Notes on Statistical Tests for Nonidentically Distributed Observations

Andrew M. Zubkov¹ Steklov Mathematical Institute of RAS, Moscow, Russia

Abstract: We discuss a problem of testing simple statistical hypotheses on the nonidentically distributed observations. A possibility of using the method Monte-Carlo for choosing the critical value in Neyman – Pearson test is pointed out. We propose also an approach permitting to reduce the problem considered to a problem of testing hypotheses on uniformity vs nonuniformity of distributions on the interval (0,1).

Keywords: Hypotheses Testing, Nonhomogeneous Observations, Likelihood Ratio Ordering, Variational Distance.

1 Introduction

Let us consider a classical problem: we observe a sequence ξ_1, \ldots, ξ_n of random variables (the structure of the set of their values is unessential) and wish to test two statistical hypotheses (H_0 and H_1) on the distributions of these random variables. According to the Neyman – Pearson fundamental lemma (see Lehmann, 1986) the most powerful test in this problem should be based on the likelihood ratio

$$L_n = L_n(\xi_1, \dots, \xi_n) = \frac{p_0(\xi_1, \dots, \xi_n)}{p_1(\xi_1, \dots, \xi_n)},$$

where p_0 and p_1 are densities (probabilities in discrete case) of the outcome (ξ_1, \ldots, ξ_n) . Given the probability α of choosing H_1 when H_0 is valid we have to find a number $c(\alpha)$ such that $\mathbf{P}\{L_n \leq c(\alpha) \mid H_0\} = \alpha$ (with possible randomization if the distribution of L_n has an atom at $c(\alpha)$). If such an $c(\alpha)$ is found (and randomization is unnecessary) we may choose the hypothesis H_0 if $L_n > c(\alpha)$ and choose H_1 in the opposite case. This criterion has minimal probability of choosing H_0 when H_1 is valid in the set of all criteria such that the probability of choosing H_1 when H_0 is valid equals to α .

From a practical viewpoint a serious drawback of Neyman – Pearson criterion is the necessity to compute $c(\alpha)$. This problem has an exact solution if the equation for $c(\alpha)$ is solvable. In the case of independent identically distributed observations (with known mean and variance of $\log L_1$) and large n it is possible to use normal approximation for the distribution of $\log L_n$. But just in the simple case when ξ_1, \ldots, ξ_n are independent but nonidentically distributed (for example, if ξ_1, \ldots, ξ_n correspond to different characteristics of random objects) the computation of $c(\alpha)$ may become a hard problem.

This note consists of two parts. The content of the first part is an almost trivial idea to use the Monte-Carlo method to estimate $c(\alpha)$. In the second part we suggest a hint permitting to reduce the statistical problem with nonidentically distributed observations to a problem of testing hypothesis on uniformity vs nonuniformity of distributions on the interval (0,1).

¹This research was supported by the Leading Scientific Schools Support Fund of the President of Russia Federation, grant 1758.2003.1, and by the Program of RAS "Modern Problems of Theoretical Mathematics".

2 Monte-Carlo Estimates

First of all note that it is possible to use Monte-Carlo approximation to $c(\alpha)$. Indeed, let us simulate N independent samples $(\eta_1^{(j)}, \ldots, \eta_n^{(j)}), j = 1, \ldots, N$, according to the hypothesis H_0 . For each $j = 1, \ldots, N$ we compute $\lambda_j = L_n(\eta_1^{(j)}, \ldots, \eta_n^{(j)})$. These random variables are independent and identically distributed:

$$\mathbf{P}\{\lambda_j \le x\} = F_0(x) := \mathbf{P}\{L_n \le x \mid H_0\}.$$

So, $\mathbf{P}\{F_0(\lambda_j) < y\} \leq y$ for all $y \in [0,1]$, and $\mathbf{P}\{F_0(\lambda_j) < y\} = y$ if $F_0^{-1}(y) := \sup\{x : F_0(x) < y\}$ is a continuity point of F_0 . For large N the empirical distribution function of $\lambda_1, \ldots, \lambda_N$ will approximate the distribution function $F_0(x)$. For example, let $\lambda_{1:N} \leq \lambda_{2:N} \leq \ldots \leq \lambda_{N:N}$ be the order statistics of $\lambda_1, \ldots, \lambda_N$. If we choose $\lambda_{[\alpha N]:N}$ ([x] denotes an integer part of x) as an approximation to $c(\alpha)$ then

