z0(cj) =

=
1

2




cj∫

0

(z1,j(x)− 1)dx +

1∫

cj

(1− z1,j(x))dx


 =

1

2

1∫

0

|z1,j(x)− 1|dx.

Further, taking into account (5) and applying change of variablex = Gj(y) we find

1∫

0

|z1,j(x)− 1|dx =

1∫

0

∣∣∣∣∣
1

G−1
j (x)

− 1

∣∣∣∣∣ dx =

1∫

0

∣∣∣∣∣∣∣∣

d
dv

G1,j(v)
∣∣∣
v=G−1

j (x)

d
dv

Gj(v)
∣∣∣
v=G−1

j (x)

− 1

∣∣∣∣∣∣∣∣
dx =

=

∞∫

−∞

∣∣∣∣∣∣

d
dy

G1,j(y)
d
dy

Gj(y)
− 1

∣∣∣∣∣∣
dGj(y) =

∞∫

−∞

∣∣∣∣∣
d

dy
G1,j(y)− d

dy
Gj(y)

∣∣∣∣∣ dy =

=

∞∫

−∞

∣∣∣∣∣∣∣
d

dy

∫

u: rj(u)≤y

p1,j(u)du− d

dy

∫

u: rj(u)≤y

p0,j(u)du

∣∣∣∣∣∣∣
dy =

∫
|p1,j(u)− p0,j(u)|du,

i.e.,ρj equals to the variational distance between distributions ofξj under hypothesesH0

andH1.
Random variableζj under hypothesisH0 is uniformly distributed on[0, 1], so

E{ζj|H0} =
1

2
, D{ζj|H0} =

1

12
.
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To estimateE{ζj|H1} we introduce piecewise linear functionLj(x): the graph ofLj(x)
connects points(0, 0), (cj, Z1,j(cj)), (1, 1). Due to the concavity ofZ1,j(x) we have
Z1,j(x) ≥ Lj(x) for all x ∈ [0, 1]. Now

E{ζj|H1} =

1∫

0

(1− Z1,j(x))dx ≤
1∫

0

(1− Lj(x))dx =

=

1∫

0

(1− x)dx−
1∫

0

(Lj(x)− x)dx =
1

2
− ρj

2

because the area of triangle formed by graphs ofLj(x) andZ0(x) = x equals to

1

2
(Z1,j(cj)− cj) =

ρj

2
.

InequalityD{ζj|H1} ≤ 1
4

is valid for any random variable with values in[0, 1]. The
theorem is proved.

Now consider the case when distributions ofξj under bothH0 andH1 are discrete
with common supportTj, j = 1, . . . , N . Let

Pi,j(t) = P{ξj = t |Hi}, t ∈ Tj = {tj,1, tj,2, . . .}, j = 1, . . . , N,

be the distribution ofξj under hypothesisHi, i = 0, 1. The setsT1, . . . , TN are at most
countable. LetRj(t) = P0,j(t)

P1,j(t)
, t ∈ Tj; the setsRj of valuesRj(t), t ∈ Tj, are at most

countable also.
It is convenient to introduce right-continuous and left-continuous distribution func-

tions for eachj = 1, . . . , N :

S0,j(x) = P{Rj(ξj) ≤ x |H0} =
∑

t∈Tj :Rj(t)≤x

P0,j(t), (6)

S−0,j(x) = P{Rj(ξj) < x |H0} =
∑

t∈Tj :Rj(t)<x

P0,j(t), (7)

S1,j(x) = P{Rj(ξj) ≤ x |H1} =
∑

t∈Tj :Rj(t)≤x

P1,j(t), (8)

S−1,j(x) = P{Rj(ξj) < x |H1} =
∑

t∈Tj :Rj(t)<x

P1,j(t), (9)

herex ∈ [0,∞]. Let Sj be a set of points with coordinates(S0,j(r), S1,j(r)), r ∈ Rj.
Lemma. For eachj = 1, . . . , N the setSj is lying on a concave curve.
PROOF. It is sufficient to prove that for anyr1 < r2 < r3 (r1, r2, r3 ∈ Rj) the slope

of a chord[(S0,j(r1), S1,j(r1)), (S0,j(r2), S1,j(r2))] is greater than the slope of a chord
[(S0,j(r2), S1,j(r2)), (S0,j(r3), S1,j(r3))], i.e. that

S1,j(r2)− S1,j(r1)

S0,j(r2)− S0,j(r1)
>

S1,j(r3)− S1,j(r2)

S0,j(r3)− S0,j(r2)
.
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But according to definitions (6) – (9) we have

S1,j(r2)− S1,j(r1)

S0,j(r2)− S0,j(r1)
=

∑
t∈Tj :r1<Rj(t)≤r2

P1,j(t)

∑
t∈Tj :r1<Rj(t)≤r2

P0,j(t)
≥ 1

r2

>

>

∑
t∈Tj :r2<Rj(t)≤r3

P1,j(t)

∑
t∈Tj :r2<Rj(t)≤r3

P0,j(t)
=

S1,j(r3)− S1,j(r2)

S0,j(r3)− S0,j(r2)
,

and Lemma is proved.
The proof of Lemma is applicable to the absolutely continuous case also, but in that

case we have used an explicit formula for the density ofZ1,j(x). To get a full analogy
with the absolutely continuous case we define functionsZ∗

