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Abstract: Within the framework of classical linear regression model stochas-
tic optimal design criteria are considered. As examples a line fit model and
a k-way linear fit model are taken. If the optimal design does not exist, an
approach consisting in choosing the efficient design is suggested.
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1 Introduction

A literature on optimal design criteria is very extensive. For references see Pukelsheim
(1993) and Liski et al. (2002), for example. Among the criteria there are the so-called
classical criteria like A-, D- or E-optimality as well as the relatively new onessikehas-
tic optimality criteria. The stochastic criteria have gained a momentum only recently,
though the most known criterion of such type was put forward more than thirty years ago
(see Sinha, 1970).

In the paper we consider the classical linear regression model

Y ~ N,(X8,0°1,) (1)

where then x 1 response vectoY = (Y;,Ys,...,Y,)T follows a multivariate normal
distribution, X = (2™, 2® ... 2™)Tis then x k design matrix of the full rank < n,
B = (B, P ...,0)" isthek x 1 parameter vectofy (V) = X 3 is the expectation vector
of Y ando?1, is the covariance matrix df, wherel, is then x n identity matrix and
o > 0 is unknown.

Let 5 be the least squares estimatopdieing at the same time the best linear unbiased
estimator. As it is well-known,

B=X"X)"'XTY ~ Nu(3,02(XTX)).

In the sequel, we deal with the so-calledntinuousor approximatedesign. Each
approximate desigfis a discrete probability measure taking valpgs- 0 at vectorse )
(support vectors); = 1,2,...,m, thatis

€:{$(1)7I(2)a"'7$(m); p17p27"'7pm}7 szzl
=1

wherez® € X, i =1,2,...,m. The setY is called theexperimental domairWe denote
by = the set of all approximate designs an

With a design¢ we associate ité x k& moment matrixp/(¢) = Y7 | pa®@zOT I
pi = n;/n, i =1,2,...,m, m < n, wheren; are integers and_." | n, = n, then the
covariance matrix off is (0% /n)M~1(£). Throughout the paper, we write = B(€) or
B = B(M) to emphasize the dependenceﬁ)from the desigre or from the moment
matrix M, respectively.
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In the paper we refer to a line fit model when we have 2 uncorrelated responses

}/’L]:/81+522’L+6’L]7 Z:1727)m7]:1a277n1 (2)
with expectationsF(Y;;) = (1 + (22; and varianced/(Y;;) = o2 In this case an ap-
proximate desigij specifies distinct values, .. ., z,, chosen from a given experimental
domain (usually an intervdk, b]) and assigns to them weights > 0, ...,p,, > 0,
respectively. Of course, these weights satfsty/ | p; = 1. Here,

1 Z Pizi
M(€) = o

m m
Sopizi Y piz?
=1 =1

In the paper we also considercavay line fit model with or without an intercept. In
the first case we have > k£ + 1 uncorrelated responses

V=004 02+ 4+ 82 ey, i=12...mji=12...n (@)

with unknown parameters3,, 3., . .., 3;) and experimental conditiong?) = (xg),xéi),
o ,x,(j))T, 1=1,2,...,m.Inthe second case we have> k uncorrelated responses
E:ﬁ1$§l)++5kwl(€1)+€”, 221,2,,m,]:172,,nl (4)

with unknown parameters3y, B, ..., 3,) and experimental conditions? = (z{”, 2%,

2T i =1,2,... m.Inboth cases the assumptionsqpare the same as in (2).

The paper is organized as follows. Classical and stochastic optimality criteria are
discussed in Section 2. There the problem of establishing the corresponding optimal
designs in the above-mentioned models is also considered. Section 3 is devoted to the
concept of efficient designs in the situations where the optimal designs do not exist. The
proofs of theorems can be found in Appendix.