$$\mathbf{P}\{F_0(\lambda_{[\alpha N]:N}) < \alpha - \varepsilon\} = \mathbf{P}\left\{\sum_{j=1}^N I(F_0(\lambda_j) < \alpha - \varepsilon) \ge [\alpha N]\right\} \le \mathbf{P}\{\beta_{N,\alpha-\varepsilon} \ge \alpha N\},$$

$$\mathbf{P}\{F_0(\lambda_{[\alpha N]:N}) > \alpha + \varepsilon\} = \mathbf{P}\left\{\sum_{j=1}^N I(F_0(\lambda_j) \le \alpha + \varepsilon) < [\alpha N]\right\} \le \mathbf{P}\{\beta_{N,\alpha+\varepsilon} < \alpha N\},$$

where $\beta_{N,p}$ denotes random variable having the binomial distribution with parameters (N, p). These equations may be used to estimate the accuracy of approximation of $c(\alpha)$ as a function of α and N.

The same idea of using the Monte-Carlo method may be applied not *before*, but *after* observing the sequence ξ_1, \ldots, ξ_n . Let us simulate N independent samples

$$(\eta_1^{(j)}, \dots, \eta_n^{(j)}), \quad j = 1, \dots, N,$$

according to the hypothesis H_0 and compute the number ν_N of $j = 1, \ldots, N$ such that $\lambda_j \leq L_n(\xi_1, \ldots, \xi_n)$. Then the value $\frac{\nu_N}{N}$ is a consistent (as $N \to \infty$) statistical estimate of $F_0(L_n(\xi_1, \ldots, \xi_n))$. So the inequality $\frac{\nu_N}{N} \geq \alpha$ is asymptotically (as $N \to \infty$) equivalent to the Neyman – Pearson criterion. It may be shown that

$$-\max_{0 \le y \le 1} \mathbf{P}\{F_0(L_n) = y\} \le \mathbf{P}\{\nu_N \le m\} - \frac{m+1}{N+1} \le 0, \qquad m = 1, \dots, N$$

Computation of estimates $\frac{\nu_N}{N}$ for each observation of ξ_1, \ldots, ξ_n takes more time but it rules out inevitable systematic bias appearing when a single Monte-Carlo estimate of $c(\alpha)$ is used.

3 Reduction to a Simpler Problem

Consider another possibility to test hypotheses H_0 and H_1 on independent nonidentically distributed random variables ξ_1, \ldots, ξ_n .

We begin with the case when for each j = 1, ..., N the distributions of ξ_j under both H_0 and H_1 are absolutely continuous with common support. Let $p_{i,j}(x)$ be a density of ξ_j

under hypothesis H_i , i = 0, 1, j = 1, ..., N. Denote $r_j(x) = \frac{p_{0,j}(x)}{p_{1,j}(x)}$, j = 1, ..., N, and introduce distribution functions

$$G_j(x) = \mathbf{P}\{r_j(\xi_j) \le x | H_0\} = \int_{u: r_j(u) \le x} p_{0,j}(u) du, \ j = 1, \dots, N.$$
(1)

Definition of $G_j(x)$ seems complex, but it may be simplified in concrete cases. For example, if $r_j(x)$ is monotonically decreasing and $r_j^{-1}(y) = \sup\{x: r_j(x) \ge y\}$ then

$$G_j(x) = \int_{r_j^{-1}(x)}^{\infty} p_{0,j}(u) du, \ j = 1, \dots, N;$$

if $r_j(x)$ is unimodal (i.e. $r_j(x)$ is increasing from $r_j(-\infty)$ to $r_j(a_j)$ on $[-\infty, a_j]$ and decreasing from $r_j(a_j)$ to $r_j(\infty)$ on $[a_j, \infty)$) and

$$r_{j}^{+}(y) = \{ \sup \{ x: r_{j}(x) \ge y \}, \quad r_{j}(\infty) < y \le r_{j}(a_{j}), \infty, \quad r_{j}(0) \le y \le r_{j}(\infty),$$

$$r_{j}^{-}(y) = \{ \inf \{ x: r_{j}(x) \ge y \}, \quad r_{j}(0) \le y \le r_{j}(a_{j}), -\infty, \quad r_{j}(\infty) < y \le r_{j}(a_{j}),$$

then

$$G_j(x) = 1 - \int_{r_j^-(x)}^{r_j^+(x)} p_{0,j}(u) du, \quad \min\{r_j(0), r_j(\infty)\} \le x \le r_j(a_j), \quad j = 1, \dots, N.$$

