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Abstract: Within the framework of classical linear regression model stochas-
tic optimal design criteria are considered. As examples a line fit model and
a k-way linear fit model are taken. If the optimal design does not exist, an
approach consisting in choosing the efficient design is suggested.
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1 Introduction

A literature on optimal design criteria is very extensive. For references see Pukelsheim
(1993) and Liski et al. (2002), for example. Among the criteria there are the so-called
classical criteria like A-, D- or E-optimality as well as the relatively new ones likestochas-
tic optimality criteria. The stochastic criteria have gained a momentum only recently,
though the most known criterion of such type was put forward more than thirty years ago
(see Sinha, 1970).

In the paper we consider the classical linear regression model

Y ∼ Nn(Xβ, σ2In) (1)

where then × 1 response vectorY = (Y1, Y2, . . . , Yn)T follows a multivariate normal
distribution,X = (x(1), x(2), . . . , x(n))T is then× k design matrix of the full rankk ≤ n,
β = (β1, β2, . . . , βk)

T is thek×1 parameter vector,E(Y ) = Xβ is the expectation vector
of Y andσ2In is the covariance matrix ofY, whereIn is then × n identity matrix and
σ > 0 is unknown.

Let β̂ be the least squares estimator ofβ being at the same time the best linear unbiased
estimator. As it is well-known,

β̂ = (XTX)−1XTY ∼ Nk(β, σ2(XTX)−1).

In the sequel, we deal with the so-calledcontinuousor approximatedesign. Each
approximate designξ is a discrete probability measure taking valuespi > 0 at vectorsx(i)

(support vectors),i = 1, 2, . . . , m, that is

ξ = {x(1), x(2), . . . , x(m); p1, p2, . . . , pm},
m∑

i=1

pi = 1

wherex(i) ∈ X , i = 1, 2, . . . , m. The setX is called theexperimental domain. We denote
by Ξ the set of all approximate designs onX .

With a designξ we associate itsk × k moment matrixM(ξ) =
∑m

i=1 pix
(i)x(i)T. If

pi = ni/n, i = 1, 2, . . . ,m, m ≤ n, whereni are integers and
∑m

i=1 ni = n, then the
covariance matrix of̂β is (σ2/n)M−1(ξ). Throughout the paper, we writêβ = β̂(ξ) or
β̂ = β̂(M) to emphasize the dependence ofβ̂ from the designξ or from the moment
matrixM, respectively.
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In the paper we refer to a line fit model when we haven ≥ 2 uncorrelated responses

Yij = β1 + β2zi + eij, i = 1, 2, . . . , m; j = 1, 2, . . . , ni (2)

with expectationsE(Yij) = β1 + β2zi and variancesV (Yij) = σ2. In this case an ap-
proximate designξ specifies distinct valuesz1, . . . , zm chosen from a given experimental
domain (usually an interval[a, b]) and assigns to them weightsp1 > 0, . . . , pm > 0,
respectively. Of course, these weights satisfy

∑m
i=1 pi = 1. Here,

M(ξ) =




1
m∑

i=1

pizi

m∑
i=1

pizi

m∑
i=1

piz
2
i


 .

In the paper we also consider ak-way line fit model with or without an intercept. In
the first case we haven ≥ k + 1 uncorrelated responses

Yij = β0 + β1x
(i)
1 + . . . + βkx

(i)
k + eij, i = 1, 2, . . . , m; j = 1, 2, . . . , ni (3)

with unknown parameters(β0, β1, . . . , βk) and experimental conditionsx(i) = (x
(i)
1 , x

(i)
2 ,

. . . , x
(i)
k )T, i = 1, 2, . . . ,m. In the second case we haven ≥ k uncorrelated responses

Yij = β1x
(i)
1 + . . . + βkx

(i)
k + eij, i = 1, 2, . . . , m; j = 1, 2, . . . , ni (4)

with unknown parameters(β1, β2, . . . , βk) and experimental conditionsx(i) = (x
(i)
1 , x

(i)
2 ,

. . . , x
(i)
k )T, i = 1, 2, . . . ,m. In both cases the assumptions oneij are the same as in (2).