2 Optimality Criteria and Optimal Designs
2.1 Optimality Criteria

An optimality criterionF’ is a function from the closed cone of nonnegative definite ma-
trices intoR’, . We say that the desigft is -optimalif and only if

£ € Arg Iglei;lF(M(O)-

Recall the definitions of the classical optimality criteria.
e The criterionF (M) = det (M ') is called D-criterion.

e The criterionF' (M) = tr (M 1) is called A-criterion.
e The criterionF' (M) = A\nax (M 1) is called E-criterion.
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Here, \..x (M 1) denotes the maximal eigenvalue of the matfvix *. It is well-known
thatdet (M '), called the generalized variance, determines the volume of the ellipsoid
of concentration fo@. Its minimization leads to the ellipsoid of concentration with the
smallest volume. On the other hand, minimizatiortiof A/ 1), called the average vari-
ance, is the minimization of the sum of variances?gfz’ =1,2,..., k. At last, mini-
mization of \,...(M ') leads to the ellipsoid of concentration having the smallest length
of the maximal axis. In all the three cases wesgt/) = o if the matrix M/ is degener-
ate. This means that the designs with degenerate moment matrices can be excluded from
the consideration. Therefore, we can assume that the support size of designs satisfies the
inequalitym > k (orm > k + 1 when we deal with &-way line fit model with an
intercept).

Saying ’stochastic optimality criteria’ we mean functions depending on the moment
matrices through a probability. A typical example is the family of criteria

Fo(M)=—InP ([B(M) —fdle A>7 Ac A (5)

whereA is a given class of bounded subset®Réfcontaining the origin. The clas4 can
be interpreted as a collection of sets determining a system of neighbourhoods of the origin.
Here, we would like to choose a design which guarantees the maximal probability for the
estimator3 of being 'close’ tos. Of course, the terminology 'stochastic’ is rather relative.
It is due to Sinha (1970) who introduced the concept of distance stochasti¢DS)
criterion in certain treatment design settings. Liski et al. (1999) studied the properties
of this criterion under the classical linear regression model (1). In case of a degenerate
matrix M, it is natural to seP([3(M) — 5] € A) = 0.

We obtain the DS-criterion taking to be the class of ak-dimensional balls centered
at the origin:

A={cA, ¢ >0}, A={zeR": |z|| <1}

where]|| - || stands for the usual Euclidean norm®i. Here, we assume the system of
neighbourhoods to be the balls, one of the most natural choice. Observe that the DS-
criterion, in fact, is a family of D& )-criteria indexed by > 0. We say that the design
is optimal with respect to the family of criteria if and only if it is optimal with respect
to the each criterion from this family. One can remember the families of criteria popular
in the literature: thep,-criterion (see Pukelsheim, 1993, Chapter 6) or the characteristic
criterion (see Rodrigues-Diaz andhez-Fidalgo, 2003). It should be emphasized, how-
ever, that the DS{-optimal design, i.e. the design which is optimal with respect to the
DS(¢)-criterion for givens > 0, is not of great interest itself since usually it depends on
unknowno.

Liski et al. (1999, Theorem 5.1) studied the behavior of thedp8fiterion when
e approache® andoco. These limiting cases have an interesting relationship with the
classical D- and E-optimality criteria. It turns out that the B)Striterion is equivalent
to the D-criterion ag — 0 and to the E-criterion as — oo. Moreover, minimization
of the probability P(||5(£) — B|| > ¢) simultaneously for ale > 0 is equivalent to
minimization ong(||§(§) — f||) for all increasing functiong such that the expectation
exists (see Marshall and Olkin, 1979, Chapter 17.A). In particular, one cap(take- x.
Therefore, if a design is DS-optimal then it is also A-optimal.
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Zaigraev (2002) suggested a natural extension of the DS-criterion calleshépe
stochastiqSS,) criterion. Here,

A={eA, e>0}, A, ={zeR": |z| < p(z/|lz[)} U {0}

andp is a positive continuous function defined on the unit spBére in R”. In particular,
the SS-criterion is simply the DS-criterion ip(-) = 1. Again one can note that the
SS (¢)-optimal design, in general, depends on unknewn

In the sequel, we confine ourselves to the case wHerns a convex and symmetric
(with respect to the origin) set. This restriction has the following sense. We say that a
designé; dominateg, in the Loewner ordering sende)M; — M, is a nonnegative definite
matrix (in such a case we write/; — M, > 0 or My > Ms), whereM; and M, are the
moment matrices of the desigfisand¢,, respectively. Thus the Loewner partial ordering
among moment matrices induces a partial ordering among associated designs. Observe
that D-, A-, E- and DS-criterion ar@ntitonicrelative to Loewner ordering, that is for any
two moment matriced/; and M, the inequalityM; > M, implies F(M;) < F(Ms).
Such a property is a desirable if we deal with an optimality criterion. As it follows from
Theorem 2 of Liski and Zaigraev (2001), the SSiterion is antitonic relative to Loewner
ordering if and only if the sefi,, is convex and symmetric with respect to the origin.