1,j(x), x ∈ [0, 1], j = 1, . . . , N,
such that their graphs are convex hulls of corresponding setsSj. In other words, these
functions are continuous, satisfy conditions

Z∗
1,j(S0,j(r)) = S1,j(r), r ∈ Rj, Z∗

1,j(0) = 0, Z∗
1,j(1) = 1,

and are piecewise linear on intervals(S−0,j(r), S0,j(r)), r ∈ Rj, between points of the set
S̄j = {0}∪{S0,j(r), r ∈ Rj}∪{1}. Evidently,Z∗

1,j for eachj = 1, . . . , N is a distribution
function of the mixture of uniform distributions on intervals(S−0,j(r), S0,j(r)), r ∈ S̄j,
with weightsS1,j(r)− S−1,j(r).

It is obvious that mixture of uniform distributions on intervals(S−0,j(r), S0,j(r)), r ∈
S̄j, with weightsS0,j(r) − S−0,j(r) is a uniform distribution on[0, 1] and has distribution
functionZ∗

0,j(x) = x, x ∈ [0, 1].
Now to define randomized statisticsζj = ζj(ξj) we introduce auxiliary random vari-

ablesα1, . . . , αN uniformly distributed on an interval[0, 1] and put

ζj = αjS
−
0,j(r) + (1− αj)S0,j(r) if Rj(ξj) = r.

Being defined in such a way random variableζj is uniformly distributed on[0, 1] under
hypothesisH0 and has distribution functionZ∗

1,j(x) under hypothesisH1.
Theorem 2. For any j = 1, . . . , N the functionZ∗

1,j(x) is concave on[0, 1] and
ρj = max

0≤x≤1
(Z∗

1,j(x) − Z∗
0,j(x)) is equal to the variational distance between distributions

of ξj under hypothesesH0 andH1. Further,

E{ζj|H0} =
1

2
, E{ζj|H1} ≤ 1− ρj

2
,

D{ζj|H0} =
1

12
, D{ζj|H1} ≤ 1

4
.

PROOF. Concavity of the functionZ∗
1,j(x) follows from Lemma. The functionZ∗

1,j(x)
is linear on intervals(S−0,j(r), S0,j(r)), r ∈ Rj, so max

0≤x≤1
(Z∗

1,j(x)− Z∗
0,j(x)) is attained on

the closure of the set{0} ∪ {S0,j(r), r ∈ Rj}. Further, for anyr ∈ Rj

Z∗
1,j(S0,j(r))− Z∗

0,j(S0,j(r)) = S1,j(r)− S0,j(r) =
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=
∑

t∈Tj :Rj(t)≤r

P1,j(t)−
∑

t∈Tj :Rj(t)≤r

P0,j(t) =
∑

t∈Tj :P0,j(t)≤rP1,j(t)

(P1,j(t)− P0,j(t)).

The summands in the last sum are positive forr < 1 and negative forr > 1; it follows
that max

0≤x≤1
(Z∗

1,j(x)−Z∗
0,j(x)) is attained at the pointx = sup{S0,j(r): r ≤ 1} and is equal

to
1

2

∑

t∈Tj

|P1,j(t)− P0,j(t)|,

i.e. to the variational distance between distributions ofξj under hypothesesH0 andH1.
Moments ofζj are estimated as in Theorem 1. Theorem 2 is proved.

Theorems 1 and 2 reduce the problem of testing two simple statistical hypotheses
on the distribution of independent nonidentically distributed random variablesξ1, . . . , ξN

(taking values of any nature) to the problem of testing hypothesisH ′
0: independent ran-

dom variablesζ1(ξ1), . . . , ζN(ξn) are uniformly distributed on[0, 1] against hypothesis
H ′

1: independent random variablesζ1(ξ1), . . . , ζN(ξn) taking values in[0, 1] have con-
cave nonuniform distribution functionsZ1,j(x), j = 1, . . . , N . So underH ′

0 random
variablesζ1(ξ1), . . . , ζN(ξn) are identically distributed and underH ′

1 random variables
ζ1(ξ1), . . . , ζN(ξn) have biases of the same sign compared to their distributions underH ′

0.
The simplest way to testH ′

0 againstH ′
1 by means of these biases is to use statistics

VN =
N∑

j=1
ζj. If H0 is valid thenVN is the sum ofN independent random variables

uniformly distributed on the interval[0, 1], in particular,

E{VN |H0} =
N

2
, D{VN |H0} =

N

12
.

If H1 is valid thenVN is the sum ofN independent random variables which are stochas-
tically smaller than random variables uniformly distributed on the interval[0, 1], and

E{VN |H1} ≤
N∑

j=1

1− ρj

2
, D{VN |H1} =

N∑

j=1

D{ζj|H1} ≤ N

4
.

For largeN normal approximations may be used to estimate critical levels and error
probabilities (especially if explicit formulas forE{VN |H1} andD{VN |H1} are known).
But this approach, of course, is not the best possible.

Another way is to compute statistics of goodness-of-fit criteria (for example, Kol-
mogorov – Smirnov statistics) forH ′

0 andH ′
1 separately and compare their values.

However it seems that the problem of testingH ′
0 againstH ′

1 is far from being com-
pletely solved.
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