The paper is organized as follows. Classical and stochastic optimality criteria are
discussed in Section 2. There the problem of establishing the corresponding optimal
designs in the above-mentioned models is also considered. Section 3 is devoted to the
concept of efficient designs in the situations where the optimal designs do not exist. The
proofs of theorems can be found in Appendix.

2 Optimality Criteria and Optimal Designs

2.1 Optimality Criteria

An optimality criterionF is a function from the closed cone of nonnegative definite ma-
trices intoR1

+. We say that the designξ∗ is F -optimal if and only if

ξ∗ ∈ Arg min
ξ∈Ξ

F (M(ξ)).

Recall the definitions of the classical optimality criteria.

• The criterionF (M) = det (M−1) is called D-criterion.

• The criterionF (M) = tr (M−1) is called A-criterion.

• The criterionF (M) = λmax(M
−1) is called E-criterion.
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Here,λmax(M
−1) denotes the maximal eigenvalue of the matrixM−1. It is well-known

thatdet (M−1), called the generalized variance, determines the volume of the ellipsoid
of concentration for̂β. Its minimization leads to the ellipsoid of concentration with the
smallest volume. On the other hand, minimization oftr (M−1), called the average vari-
ance, is the minimization of the sum of variances ofβ̂i, i = 1, 2, . . . , k. At last, mini-
mization ofλmax(M

−1) leads to the ellipsoid of concentration having the smallest length
of the maximal axis. In all the three cases we setF (M) = ∞ if the matrixM is degener-
ate. This means that the designs with degenerate moment matrices can be excluded from
the consideration. Therefore, we can assume that the support size of designs satisfies the
inequalitym ≥ k (or m ≥ k + 1 when we deal with ak-way line fit model with an
intercept).

Saying ’stochastic optimality criteria’ we mean functions depending on the moment
matrices through a probability. A typical example is the family of criteria

FA(M) = − ln P
(
[β̂(M)− β] ∈ A

)
, A ∈ A (5)

whereA is a given class of bounded subsets ofRk containing the origin. The classA can
be interpreted as a collection of sets determining a system of neighbourhoods of the origin.
Here, we would like to choose a design which guarantees the maximal probability for the
estimator̂β of being ’close’ toβ. Of course, the terminology ’stochastic’ is rather relative.
It is due to Sinha (1970) who introduced the concept of thedistance stochastic(DS)
criterion in certain treatment design settings. Liski et al. (1999) studied the properties
of this criterion under the classical linear regression model (1). In case of a degenerate
matrixM, it is natural to setP ([β̂(M)− β] ∈ A) = 0.

We obtain the DS-criterion takingA to be the class of allk-dimensional balls centered
at the origin:

A = {εA, ε > 0}, A = {x ∈ Rk : ‖x‖ ≤ 1}
where‖ · ‖ stands for the usual Euclidean norm inRk. Here, we assume the system of
neighbourhoods to be the balls, one of the most natural choice. Observe that the DS-
criterion, in fact, is a family of DS(ε)-criteria indexed byε > 0. We say that the design
is optimal with respect to the family of criteria if and only if it is optimal with respect
to the each criterion from this family. One can remember the families of criteria popular
in the literature: theφp-criterion (see Pukelsheim, 1993, Chapter 6) or the characteristic
criterion (see Rodrigues-Diaz and López-Fidalgo, 2003). It should be emphasized, how-
ever, that the DS(ε)-optimal design, i.e. the design which is optimal with respect to the
DS(ε)-criterion for givenε > 0, is not of great interest itself since usually it depends on
unknownσ.