Zaigraev (2002, Theorems 1 and 2) established the limit behavior of tlrer8&ion
whene approache$ andoo. It turns out that the Sge)-criterion is equivalent to the D-
criterion ass — 0 and, under the mild regularity conditions pnto the minimax criterion

T -1
F(M) = max (x" Mx)

P

ase — oo. Here,0A, is the boundary of the set,.

2.2 Optimal Designs for a Line Fit Model

Consider model (2) with; € [a,b], i = 1,2,...,m. Searching for optimal designs, in

this situation it is enough to consider only two-point designs of the fgrea {a, b; p, 1—

p}, 0 < p < 1 (see e.g. de la Garza, 1954, Liski and Zaigraev, 2001, Lemma 1). That
IS, the support consists of the extreme points of the experimental domain. The moment
matrix of such a design has the form

- 1 ap +b(1 — p)
M(&p) = (ap+b(1—p) a2p+b2(1—p))'

It is not difficult to calculate the optimal designs with respect to the classical optimality
criteria. They are given as follows:

e D-optimal desigre? = & 5;
o A-optimal designt = &, p* = VI+02/(V1+02+ V1+d?);
e E-optimal desigrt” = &;,
b/(b— a), if b+a=0 or ab< —1,

" (b(b+a)+2)/((b+a)*+4), otherwise.
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Observe that ifi = —b (Symmetric experimental domain), then the dedig, b; 0.5,
0.5} is D-, A- and E-optimal. As to DS-optimality, the following general result holds.

Theorem 1. The design{—b, b; 0.5,0.5} is optimal for model (2) on the symmetric ex-
perimental domairi—b, b] with respect to any stochastic criterion of the form (5) with
to be a class of convex and symmetric (with respect to the axes) &ts in

Theorem 1 is a direct extension of Lemma 2 of Liski and Zaigraev (2001). Its proof,
in fact, repeats the proof of that lemma modifying it slightly accordingly with the fact that
in the situation considered we have

M(&) = (b(l ! 2) b<1b_22p)> = DM(&,)D

whereD = diag (1,b) while

we=(, 15

is the moment matrix of the desigl) = {—1,1; p,1 — p} for model (2) on the experi-
mental domain—1, 1].

Observe that it: # —b (asymmetric experimental domain), then D-, A- and E-optimal
designs are different and, therefore, DS-optimal design does not exist. However, it is of
interest to note that sometimes in such a situatiofp@imal designs exist (see Zaigraeyv,
2002, Section 3).

Dealing with the Sg-criterion in model (2), we confine ourselves to the following
classes of sets centered at the origin:

e squares Withd, = {(z1,22)" € R?: || <1, || < 1};
e rectangulars with, = {(z1,z2)" € R?: 2|xy| < 1, |zo] < 1};
o ellipses withA, = {(x1,22)" € R?: 2} + 2xy29 + 23 < 1}

The choice between those cases can be made basing on the problems to be solved or our
personal preferences. In the first two cases, by Theorem 1, the@&al design on the
experimental domaifi-b, b] exists; it is{—b,b; 0.5,0.5}. In the last case, however, the
SS,-optimal design does not exist due to lack of symmetry with respect to the axes.

Now, consider the case of an asymmetric experimental domain. For definiteness,
we takela,b] = [0,1]. In accordance with the above-mentioned calculatigns, =
{0,1; 0.5,0.5}; €4 ={0,1; 2—v/2,v/2—-1}; ¢¥ ={0,1; 0.6,0.4}.