Let $\zeta_j = G_j(r_j(\xi_j))$, j = 1, ..., N. If distributions of $\xi_1, ..., \xi_n$ satisfy the hypothesis H_0 then random variables $\zeta_1, ..., \zeta_N$ are independent and uniformly distributed on [0,1]:

$$Z_0(x) := \mathbf{P}\{\zeta_j \le x | H_0\} = \mathbf{P}\{G_j(r_j(\xi_j)) \le x | H_0\} =$$

$$= \mathbf{P}\{r_j(\xi_j) \le G_j^{-1}(x) | H_0\} = G_j(G_j^{-1}(x)) = x, \quad x \in [0, 1], \ j = 1, \dots, N,$$
(2)

where G^{-1} denotes inverse function for G.

If hypothesis H_1 is valid then random variables ζ_1, \ldots, ζ_N are independent and have nonuniform distributions. The distribution function of ζ_j under the hypothesis H_1 takes the form

$$Z_{1,j}(x) := \mathbf{P}\{\zeta_j \le x | H_1\} = \mathbf{P}\{G_j(r_j(\xi_j)) \le x | H_1\} = \mathbf{P}\{r_j(\xi_j) \le G_j^{-1}(x) | H_1\}.$$
 (3)

Theorem 1. For any j = 1, ..., N the function $Z_{1,j}(x)$ is concave on [0,1] and $\rho_j = \max_{0 \le x \le 1} (Z_{1,j}(x) - Z_0(x))$ is equal to the variational distance between distributions of ξ_j under hypotheses H_0 and H_1 . Further,

$$\mathbf{E}\{\zeta_j | H_0\} = \frac{1}{2}, \quad \mathbf{E}\{\zeta_j | H_1\} \le \frac{1 - \rho_j}{2},$$
$$\mathbf{D}\{\zeta_j | H_0\} = \frac{1}{12}, \quad \mathbf{D}\{\zeta_j | H_1\} \le \frac{1}{4}.$$

Corollary. We have $Z_{1,j}(x) > Z_0(x) = x$ for all $x \in (0,1)$ and all $j = 1, \ldots, N$. PROOF. Let

$$G_{1,j}(x) = \mathbf{P}\{r_j(\xi_j) \le x | H_1\} = \int_{u: r_j(u) \le x} p_{1,j}(u) du, \ j = 1, \dots, N.$$
(4)

Then $Z_{1,j}(x) = G_{1,j}(G_j^{-1}(x))$. So,

$$\frac{d}{dx}Z_{1,j}(x) = \frac{d}{dx}G_{1,j}(G_j^{-1}(x)) = \left.\frac{d}{dv}G_{1,j}(v)\right|_{v=G_j^{-1}(x)} \frac{d}{dx}G_j^{-1}(x) =$$
(5)

$$= \frac{\frac{d}{dv}G_{1,j}(v)\Big|_{v=G_j^{-1}(x)}}{\frac{d}{dv}G_j(v)\Big|_{v=G_j^{-1}(x)}} = \frac{\lim_{\Delta\downarrow 0} \frac{1}{\Delta} \int_{u:G_j^{-1}(x)-\Delta \le r_j(u) \le G_j^{-1}(x)} p_{1,j}(u)du}{\lim_{\Delta\downarrow 0} \frac{1}{\Delta} \int_{u:G_j^{-1}(x)-\Delta \le r_j(u) \le G_j^{-1}(x)} p_{0,j}(u)du} = \frac{1}{G_j^{-1}(x)}$$

is nonincreasing, i.e. $Z_{1,j}(x)$ is concave.

Note that distribution functions $Z_0(x) = x$, $Z_{1,j}(x)$, $x \in [0,1]$, are absolutely continuous with densities $z_0(x) = 1$, $z_{1,j}(x) = \frac{1}{G_j^{-1}(x)}$, $x \in [0,1]$, and satisfy conditions $Z_0(0) = Z_{1,j}(0) = 0$, $Z_0(1) = Z_{1,j}(1) = 1$. Let $c_j = \sup\{x \in [0,1]: z_{1,j}(x) \ge 1\}$. Due to monotonicity of $z_{1,j}(x)$ we have

$$\rho_j = \max_{0 \le x \le 1} (Z_{1,j}(x) - Z_0(x)) = Z_{1,j}(c_j) - Z_0(c_j) =$$
$$= \frac{1}{2} \left(\int_0^{c_j} (z_{1,j}(x) - 1) dx + \int_{c_j}^1 (1 - z_{1,j}(x)) dx \right) = \frac{1}{2} \int_0^1 |z_{1,j}(x) - 1| dx.$$