Liski et al. (1999, Theorem 5.1) studied the behavior of the DS(ε)-criterion when
ε approaches0 and∞. These limiting cases have an interesting relationship with the
classical D- and E-optimality criteria. It turns out that the DS(ε)-criterion is equivalent
to the D-criterion asε → 0 and to the E-criterion asε → ∞. Moreover, minimization
of the probabilityP (‖β̂(ξ) − β‖ > ε) simultaneously for allε > 0 is equivalent to
minimization ofEg(‖β̂(ξ) − β‖) for all increasing functionsg such that the expectation
exists (see Marshall and Olkin, 1979, Chapter 17.A). In particular, one can takeg(x) = x.
Therefore, if a design is DS-optimal then it is also A-optimal.
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Zaigraev (2002) suggested a natural extension of the DS-criterion called theshape
stochastic(SSρ) criterion. Here,

A = {εAρ, ε > 0}, Aρ = {x ∈ Rk : ‖x‖ ≤ ρ(x/‖x‖)} ∪ {0}
andρ is a positive continuous function defined on the unit sphereSk−1 inRk. In particular,
the SSρ-criterion is simply the DS-criterion ifρ(·) ≡ 1. Again one can note that the
SSρ(ε)-optimal design, in general, depends on unknownσ.

In the sequel, we confine ourselves to the case whereAρ is a convex and symmetric
(with respect to the origin) set. This restriction has the following sense. We say that a
designξ1 dominatesξ2 in the Loewner ordering senseif M1−M2 is a nonnegative definite
matrix (in such a case we writeM1 −M2 ≥ 0 or M1 ≥ M2), whereM1 andM2 are the
moment matrices of the designsξ1 andξ2, respectively. Thus the Loewner partial ordering
among moment matrices induces a partial ordering among associated designs. Observe
that D-, A-, E- and DS-criterion areantitonicrelative to Loewner ordering, that is for any
two moment matricesM1 andM2 the inequalityM1 ≥ M2 implies F (M1) ≤ F (M2).
Such a property is a desirable if we deal with an optimality criterion. As it follows from
Theorem 2 of Liski and Zaigraev (2001), the SSρ-criterion is antitonic relative to Loewner
ordering if and only if the setAρ is convex and symmetric with respect to the origin.

Zaigraev (2002, Theorems 1 and 2) established the limit behavior of the SSρ-criterion
whenε approaches0 and∞. It turns out that the SSρ(ε)-criterion is equivalent to the D-
criterion asε→0 and, under the mild regularity conditions onρ, to the minimax criterion

F (M) = max
x∈∂Aρ

(xT Mx)−1

asε →∞. Here,∂Aρ is the boundary of the setAρ.

2.2 Optimal Designs for a Line Fit Model

Consider model (2) withzi ∈ [a, b], i = 1, 2, . . . , m. Searching for optimal designs, in
this situation it is enough to consider only two-point designs of the formξp = {a, b; p, 1−
p}, 0 < p < 1 (see e.g. de la Garza, 1954, Liski and Zaigraev, 2001, Lemma 1). That
is, the support consists of the extreme points of the experimental domain. The moment
matrix of such a design has the form

M(ξp) =

(
1 ap + b(1− p)

ap + b(1− p) a2p + b2(1− p)

)
.

It is not difficult to calculate the optimal designs with respect to the classical optimality
criteria. They are given as follows:

• D-optimal designξD = ξ0.5;

• A-optimal designξA = ξp∗ , p∗ =
√

1 + b2/(
√

1 + b2 +
√

1 + a2);

• E-optimal designξE = ξep,

p̃ =





b/(b− a), if b + a = 0 or ab 6 −1,

(b(b + a) + 2)/((b + a)2 + 4), otherwise.
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Observe that ifa = −b (symmetric experimental domain), then the design{−b, b; 0.5,
0.5} is D-, A- and E-optimal. As to DS-optimality, the following general result holds.

Theorem 1.The design{−b, b; 0.5, 0.5} is optimal for model (2) on the symmetric ex-
perimental domain[−b, b] with respect to any stochastic criterion of the form (5) withA
to be a class of convex and symmetric (with respect to the axes) sets inR2.

Theorem 1 is a direct extension of Lemma 2 of Liski and Zaigraev (2001). Its proof,
in fact, repeats the proof of that lemma modifying it slightly accordingly with the fact that
in the situation considered we have

M(ξp) =

(
1 b(1− 2p)

b(1− 2p) b2

)
= DM(ξ′p)D

whereD = diag (1, b) while

M(ξ′p) =

(
1 1− 2p

1− 2p 1

)

is the moment matrix of the designξ′p = {−1, 1; p, 1 − p} for model (2) on the experi-
mental domain[−1, 1].