The DS-optimal design does not exist; for giver> 0 the DSe)-optimal design
depends orx. Denote byC' the class of all D&)-optimal designs and add @ two
limiting designs wherr — 0 ande — oo. The same notation concerns the,S8terion
as well.

As we have mentioned earlier, for model (2) on the experimental dof@aihit is
enough to consider only two-point designs of the fofi1; p,1 — p}, 0 < p < 1.

Below we give numerical results of calculatingin four cases: for the DS-criterion and
for the SS-criterion (squares, rectangulars and ellipses). For given0 the weightp
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for the corresponding optimal design dependsoHowever, it is more comfortable to
used = /ne/o instead ofc to express this dependence. Observe that limiting optimal
designs wherm — oo coincide with those calculated theoretically (see Zaigraev, 2002,
Section 3).

Table 1: DS-criterionC' = {{0, 1; p,1 — p},0.5 < p < 0.6}

6] 0.05 [ 0.10 [ 0.25 [ 0.50 | 0.75 | 1.00 | 1.25 | 1.50 |
p|0.5001]0.5004]0.5019]0.5075]0.5159]0.5261]0.5371[0.5480]

6] 1.75 | 2.00 [ 3.00 | 4.00 [ 5.00 | 6.00 [ 7.00 | 8.00 |
[0.5572]0.5665]0.5871]0.5938]0.5963]0.5975]0.5683]0.5986

Table 2: SG-criterion, squares,’ = {{0,1; p,1 —p}, 0.5 <p < 0.54(54)}

6] 0.05 [ 0.10 [ 0.25 [ 0.50 | 0.75 | 1.00 | 1.25 | 1.50 |
p|0.5001]0.5004]0.5025]0.5094]0.51890.5286]0.5368]0.5424]

6] 1.75 | 2.00 | 3.00 | 4.00 [ 5.00 | 6.00 [ 7.00 | 8.00 |
[0.5437]0.5451]0.5313]0.5152[0.5056]0.5015[0.5012/0.5009)

Table 3: SG-criterion, rectangularg) = {{0,1; p,1 —p}, 0.5 < p < 0.75}

0.50 | 0.75 | 1.00 | 1.25 | 1.50 |
:5100[0.5216]0.5361]0.5524]0.5693)
4, .

6

[0.75 | 1.00 | 125 |
[0.5216]0.5361]0.5524]
2 00 | 5.00 [ 6.00 | 8.00 [10.00 |
.6018]0.6518]0.6821[0.7005]0.7123]0.72620.7338

Table 4: SG-criterion, ellipsesC' = {{0,1; p,1 —p}, 0.4 <p < 0.5}

6] 0.05 [ 0.10 [ 0.25 [ 0.50 | 0.75 | 1.00 | 1.25 | 1.50 |
[0.4999]0.4997]0.49810.4925[0.4841]0.4739[0.4629]0.4520

6] 1.75 | 2.00 [ 3.00 | 4.00 [ 5.00 | 6.00 [ 7.00 | 8.00 |
[0.4427]0.4335]0.4129]0.4062]0.4037]0.4025/0.4018]0.4013)

2.3 Optimal Designs for ak-way Line Fit Model

Consider model (3), that is A-way line fit model with an intercept. Here;) =
(1,20T)T 20 ¢ R* § = 1,2,...,m. As an experimental domain, let us taie =

{z € R¥ : ||z]] < r} (see Pukelsheim, 1993, Section 15.5, Liski et al., 1999, Liski and
Zaigraev, 2001). Recall that for model (3) the smallest possible support size of a feasible
designism =k + 1.
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As it is shown in Theorem 4.2 of Liski et al. (1999)if= v/k, then the DS-optimal
design with the support size: = k + 1 on Z ; exists. This is a so-callecegular
simplex desigiisee also Pukelsheim, 1993, Section 15.12). Such a design has the weights
1/(k + 1) and the support vectors?), ..., 2+ which belong to the boundary of the
experimental domain and form a regular simplex, thatid)|| = vk, ..., ||zD| =
Vik,andz0T:0) = —1foralli # j < k + 1. Observe that a regular simplex design has
the identity moment matrix and an orthogonal transformation of a regular simplex design
IS again a regular simplex design.

Now, we extend this result to the case of arbitrary 0.