Further, taking into account (5) and applying change of variable $x = G_j(y)$ we find

$$\int_{0}^{1} |z_{1,j}(x) - 1| dx = \int_{0}^{1} \left| \frac{1}{G_{j}^{-1}(x)} - 1 \right| dx = \int_{0}^{1} \left| \frac{\frac{d}{dv} G_{1,j}(v)}{\frac{d}{dv} G_{j}(v)} \right|_{v = G_{j}^{-1}(x)} - 1 \right| dx =$$
$$= \int_{-\infty}^{\infty} \left| \frac{\frac{d}{dy} G_{1,j}(y)}{\frac{d}{dy} G_{j}(y)} - 1 \right| dG_{j}(y) = \int_{-\infty}^{\infty} \left| \frac{d}{dy} G_{1,j}(y) - \frac{d}{dy} G_{j}(y) \right| dy =$$
$$= \int_{-\infty}^{\infty} \left| \frac{d}{dy} \int_{u:r_{j}(u) \le y} p_{1,j}(u) du - \frac{d}{dy} \int_{u:r_{j}(u) \le y} p_{0,j}(u) du \right| dy = \int |p_{1,j}(u) - p_{0,j}(u)| du,$$

i.e., ρ_j equals to the variational distance between distributions of ξ_j under hypotheses H_0 and H_1 .

Random variable ζ_j under hypothesis H_0 is uniformly distributed on [0, 1], so

$$\mathbf{E}\{\zeta_j|H_0\} = \frac{1}{2}, \quad \mathbf{D}\{\zeta_j|H_0\} = \frac{1}{12}$$

To estimate $\mathbf{E}\{\zeta_j|H_1\}$ we introduce piecewise linear function $L_j(x)$: the graph of $L_j(x)$ connects points (0,0), $(c_j, Z_{1,j}(c_j))$, (1,1). Due to the concavity of $Z_{1,j}(x)$ we have $Z_{1,j}(x) \ge L_j(x)$ for all $x \in [0,1]$. Now

$$\mathbf{E}\{\zeta_j|H_1\} = \int_0^1 (1 - Z_{1,j}(x))dx \le \int_0^1 (1 - L_j(x))dx =$$
$$= \int_0^1 (1 - x)dx - \int_0^1 (L_j(x) - x)dx = \frac{1}{2} - \frac{\rho_j}{2}$$

because the area of triangle formed by graphs of $L_i(x)$ and $Z_0(x) = x$ equals to

$$\frac{1}{2}(Z_{1,j}(c_j) - c_j) = \frac{\rho_j}{2}.$$

Inequality $\mathbf{D}\{\zeta_j|H_1\} \leq \frac{1}{4}$ is valid for any random variable with values in [0, 1]. The theorem is proved.

Now consider the case when distributions of ξ_j under both H_0 and H_1 are discrete with common support T_j , j = 1, ..., N. Let

$$P_{i,j}(t) = \mathbf{P}\{\xi_j = t \mid H_i\}, \quad t \in T_j = \{t_{j,1}, t_{j,2}, \ldots\}, \quad j = 1, \ldots, N,$$

be the distribution of ξ_j under hypothesis H_i , i = 0, 1. The sets T_1, \ldots, T_N are at most countable. Let $R_j(t) = \frac{P_{0,j}(t)}{P_{1,j}(t)}$, $t \in T_j$; the sets R_j of values $R_j(t)$, $t \in T_j$, are at most countable also.

It is convenient to introduce right-continuous and left-continuous distribution functions for each j = 1, ..., N:

$$S_{0,j}(x) = \mathbf{P}\{R_j(\xi_j) \le x \mid H_0\} = \sum_{t \in T_j: R_j(t) \le x} P_{0,j}(t),$$
(6)

$$S_{0,j}^{-}(x) = \mathbf{P}\{R_j(\xi_j) < x \mid H_0\} = \sum_{t \in T_j: R_j(t) < x} P_{0,j}(t),$$
(7)

$$S_{1,j}(x) = \mathbf{P}\{R_j(\xi_j) \le x \mid H_1\} = \sum_{t \in T_j: R_j(t) \le x} P_{1,j}(t),$$
(8)

$$S_{1,j}^{-}(x) = \mathbf{P}\{R_j(\xi_j) < x \mid H_1\} = \sum_{t \in T_j: R_j(t) < x} P_{1,j}(t),$$
(9)

here $x \in [0, \infty]$. Let S_j be a set of points with coordinates $(S_{0,j}(r), S_{1,j}(r)), r \in R_j$.