Observe that ifa 6= −b (asymmetric experimental domain), then D-, A- and E-optimal
designs are different and, therefore, DS-optimal design does not exist. However, it is of
interest to note that sometimes in such a situation SSρ-optimal designs exist (see Zaigraev,
2002, Section 3).

Dealing with the SSρ-criterion in model (2), we confine ourselves to the following
classes of sets centered at the origin:

• squares withAρ = {(x1, x2)
T ∈ R2 : |x1| ≤ 1, |x2| ≤ 1};

• rectangulars withAρ = {(x1, x2)
T ∈ R2 : 2|x1| ≤ 1, |x2| ≤ 1};

• ellipses withAρ = {(x1, x2)
T ∈ R2 : x2

1 + 2x1x2 + x2
2 ≤ 1}.

The choice between those cases can be made basing on the problems to be solved or our
personal preferences. In the first two cases, by Theorem 1, the SSρ-optimal design on the
experimental domain[−b, b] exists; it is{−b, b; 0.5, 0.5}. In the last case, however, the
SSρ-optimal design does not exist due to lack of symmetry with respect to the axes.

Now, consider the case of an asymmetric experimental domain. For definiteness,
we take [a, b] = [0, 1]. In accordance with the above-mentioned calculations,ξD =
{0, 1; 0.5, 0.5}; ξA = {0, 1; 2−√2,

√
2−1}; ξE = {0, 1; 0.6, 0.4}.

The DS-optimal design does not exist; for givenε > 0 the DS(ε)-optimal design
depends onε. Denote byC the class of all DS(ε)-optimal designs and add toC two
limiting designs whenε → 0 andε → ∞. The same notation concerns the SSρ-criterion
as well.

As we have mentioned earlier, for model (2) on the experimental domain[0, 1] it is
enough to consider only two-point designs of the form{0, 1; p, 1 − p}, 0 < p < 1.
Below we give numerical results of calculatingC in four cases: for the DS-criterion and
for the SSρ-criterion (squares, rectangulars and ellipses). For givenε > 0 the weightp
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for the corresponding optimal design depends onε. However, it is more comfortable to
useδ =

√
nε/σ instead ofε to express this dependence. Observe that limiting optimal

designs whenε → ∞ coincide with those calculated theoretically (see Zaigraev, 2002,
Section 3).

