AUSTRIAN JOURNAL OF STATISTICS
Volume 34 (2005), Number 2, 225-232

Notes on Statistical Tests for Nonidentically Distributed
Observations

Andrew M. Zubkov
Steklov Mathematical Institute of RAS, Moscow, Russia

Abstract: We discuss a problem of testing simple statistical hypotheses on
the nonidentically distributed observations. A possibility of using the method
Monte-Carlo for choosing the critical value in Neyman — Pearson test is
pointed out. We propose also an approach permitting to reduce the problem
considered to a problem of testing hypotheses on uniformity vs nonunifor-
mity of distributions on the interval (0,1).

Keywords: Hypotheses Testing, Nonhomogeneous Observations, Likelihood
Ratio Ordering, Variational Distance.

1 Introduction

Let us consider a classical problem: we observe a seqence, &, of random variables

(the structure of the set of their values is unessential) and wish to test two statistical
hypothesesH, and H,) on the distributions of these random variables. According to the
Neyman — Pearson fundamental lemma (see Lehmann, 1986) the most powerful test in
this problem should be based on the likelihood ratio

_ (&1, 6n)

p1(§17 e 76“)’
wherep, andp, are densities (probabilities in discrete case) of the outc@me. ., &,).
Given the probabilityr of choosingH; when H, is valid we have to find a numbef«)
such thatP{L,, < ¢(«a)| Ho} = a (with possible randomization if the distribution &f,
has an atom af{«)). If such anc(«) is found (and randomization is unnecessary) we may
choose the hypothesid if L,, > c¢(«) and chooséd; in the opposite case. This criterion
has minimal probability of choosing, whenH, is valid in the set of all criteria such that
the probability of choosingf; when H,, is valid equals ta.

From a practical viewpoint a serious drawback of Neyman — Pearson criterion is the
necessity to comput&«). This problem has an exact solution if the equationdr)
is solvable. In the case of independent identically distributed observations (with known
mean and variance abg L) and largen it is possible to use normal approximation for
the distribution oflog L,,. But just in the simple case whén, . . ., £, are independent but
nonidentically distributed (for example, §f, ..., &, correspond to different characteris-
tics of random objects) the computation«gfr) may become a hard problem.

This note consists of two parts. The content of the first part is an almost trivial idea
to use the Monte-Carlo method to estimate). In the second part we suggest a hint
permitting to reduce the statistical problem with nonidentically distributed observations
to a problem of testing hypothesis on uniformity vs nonuniformity of distributions on the
interval (0,1).

L, = Ln(£17 R 75”)
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2 Monte-Carlo Estimates

First of all note that it is possible to use Monte-Carlo approximation(tg. Indeed,
let us simulateN independent sample{s;%”), ...,m¥)), 5 =1,..., N, according to the

n

hypothesisH,. For eachj = 1,...,N we compute\; = L,(n", ... n%¥)). These
random variables are independent and identically distributed:

P{\; <z} = Fy(z) :=P{L, < x| Ho}.

So, P{Fy()\;) < y} < yforally € [0,1], andP{Fy()\;) < y} = y if Fy'(y) =
sup{z: Fy(x) < y} is a continuity point ofF;,. For largeN the empirical distribution
function of Ay, ..., Ay will approximate the distribution functiof,(z). For example, let
A < Aav <o < Ay be the order statistics oOf, . . ., Ay. If we choose\,ny.v ([]
denotes an integer part of as an approximation t@«) then

P{FO(/\[aN]:N) <o— 6} =P {Z ](Fo(Aj) <o— 5) > [OéN]} < P{BN,O(—E > OZN},

j=1

N
P{FQ()\[QN];N) > o+ E} =P {Z I(Fo()\j) <a+ 5) < [QN]} < P{ﬁ]\ﬂa_,_a < CY]V}7
j=1
where gy, denotes random variable having the binomial distribution with parameters
(N, p). These equations may be used to estimate the accuracy of approximatier) of
as a function ofvr and N.