Theorem 2.A desigre with the support size: = £+ 1 for model (3) on the experimental
domainZ, is DS-optimal if and only if it is a regular simplex design, that is the design
having the weight$/(k + 1) and the support vectors?), ..., z(*+1 satisfying|| (V| =
v, |[2FY] = and 20720 = 2 /kforall i # j < k + 1. The moment matrix of
such a design has the fortd = diag (1,7%/k, ..., r*/k).

It should be emphasized that the result of Theorem 2 extends also the corresponding
result for model (2) on the experimental doméirb, b] (cf. Theorem 1).

Now, we consider model (4), that iskaway line fit model without an intercept. As
experimental domains, we take the séfs= {z € R* : |z]| < r}, X, = {z € R% :
SE i <r}h, Ay={reRF: F |z <7}, > 0.

Theorem 3.DS-optimal designs with the smallest possible supportisize k£ for model
(4) on the experimental domairlg, X, and X; exist and coincide. This is a so-called
orthonormal design, that is the design having the weigdlitsand the orthonormal sup-
port vectorsrV), ... z® satisfying||lzWV| =7, ..., ||#®| = r andz®Tz) = 0 for
all i # j < k. The moment matrix of such a design has the fofm= (r?/k)I.

3 Efficient Designs

Consider model (2) and the asymmetric experimental doraat) = [0, 1]. From Sub-
section 2.2 we know (see Table 1) that there is no DS-optimal design heré and
{{0,1; p,1 —p}, 0.5 < p < 0.6}. What design should one choose then?

The natural approach consists in choosing an efficient design (see e.g. Li and Chan,
2002, Rodrigues-Diaz andbpez-Fidalgo, 2003), that is the design which is optimal for a
certain DS£*)-criterion and at the same time performs well under other:P&(teria.

Let v(p, €) be theefficiencyof the desigrt, = {0,1; p,1 — p} with respect to the
DS(e)-criterion, that is

_ I P(IB(M(&.) — Bl < )
In P(|G(M (&) = 4]l < e)

where¢,,_ stands for the DS§-optimal design. We use theaximinapproach and wish to
find p so as to maximizenin.~o v(p, ). The desigrg,- € C such that

v(p,€)

p* = Arg max min v(p,¢)
p e>0
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is called theefficientdesign. Let us keep the same considerations and notations for the
S§,-criterion as well.
The numerical calculations give the following results. For the DS-criterion

p* = Arg o J02%, . min v(p,e) = 0.539, min v(p*,e) =0.992.

For the S$-criterion (squares) wher@ = {{0,1; p,1 — p}, 0.5 < p < 0.54(54)} (see
Table 2)

*=A i = (0.521 ' *.e) = 0.998.
P 9 0.5<;{r§lg.}5<4(54) r5n>1£1 v(p.e) ’ Igl;g v(p'se)

For the S$-criterion (rectangulars) whe@ = {{0,1; p,1 —p}, 0.5 < p < 0.75} (see
Table 3)

p* = Arg 028X min v(p,e) = 0.580, min v(p*,e) = 0.962.

Al last, for the S$-criterion (ellipses) wher€' = {{0,1; p,1 —p}, 0.4 < p < 0.5} (see
Table 4)

p* = Arg 0.412%)(0‘5 min v(p,e) = 0.461, min v(p®,e) = 0.992.

As one can see, in all the cases (except for rectangulars) the efficiencies of the efficient
designs are very high.

Appendix

Proof of Theorem 2.We begin with two auxiliary results.

Lemma 1.Let Z be an(k + 1) x k matrix of the full rankk ande # 0 be a given vector
in R¥*1. Then under the conditioA™e = 0,

727" = [l —eet|el?] = Z'Z=clI,

for any givenc > 0.

Proof. (=) Assume thatZTe = 0 andZZ™ = ¢[[}.1 — ee™ /| e|?]. Multiplying the last
equality byZT on the left and byZ on the right, we getZ*7)? = ¢Z* Z. SinceZ is of
the rankk, Z1Z is positive definite. Therefore*Z = cI,.