Table 1: DS-criterion,C = {{0, 1; p, 1− p}, 0.5 ≤ p ≤ 0.6}

δ 0.05 0.10 0.25 0.50 0.75 1.00 1.25 1.50

p 0.5001 0.5004 0.5019 0.5075 0.5159 0.5261 0.5371 0.5480

δ 1.75 2.00 3.00 4.00 5.00 6.00 7.00 8.00

p 0.5572 0.5665 0.5871 0.5938 0.5963 0.5975 0.5683 0.5986

Table 2: SSρ-criterion, squares,C = {{0, 1; p, 1− p}, 0.5 ≤ p ≤ 0.54(54)}

δ 0.05 0.10 0.25 0.50 0.75 1.00 1.25 1.50

p 0.5001 0.5004 0.5025 0.5094 0.5189 0.5286 0.5368 0.5424

δ 1.75 2.00 3.00 4.00 5.00 6.00 7.00 8.00

p 0.5437 0.5451 0.5313 0.5152 0.5056 0.5015 0.5012 0.5009

Table 3: SSρ-criterion, rectangulars,C = {{0, 1; p, 1− p}, 0.5 ≤ p ≤ 0.75}

δ 0.05 0.10 0.25 0.50 0.75 1.00 1.25 1.50

p 0.5001 0.5004 0.5026 0.5100 0.5216 0.5361 0.5524 0.5693

δ 1.75 2.00 3.00 4.00 5.00 6.00 8.00 10.00

p 0.5860 0.6018 0.6518 0.6821 0.7005 0.7123 0.7262 0.7338

Table 4: SSρ-criterion, ellipses,C = {{0, 1; p, 1− p}, 0.4 ≤ p ≤ 0.5}

δ 0.05 0.10 0.25 0.50 0.75 1.00 1.25 1.50

p 0.4999 0.4997 0.4981 0.4925 0.4841 0.4739 0.4629 0.4520

δ 1.75 2.00 3.00 4.00 5.00 6.00 7.00 8.00

p 0.4427 0.4335 0.4129 0.4062 0.4037 0.4025 0.4018 0.4013

2.3 Optimal Designs for ak-way Line Fit Model

Consider model (3), that is ak-way line fit model with an intercept. Here,x(i) =
(1, z(i)T)T, z(i) ∈ Rk, i = 1, 2, . . . , m. As an experimental domain, let us takeZr =
{z ∈ Rk : ‖z‖ ≤ r} (see Pukelsheim, 1993, Section 15.5, Liski et al., 1999, Liski and
Zaigraev, 2001). Recall that for model (3) the smallest possible support size of a feasible
design ism = k + 1.
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As it is shown in Theorem 4.2 of Liski et al. (1999), ifr =
√

k, then the DS-optimal
design with the support sizem = k + 1 on Z√k exists. This is a so-calledregular
simplex design(see also Pukelsheim, 1993, Section 15.12). Such a design has the weights
1/(k + 1) and the support vectorsz(1), . . . , z(k+1), which belong to the boundary of the
experimental domain and form a regular simplex, that is‖z(1)‖ =

√
k, . . . , ‖z(k+1)‖ =√

k, andz(i)Tz(j) = −1 for all i 6= j ≤ k + 1. Observe that a regular simplex design has
the identity moment matrix and an orthogonal transformation of a regular simplex design
is again a regular simplex design.

Now, we extend this result to the case of arbitraryr > 0.

Theorem 2.A designξ with the support sizem = k+1 for model (3) on the experimental
domainZr is DS-optimal if and only if it is a regular simplex design, that is the design
having the weights1/(k +1) and the support vectorsz(1), . . . , z(k+1) satisfying‖z(1)‖ =
r, . . . , ‖z(k+1)‖ = r, andz(i)Tz(j) = −r2/k for all i 6= j ≤ k + 1. The moment matrix of
such a design has the formM = diag (1, r2/k, . . . , r2/k).

It should be emphasized that the result of Theorem 2 extends also the corresponding
result for model (2) on the experimental domain[−b, b] (cf. Theorem 1).

Now, we consider model (4), that is ak-way line fit model without an intercept. As
experimental domains, we take the setsX1 = {x ∈ Rk : ‖x‖ ≤ r}, X2 = {x ∈ Rk

+ :∑k
i=1 xi ≤ r}, X3 = {x ∈ Rk :

∑k
i=1 |xi| ≤ r}, r > 0.

Theorem 3.DS-optimal designs with the smallest possible support sizem = k for model
(4) on the experimental domainsX1, X2 andX3 exist and coincide. This is a so-called
orthonormal design, that is the design having the weights1/k and the orthonormal sup-
port vectorsx(1), . . . , x(k) satisfying‖x(1)‖ = r, . . . , ‖x(k)‖ = r andx(i)Tx(j) = 0 for
all i 6= j ≤ k. The moment matrix of such a design has the formM = (r2/k)Ik.

3 Efficient Designs

Consider model (2) and the asymmetric experimental domain[a, b] = [0, 1]. From Sub-
section 2.2 we know (see Table 1) that there is no DS-optimal design here andC =
{{0, 1; p, 1− p}, 0.5 ≤ p ≤ 0.6}. What design should one choose then?

The natural approach consists in choosing an efficient design (see e.g. Li and Chan,
2002, Rodrigues-Diaz and López-Fidalgo, 2003), that is the design which is optimal for a
certain DS(ε∗)-criterion and at the same time performs well under other DS(ε)-criteria.