The same idea of using the Monte-Carlo method may be applicblefote butafter
observing the sequenge, . . ., §,. Let us simulateV independent samples

(7’]5‘])7"'7777(7:7‘))’ j:17""N7

according to the hypothesig, and compute the number; of j = 1,..., N such that

Aj < Ln(&1, ..., &). Then the valuél is a consistent (a% — oo) statistical estimate of

Fo(Ln(&1,- .., 6n)). Sothe inequalityy > « is asymptotically (agv — oo) equivalent
to the Neyman — Pearson criterion. It may be shown that

1

— max P{Fy(L,) =y} < P{vy <m}— ﬂNli

0<y<1

<0, m=1,...,N.
Computation of estimate¥ for each observation of;, ..., ¢, takes more time but it
rules out inevitable systematic bias appearing when a single Monte-Carlo estimate of
c(a) is used.

3 Reduction to a Simpler Problem

Consider another possibility to test hypotheggsand A, on independent nonidentically
distributed random variabl€s, . . ., &,.

We begin with the case when for eaghk- 1, ..., N the distributions of; under both
H, andH, are absolutely continuous with common support. ketz) be a density of;
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under hypothesi#/;, i = 0,1, j =1,...,N. Denoter;(z) = %, j=1,...,N,and
5J
introduce distribution functions

Gj(z) = P{r;(§) < z[Ho} = / poj(u)du, j=1,...,N. 1)

w:rj(u)<z

Definition of G;(z) seems complex, but it may be simplified in concrete cases. For ex-
ample, ifr;(z) is monotonically decreasing amd'(y) = sup{x: r;(z) > y} then

Gj(z) = / poj(w)du, j=1,...,N;
i (@)

if r;(x) is unimodal (i.e.r;(x) is increasing fromr;(—oo) to r;(a;) on [—oo, a;] and
decreasing from;(a;) tor;(co0) on|a;, c0)) and
i (y) = {sup {z:r;(x) >y}, 1j(00) <y < rjla), 00, 15(0) <y < rj(00),

r; (y) ={inf {z: r;(z) >y}, 75(0) <y <rja;), —oo, rj(00) <y <ri(ay),
then

v (@)
Gj(x)=1- / poj(u)du, min{r;(0),r;(c0)} <z <rj(a;), j=1,...,N.
v (@)

Let(; = G,(r;(&)), j =1,...,N. If distributions of¢,, . .., ¢, satisfy the hypoth-
esis Hy then random variable§, . .., (y are independent and uniformly distributed on
[0,1]:

Zo(x) == P{(G < z|Ho} = P{G;(r;(&;)) < x[Ho} = 2)

= P{r,(&;) < G ' (@) Ho} = G,(G; (@) =2, =€ [0,1), j=1,...,N,

whereG~! denotes inverse function fa¥.

If hypothesisH, is valid then random variables, . . ., (v are independent and have
nonuniform distributions. The distribution function ¢f under the hypothesi#; takes
the form

Zy () = P{¢; < x|Hi} = P{G;(r;(&;)) < x[Hi} = P{r;(&) < G;'(x)|Hi}. (3)

Theorem 1. For anyj = 1,..., N the functionZ, ;(z) is concave or0, 1] and
pj = 0@a§1(217j(x) — Zy(x)) is equal to the variational distance between distributions of

¢; under hypothesed,, and H,. Further,

1 1—p;
B{G|Ho} = 5. B{GIH)} < .

D{GIH} = 15, DIGIH} <

1 =
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Corollary. We haveZ, j(x) > Zy(xz) =z forallz € (0,1)andallj =1,..., N.
PROOF Let

Cu(@) = Plry(&;) < o|Hy} = / pr(w)du, j=1,...,N. 4)

u:rj(u)<z
Thenlej(l’) = GL](GJ_I(ZL’» So,

d d d

— 7 j(r) = —G4 (G = —Gy —G 1 (z) = 5
320 = GG @) = Touw) | RGN ©)
J
d lim ~ i p1,j(u)du
B w1 (v) =Gl @) M0 T w6 @) - A<y (<G (@) 1
A (y ~ lim+ [ poj(u)du — G7l(z)
dv ]( )v:Gj_l(z) Alo Au: G;l(x)ngrj(u)ngfl(x) ’ ’
is nonincreasing, i.eZ; ;(x) is concave.
Note that distribution functiong(z) = =, Z; ;(z), € [0, 1], are absolutely con-
tinuous with densitiesy(z) = 1, 21 ;(z) = ﬁ, € [0,1], and satisfy conditions