(<) Assume thatZTe = 0 andZ*Z = cI},. Then

||@||ZT 27T
ell*Z+7Z 0
(ellz vee) = (19572 0 ) = el
Veet
Therefore, also
lellZ” 2
(e ey || = el
ce

But the last equality is equivalentfie||?Z Z " + cee™ = c||e||*I;+1. The lemma is proved.
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Now, we establish the D-optimal design.

Lemma 2. A designé with the support size: = k + 1 for model (3) on the experimental
domainZz, is D-optimal if and only if it is a regular simplex design.

Proof. Let ¢ = {x(l),a:@),. Lkt D2y oy Pt} @ = (l,z(i)T)T, 20 e Z,
i:1,2,...,k+1.Wehave

k+1
1 ) pizT
kel ) 6)

Z pzz(z) Z pzZ(Z)Z(Z)T
=1

i=1

M) = XTPX =

whereP = diag (p1,p2, - - -, Pr+1). Observe that
det (P) < (1/(k + 1))
and the equality holds if and only i, = p» = ... = pr1 = 1/(k + 1). Therefore,
det (M(&)) = (det (X))?det (P) < (1/(k 4 1))*'det (XTX).

This means that searching for the D-optimal design it is enough to consider only designs
with equal weights. By the properties of determinant (see Rao, 1973, p. 32),

k+1

det (XTX) < (k+1) det ( Zz — (k+1)det (27 2)

whereZ = (2,23 . »(+)T The upper bound is attained if and onlyf: "' ()

= 0. On the other hand, by the properties of trace we have

k+1

tr (Z72) =tr (22") = Zuz@ 12 < r2(k+1)

and the upper bound is attained if and only|if|| = r, i = 1,2,...,k + 1. Clearly,
under the constraint (Z*Z) = A+ o+...+ X\ < r?(k+1), the value oflet (Z17) =
A1z - -+ Ay, attains its maximum if and only i, = \y = ... = A\, = r?(k + 1) /k. Thus,

det (M(€)) < (1/(k +1))"det (27 Z) < (r*/k)".

Summing up, one can note that the upper bound is attained here if and dly jf =
diag (1,7%/k,...,r*/k). It remains to show that only a regular simplex design has such
a moment matrix.

Observe that if a desighhas equal weights, then (6) gives

k+1
1 (k+1)7t > 207
M(§) = k+1 =
E+1D)71Y 20 (k+1)"12%7
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For any regular simplex design we haye'“+1 @) = 0. This is the consequence of the
following two facts (|)Z’“Jrl OT,0) = oforanyj = 1,2,...,k + 1; (ii) the span of
the vectors{z(V), 2 z(k“ } commdes withR | otherwise the math(g) would
be degenerate.

Furthermore, for any regular simplex design

E —1... -1
|l -1 k ... -1 r?(k+1
ZZT:Z T (k )[[k+1—eeT]

-1-1... k

wheree = (k + 1)7Y%(1,1,...,1)". Since for any regular simplex desigh‘'e = 0,
applying Lemma 2 we obtaid™Z = (r?(k + 1)/k)I. Thus, we prove that any regular
simplex design has the moment matdixg (1,72 /k, ... 7% /k).

Now, we show that ifM/ (¢) = diag (1,7%/k,...,r*/k), then¢ is a regular simplex
design. Indeed, in such a case from (6) it follows that

k+1 k+1
Y piz = sz (r?/k) Ly (7)
=1
DenoteP'/2Z =Y, P'/?¢ = ¢, whereP ande are the same as above. Then (7) implies
Y'e=0, Y'Y = (?/k)I,

and by Lemma 2
YY' = (2 /k) I — e/ [e]?).

Sincelle||? = €T Pe = (k + 1)~!, we obtain

PY2ZZT P2 = (r? k) [Iis1 — (k + 1) P ?ee™ P2,

or
I/m—1 -1 ... —1
277 = (PP — (k4 ec®) = (k) | L Mol Sl
~1 —1 1 pp -1
But the diagonal elements of the matéz ™ are||zV |2, |22)|%, ..., ||z*+FV]|]%. Since
12902 <% i=1,2,...,k+ 1, we should havey; > (k+1)7%, i =1,2,...,k+ 1.
Thus,p; = ps = ... = pry1 = (k+ 1)L The lemmais proved.