Lemma. For each j = 1, ..., N the set S_j is lying on a concave curve.

PROOF. It is sufficient to prove that for any $r_1 < r_2 < r_3 (r_1, r_2, r_3 \in R_j)$ the slope of a chord $[(S_{0,j}(r_1), S_{1,j}(r_1)), (S_{0,j}(r_2), S_{1,j}(r_2))]$ is greater than the slope of a chord $[(S_{0,j}(r_2), S_{1,j}(r_2)), (S_{0,j}(r_3), S_{1,j}(r_3))]$, i.e. that

$$\frac{S_{1,j}(r_2) - S_{1,j}(r_1)}{S_{0,j}(r_2) - S_{0,j}(r_1)} > \frac{S_{1,j}(r_3) - S_{1,j}(r_2)}{S_{0,j}(r_3) - S_{0,j}(r_2)}.$$

But according to definitions (6) - (9) we have

$$\frac{S_{1,j}(r_2) - S_{1,j}(r_1)}{S_{0,j}(r_2) - S_{0,j}(r_1)} = \frac{\sum_{t \in T_j: r_1 < R_j(t) \le r_2} P_{1,j}(t)}{\sum_{t \in T_j: r_1 < R_j(t) \le r_2} P_{0,j}(t)} \ge \frac{1}{r_2} > \\
> \frac{\sum_{t \in T_j: r_2 < R_j(t) \le r_3} P_{1,j}(t)}{\sum_{t \in T_j: r_2 < R_j(t) \le r_3} P_{0,j}(t)} = \frac{S_{1,j}(r_3) - S_{1,j}(r_2)}{S_{0,j}(r_3) - S_{0,j}(r_2)},$$

and Lemma is proved.

The proof of Lemma is applicable to the absolutely continuous case also, but in that case we have used an explicit formula for the density of $Z_{1,j}(x)$. To get a full analogy with the absolutely continuous case we define functions $Z_{1,j}^*(x), x \in [0,1], j = 1, ..., N$, such that their graphs are convex hulls of corresponding sets S_j . In other words, these functions are continuous, satisfy conditions

$$Z_{1,j}^*(S_{0,j}(r)) = S_{1,j}(r), \quad r \in R_j, \quad Z_{1,j}^*(0) = 0, \quad Z_{1,j}^*(1) = 1,$$

and are piecewise linear on intervals $(S_{0,j}^-(r), S_{0,j}(r)), r \in R_j$, between points of the set $\bar{S}_j = \{0\} \cup \{S_{0,j}(r), r \in R_j\} \cup \{1\}$. Evidently, $Z_{1,j}^*$ for each $j = 1, \ldots, N$ is a distribution function of the mixture of uniform distributions on intervals $(S_{0,j}^-(r), S_{0,j}(r)), r \in \bar{S}_j$, with weights $S_{1,j}(r) - S_{1,j}^-(r)$.

It is obvious that mixture of uniform distributions on intervals $(S_{0,j}^-(r), S_{0,j}(r)), r \in \overline{S}_j$, with weights $S_{0,j}(r) - S_{0,j}^-(r)$ is a uniform distribution on [0, 1] and has distribution function $Z_{0,j}^*(x) = x, x \in [0, 1]$.

Now to define randomized statistics $\zeta_j = \zeta_j(\xi_j)$ we introduce auxiliary random variables $\alpha_1, \ldots, \alpha_N$ uniformly distributed on an interval [0, 1] and put

$$\zeta_j = \alpha_j S_{0,j}^-(r) + (1 - \alpha_j) S_{0,j}(r)$$
 if $R_j(\xi_j) = r$.

Being defined in such a way random variable ζ_j is uniformly distributed on [0, 1] under hypothesis H_0 and has distribution function $Z_{1,j}^*(x)$ under hypothesis H_1 .