Zo(O) = Zl,j(o) =0, Zo(]_) = Zl,j(l) = 1. Leth = bup{x € [0, ].] Zl’j(l’) > 1} Due
to monotonicity ofz; ;(z) we have

pj = max (le( ) — Zo(x)) = Z1,j(c;) — Zo(c;) =

0<z
17
2(/(21]()—1dx+/1—21] dx) /|zlj — 1|dz.
0 Cj
Further, taking into account (5) and applying change of variabteG;(y) we find
1 1] 4 , y)
1 vGLiW)] o
|z1j(x) = l|de = | | ==~ — 1|dz = : — 1ldx =
/ 0/ Gj (z) 0/ d,%GJ(U) v=G ()

o0 d o0
Gi;(y) |d d ‘
dy 5]
= 11dG = —G —@G dy =
I Ve 1|6 = [ 56000 - 36:)d
Tld d
= [ | pudu— = [ posuduldy = [ [pis() = pos(wldu
—o0 yu:rj(u)gy yu:rj(u)gy

l.e., p; equals to the variational distance between distributiorts ahder hypotheseH|

andH,.
Random variabl€; under hypothesi#/, is uniformly distributed ono0, 1], so

1 1
E{¢;|Ho} = 3 D{(;|Ho} = ITh
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To estimateE{(;|H, } we introduce piecewise linear functidrj(x): the graph ofL;(z)
connects pointg0, 0), (¢;, Z1 ;(cj)), (1,1). Due to the concavity o, ;(z) we have
Zy j(z) > L;(x) forall z € [0,1]. Now

B{GIH)} = [(1 = Zu(0)de < [(1 = Li(a)do =

1
1 .
0/ (1—2) dx—/ Lj(x)—x)dxzi—%
because the area of triangle formed by graphs,0f) andZ,(z) = « equals to
1 Pi
5(Z14(ej) = ¢) = o
Inequality D{¢;|H:} < % is valid for any random variable with values jf, 1]. The
theorem is proved.
Now consider the case when distributionséofunder bothH, and H; are discrete
with common suppord;, j =1,...,N. Let
R’](t):P{szt‘Hl}, tGTVJ‘:{th,t]"Q,...}, jzl,...,N,

be the distribution of; under hypothesié/;, i« = 0,1. The setdl}, ..., Ty are at most
countable. LetR;(t) = POJE% t € T;; the setsR; of valuesR;(t), t € 1}, are at most
countable also.

It is convenient to introduce right-continuous and left-continuous distribution func-
tions foreachy = 1,..., N:

Soj(x) =P{R;(&) <w|Ho} = Y Poylt), (6)
teTj:R;(t)<x

Soj(x) =P{R;(&) <z|Ho} = > Poylt), 7)
teTj:R;(t) <z

Sii(e) =P{R;(&) <x|Hi} = >,  Pyt), (8)
teTj:R;(t)<x

Sii(x) =P{Rj(&) <z|Hi} = > Py(t), 9

teT):R;(t)<x

herex € [0, oo]. Let S; be a set of points with coordinateS, ;(r), S1 (1)), r € R;.
Lemma. For eachj = 1,..., N the setS; is lying on a concave curve.
PROOF It is sufficient to prove that for any, < ro < 73 (71, 72,735 € R;) the slope
of a chord([(Sy ;(71), S1,5(r1)), (Soj(r2), S1,(r2))] is greater than the slope of a chord
[(S0,4(r2), 51,5(r2)), (So,3(rs), S1,5(r3))], .. that

S14(r2) — S1,(r1) - S1,4(r3) — S1,(r2)
So,j(r2) = Soj(r1) = Soj(rs) — So;(r2)
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But according to definitions (6) — (9) we have

2 Py (1)
Sl7j<r2> - Sl,j(r1> _ teT;:r1<R;(t)<ra J Sl
S0(r2) = 5o,() > Po(t) — o
teTyir <R; (t)<rz
2 Py ;(t)
L €tnihosn T Siy(ra) = S1y(r)

Poj(t)  So;(rs) — So;(rz)’
teTjira<R;(t)<rs
and Lemma is proved.
The proof of Lemma is applicable to the absolutely continuous case also, but in that
case we have used an explicit formula for the densityof(z). To get a full analogy
with the absolutely continuous case we define functihgz),» € [0,1],j =1,..., N,
such that their graphs are convex hulls of corresponding$etsn other words, these
functions are continuous, satisfy conditions