Let ν(p, ε) be theefficiencyof the designξp = {0, 1; p, 1 − p} with respect to the
DS(ε)-criterion, that is

ν(p, ε) =
ln P (‖β̂(M(ξpε))− β‖ ≤ ε)

ln P (‖β̂(M(ξp))− β‖ ≤ ε)

whereξpε stands for the DS(ε)-optimal design. We use themaximinapproach and wish to
find p so as to maximizeminε>0 ν(p, ε). The designξp∗ ∈ C such that

p∗ = Arg max
p

min
ε>0

ν(p, ε)
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is called theefficientdesign. Let us keep the same considerations and notations for the
SSρ-criterion as well.

The numerical calculations give the following results. For the DS-criterion

p∗ = Arg max
0.5≤p≤0.6

min
ε>0

ν(p, ε) = 0.539, min
ε>0

ν(p∗, ε) = 0.992.

For the SSρ-criterion (squares) whereC = {{0, 1; p, 1 − p}, 0.5 ≤ p ≤ 0.54(54)} (see
Table 2)

p∗ = Arg max
0.56p≤0.54(54)

min
ε>0

ν(p, ε) = 0.521, min
ε>0

ν(p∗, ε) = 0.998.

For the SSρ-criterion (rectangulars) whereC = {{0, 1; p, 1 − p}, 0.5 ≤ p ≤ 0.75} (see
Table 3)

p∗ = Arg max
0.5≤p≤0.75

min
ε>0

ν(p, ε) = 0.580, min
ε>0

ν(p∗, ε) = 0.962.

Al last, for the SSρ-criterion (ellipses) whereC = {{0, 1; p, 1− p}, 0.4 ≤ p ≤ 0.5} (see
Table 4)

p∗ = Arg max
0.4≤p≤0.5

min
ε>0

ν(p, ε) = 0.461, min
ε>0

ν(p∗, ε) = 0.992.

As one can see, in all the cases (except for rectangulars) the efficiencies of the efficient
designs are very high.

Appendix

Proof of Theorem 2.We begin with two auxiliary results.

Lemma 1.LetZ be an(k + 1)× k matrix of the full rankk ande 6= 0 be a given vector
in Rk+1. Then under the conditionZTe = 0,

ZZT = c[Ik+1 − eeT/‖e‖2] ⇐⇒ ZTZ = cIk

for any givenc > 0.

Proof. (=⇒) Assume thatZTe = 0 andZZT = c[Ik+1 − eeT/‖e‖2]. Multiplying the last
equality byZT on the left and byZ on the right, we get(ZTZ)2 = cZTZ. SinceZ is of
the rankk, ZTZ is positive definite. Therefore,ZTZ = cIk.
(⇐=) Assume thatZTe = 0 andZTZ = cIk. Then



‖e‖ZT

√
ceT


 ( ‖e‖Z √

ce
)

=

( ‖e‖2ZTZ 0
0 c‖e‖2

)
= c‖e‖2Ik+1.

Therefore, also

( ‖e‖Z √
ce

)


‖e‖ZT

√
ceT


 = c‖e‖2Ik+1.

But the last equality is equivalent to‖e‖2ZZT +ceeT = c‖e‖2Ik+1. The lemma is proved.
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Now, we establish the D-optimal design.

Lemma 2.A designξ with the support sizem = k + 1 for model (3) on the experimental
domainZr is D-optimal if and only if it is a regular simplex design.

Proof. Let ξ = {x(1), x(2), . . . , x(k+1); p1, p2, . . . , pk+1}, x(i) = (1, z(i)T)T, z(i) ∈ Zr,
i = 1, 2, . . . , k + 1. We have

M(ξ) = XTPX =




1
k+1∑
i=1

piz
(i)T

k+1∑
i=1

piz
(i)

k+1∑
i=1

piz
(i)z(i)T


 (6)

whereP = diag (p1, p2, . . . , pk+1). Observe that

det (P ) ≤ (1/(k + 1))k+1

and the equality holds if and only ifp1 = p2 = . . . = pk+1 = 1/(k + 1). Therefore,

det (M(ξ)) = (det (X))2det (P ) ≤ (1/(k + 1))k+1det (XTX).