Theorem 2. For any j = 1, ..., N the function $Z_{1,j}^*(x)$ is concave on [0,1] and $\rho_j = \max_{0 \le x \le 1} (Z_{1,j}^*(x) - Z_{0,j}^*(x))$ is equal to the variational distance between distributions of ξ_i under hypotheses H_0 and H_1 . Further,

$$\mathbf{E}\{\zeta_{j}|H_{0}\} = \frac{1}{2}, \quad \mathbf{E}\{\zeta_{j}|H_{1}\} \le \frac{1-\rho_{j}}{2}, \\ \mathbf{D}\{\zeta_{j}|H_{0}\} = \frac{1}{12}, \quad \mathbf{D}\{\zeta_{j}|H_{1}\} \le \frac{1}{4}.$$

PROOF. Concavity of the function $Z_{1,j}^*(x)$ follows from Lemma. The function $Z_{1,j}^*(x)$ is linear on intervals $(S_{0,j}^-(r), S_{0,j}(r)), r \in R_j$, so $\max_{0 \le x \le 1} (Z_{1,j}^*(x) - Z_{0,j}^*(x))$ is attained on the closure of the set $\{0\} \cup \{S_{0,j}(r), r \in R_j\}$. Further, for any $r \in R_j$

$$Z_{1,j}^*(S_{0,j}(r)) - Z_{0,j}^*(S_{0,j}(r)) = S_{1,j}(r) - S_{0,j}(r) =$$

$$=\sum_{t\in T_j:R_j(t)\leq r}P_{1,j}(t)-\sum_{t\in T_j:R_j(t)\leq r}P_{0,j}(t)=\sum_{t\in T_j:P_{0,j}(t)\leq rP_{1,j}(t)}(P_{1,j}(t)-P_{0,j}(t)).$$

The summands in the last sum are positive for r < 1 and negative for r > 1; it follows that $\max_{0 \le x \le 1} (Z_{1,j}^*(x) - Z_{0,j}^*(x))$ is attained at the point $x = \sup\{S_{0,j}(r): r \le 1\}$ and is equal to

$$\frac{1}{2}\sum_{t\in T_i}|P_{1,j}(t)-P_{0,j}(t)|,$$

i.e. to the variational distance between distributions of ξ_j under hypotheses H_0 and H_1 . Moments of ζ_j are estimated as in Theorem 1. Theorem 2 is proved.

Theorems 1 and 2 reduce the problem of testing two simple statistical hypotheses on the distribution of independent nonidentically distributed random variables ξ_1, \ldots, ξ_N (taking values of any nature) to the problem of testing hypothesis H'_0 : independent random variables $\zeta_1(\xi_1), \ldots, \zeta_N(\xi_n)$ are uniformly distributed on [0, 1] against hypothesis H'_1 : independent random variables $\zeta_1(\xi_1), \ldots, \zeta_N(\xi_n)$ taking values in [0, 1] have concave nonuniform distribution functions $Z_{1,j}(x), j = 1, \ldots, N$. So under H'_0 random variables $\zeta_1(\xi_1), \ldots, \zeta_N(\xi_n)$ are identically distributed and under H'_1 random variables $\zeta_1(\xi_1), \ldots, \zeta_N(\xi_n)$ have biases of the same sign compared to their distributions under H'_0 .

The simplest way to test H'_0 against H'_1 by means of these biases is to use statistics $V_N = \sum_{j=1}^N \zeta_j$. If H_0 is valid then V_N is the sum of N independent random variables uniformly distributed on the interval [0, 1], in particular,

$$\mathbf{E}\{V_N|H_0\} = \frac{N}{2}, \quad \mathbf{D}\{V_N|H_0\} = \frac{N}{12}$$

If H_1 is valid then V_N is the sum of N independent random variables which are stochastically smaller than random variables uniformly distributed on the interval [0, 1], and

$$\mathbf{E}\{V_N|H_1\} \le \sum_{j=1}^N \frac{1-\rho_j}{2}, \quad \mathbf{D}\{V_N|H_1\} = \sum_{j=1}^N \mathbf{D}\{\zeta_j|H_1\} \le \frac{N}{4}.$$

For large N normal approximations may be used to estimate critical levels and error probabilities (especially if explicit formulas for $\mathbf{E}\{V_N|H_1\}$ and $\mathbf{D}\{V_N|H_1\}$ are known). But this approach, of course, is not the best possible.

Another way is to compute statistics of goodness-of-fit criteria (for example, Kolmogorov – Smirnov statistics) for H'_0 and H'_1 separately and compare their values.

However it seems that the problem of testing H'_0 against H'_1 is far from being completely solved.

References

E.L. Lehmann. *Testing Statistical Hypotheses*. Springer-Verlag, New York e.a., 2nd edition, 1986.

Author's address:

Dr. Andrew M. Zubkov Department of Discrete Mathematics Steklov Mathematical Institute Gubkina Str. 8 119991 Moscow Russia

Tel. +7 095 1351519 Fax +7 095 1350555 E-mail: zubkov@mi.ras.ru