Now, we come back to the proof of the theorem. By Lemma 2 and Theorem 1 of
Zaigraev (2002), it follows that if the DS-optimal design exists, then it is necessary a
regular simplex design.

Assume, first, that? < k. By Theorem 3.2 of Liski et al. (1999), in order to prove
the theorem it is enough to show that for any given desgigime eigenvalues, (M (¢)),
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Ao(M(E)), ..., Mer1(M(€)) of the moment matrixd/ () given by (6), arranged in the
descending order of magnitudes, satisfy the inequalities:

A1 (M(§)) < Tz/ka

Ner1(M(€) + M(M(€)) < 2%k, ..., (8)
Mt (M(€)) + M(M(€) + . + Ma(M(€)) <72,

Aot (M(€)) + M (M(E)) + ... + (M (E)) < r? + 1.

The last inequality is evident since

k+1
tr (M(¢)) = tr (PXX") => pi(|lz9P +1) <r’ + 1.
=1
DenoteB = Y "! ;22T in (6). By the Sturm separation theorem (see Rao, 1973,
p. 64) we have the sequence of inequalities:

M1 (M (&) < Me(B) S Me(M(E)) < Mmi(B) < Memi(M(6)) < ... < \a(B)

< Ma(M(E)) < Mi(B) < M(M(Q)).
Therefore, in order to prove the inequalities in (8) it is enough to show that

Ae(B) <72/k, A(B) + M1 (B) < 202k, .,

(9)
Me(B) + M 1(B) + ...+ M\ (B) <2

We havetr (B) = S5 pi| 22 < r2. If tr (B) = 2, then (9) holds with the equality
in the last inequality (see Marshall and Olkin, 1979, Section 1.A}. (B) < r?, then (9)
holds all the more.

Assume, now, that> > k. Here, instead of (8) we should prove that

Aer1(M(E)) < 1,

Nt (M(€)) + M(M(€)) < 1 +1%/k, ., 0)
10
N1 (M(E)) + Me(M(E)) + ...+ X(M(E)) <1+ (k—1)/k,

Mer1 (M(€)) + M(M(E)) + ..+ M (M(E) < 1+ 72

Again we have already had the last inequality. As to all the others, utilizing the extremal
properties of eigenvalues (see Rao, 1973, p. 62) we obtain

Merr(M(€)) = min —a'M(&)a < ey M(Ee. =1,

a€Rk+1 |la||=1

Aer1(M(E)) + Ae(M(E)) = (a® M(€)a+ b M(&)b)

min
a,beR**1 |la]|=1,||b]|=1,aTb=0
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<efMEe.+y M)y <1+ M(B), ...

wheree, = (1,0,...,0)T andy = (0,y1,...,u)", ||yl = 1. Continuing such a process
and taking into account (9), we obtain (10). The theorem is proved.

Proof of Theorem 3.First, observe that, C X}, X3 C A} and bothY, andX; contain
all the orthonormal designs. Therefore, it is enough to prove the theorem only for the
experimental domaif}.

We start with proving that an orthonormal design is D-optimal. As in the proof of
Theorem 2, it is easy to show that we can confine ourselves to the case of designs with
equal weights. Such a desigrhas the moment matrid/(¢) = (1/k)X"X. From the
Hadamard inequality (Rao, 1973, p. 56) it follows that

k
det (M(€)) = (1/K")det (XTX) = (1/k*)det (XXT) < (1/K) [T Il2V) < (2 /k)".

Equality holds if and only ifX XT = 21, that is if and only if the desig# is orthonor-
mal. Thus, an orthonormal design is D-optimal®in

In order to show that an orthonormal design is DS-optimal, it remains to prove that
for any given desigy the following inequalities

Ae(M(§)) < r?/k,
Ae(M(E)) + Ap—1(M(E)) < 2r2/k, ...,

M) + Mct (M) + .+ M(M(E)) < r?

hold (cf. (8)). But these inequalities are evident due to the relation

k
tr (M(€) =D pillz@|* <.
=1
The theorem is proved.
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