Z7(So4(r)) = S1;(r), reR;, Zi;(0)=0, Zi;(1)=1,

and are piecewise linear on intervals, ;(r), So;(r)), r € R;, between points of the set
Si = {0yu{So;(r), r € R;}U{1}. Evidently,Z; ; foreachj = 1,..., N is a distribution
function of the mixture of uniform distributions on intervdlS, ;(r), So (7)), r € Sj,
with weightsS ;(r) — Sy ;(r).
_Itis obvious that mixture of uniform distributions on intervals, ;(r), So;(r)), r €
S;, with weightsS, ;(r) — Sy ;(r) is a uniform distribution on0, 1] and has distribution
function Zj ;(z) = z, = € [0, 1].

Now to define randomized statisti¢s = (;(&;) we introduce auxiliary random vari-
ablesay, . .., ay uniformly distributed on an intervad, 1] and put

G = a;So (1) + (1 —a;)So;(r) if R;(§)=r

Being defined in such a way random varialyjes uniformly distributed orj0, 1] under
hypothesist, and has distribution functio; ;(x) under hypothesigl; .

Theorem 2. For anyj = 1,..., N the functionZ} ;(z) is concave or0, 1] and
pj = o@ai(l(zij (z) — Zg ;(x)) is equal to the variational distance between distributions

of &; under hypotheseH, and H,. Further,

1 1—p;
E{(|Ho} = 5 E{¢|H,} < 2p] ;

1 1
D{(;|Ho} = 2 D{¢|H.} < 1

PRoOOF Concavity of the functior; ; () follows from Lemma. The functioi; ;(x)
is linear on intervalg Sy (1), So,;(r)),r € R, Soorila?l(zij (z) — Z5 ;(x)) is attained on

the closure of the s} U { S, ;(r),~ € R;}. Further, for any- € R;

73 i(So(r)) = Zg j(So (1)) = S1,5(r) — So,(r) =
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= > Py)- > Ryl)= (Pr;(t) — Poi(t))-
teT;:R; t)<r teT;:R; t)<r tETj:PQJ'(t)S’I‘PLj(t)
The summands in the last sum are positivesfor 1 and negative for > 1; it follows
thatorila}l(zij (z) = Z; ;(x)) is attained at the point = sup{ Sy ;(r): r < 1} and is equal
to
1
3 > [PLi(t) = Poy(t)],
tETj
I.e. to the variational distance between distributiong;afnder hypothesed, and ;.
Moments of¢; are estimated as in Theorem 1. Theorem 2 is proved.

Theorems 1 and 2 reduce the problem of testing two simple statistical hypotheses
on the distribution of independent nonidentically distributed random varigbles. , {x
(taking values of any nature) to the problem of testing hypothE§isindependent ran-
dom variables(; (&), ..., (n(&,) are uniformly distributed or0, 1] against hypothesis
H{: independent random variablés(¢,), ..., (y(&,) taking values inf0, 1] have con-
cave nonuniform distribution function8; ;(z),7 = 1,...,N. So underH| random
variables(; (&1), ..., (n(&,) are identically distributed and undéf; random variables
G1(&), ..., (v (&) have biases of the same sign compared to their distributions ufjder

The simplest way to testl;, againstd; by means of these biases is to use statistics

N

Vv = X (. If Hyis valid thenVy is the sum ofN independent random variables
=1

uniformly distributed on the intervad, 1], in particular,

N N
E{Vy|Ho} = . D{Vy|Ho} = 3.

If H, is valid thenVy is the sum ofN independent random variables which are stochas-
tically smaller than random variables uniformly distributed on the intdfval, and

N
1

N1, N
E{Vy|H} <> 5 D{Vy|H,} =) D{(|Hi1} <

Jj=1 J=1

For large N normal approximations may be used to estimate critical levels and error
probabilities (especially if explicit formulas fd&{Vx|H;} andD{Vx|H,} are known).
But this approach, of course, is not the best possible.
Another way is to compute statistics of goodness-of-fit criteria (for example, Kol-
mogorov — Smirnov statistics) fdé, and H; separately and compare their values.
However it seems that the problem of testiAg againstH] is far from being com-
pletely solved.
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