This means that searching for the D-optimal design it is enough to consider only designs
with equal weights. By the properties of determinant (see Rao, 1973, p. 32),

det (XTX) ≤ (k + 1) det (
k+1∑
i=1

z(i)z(i)T) = (k + 1) det (ZTZ)

whereZ = (z(1), z(2), . . . , z(k+1))T. The upper bound is attained if and only if
∑k+1

i=1 z(i)

= 0. On the other hand, by the properties of trace we have

tr (ZTZ) = tr (ZZT) =
k+1∑
i=1

‖z(i)‖2 ≤ r2(k + 1)

and the upper bound is attained if and only if‖z(i)‖ = r, i = 1, 2, . . . , k + 1. Clearly,
under the constrainttr (ZTZ) = λ1+λ2+. . .+λk ≤ r2(k+1), the value ofdet (ZTZ) =
λ1λ2 · · ·λk attains its maximum if and only ifλ1 = λ2 = . . . = λk = r2(k + 1)/k. Thus,

det (M(ξ)) ≤ (1/(k + 1))kdet (ZTZ) ≤ (r2/k)k.

Summing up, one can note that the upper bound is attained here if and only ifM(ξ) =
diag (1, r2/k, . . . , r2/k). It remains to show that only a regular simplex design has such
a moment matrix.

Observe that if a designξ has equal weights, then (6) gives

M(ξ) =




1 (k + 1)−1
k+1∑
i=1

z(i)T

(k + 1)−1
k+1∑
i=1

z(i) (k + 1)−1ZTZ


 .
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For any regular simplex design we have
∑k+1

i=1 z(i) = 0. This is the consequence of the
following two facts: (i)

∑k+1
i=1 z(i)Tz(j) = 0 for any j = 1, 2, . . . , k + 1; (ii) the span of

the vectors{z(1), z(2), . . . , z(k+1)} coincides withRk, otherwise the matrixM(ξ) would
be degenerate.

Furthermore, for any regular simplex design

ZZT =
r2

k




k −1 . . . −1
−1 k . . . −1
. . . . . . . . . . . .
−1 −1 . . . k


 =

r2(k + 1)

k
[Ik+1 − eeT]

wheree = (k + 1)−1/2(1, 1, . . . , 1)T. Since for any regular simplex designZTe = 0,
applying Lemma 2 we obtainZTZ = (r2(k + 1)/k)Ik. Thus, we prove that any regular
simplex design has the moment matrixdiag (1, r2/k, . . . , r2/k).

Now, we show that ifM(ξ) = diag (1, r2/k, . . . , r2/k), thenξ is a regular simplex
design. Indeed, in such a case from (6) it follows that

k+1∑
i=1

piz
(i) = 0,

k+1∑
i=1

piz
(i)z(i)T = (r2/k)Ik. (7)

DenoteP 1/2Z = Y, P 1/2e = ε, whereP ande are the same as above. Then (7) implies

Y Tε = 0, Y TY = (r2/k)Ik

and by Lemma 2
Y Y T = (r2/k)[Ik+1 − εεT/‖ε‖2].

Since‖ε‖2 = eTPe = (k + 1)−1, we obtain

P 1/2ZZTP 1/2 = (r2/k)[Ik+1 − (k + 1)P 1/2eeTP 1/2],

or

ZZT = (r2/k)[P−1 − (k + 1)eeT] = (r2/k)




1/p1 − 1 −1 . . . −1
−1 1/p2 − 1 . . . −1
. . . . . . . . . . . .
−1 −1 . . . 1/pk+1 − 1


 .

But the diagonal elements of the matrixZZT are‖z(1)‖2, ‖z(2)‖2, . . . , ‖z(k+1)‖2. Since
‖z(i)‖2 ≤ r2, i = 1, 2, . . . , k + 1, we should havepi ≥ (k + 1)−1, i = 1, 2, . . . , k + 1.
Thus,p1 = p2 = . . . = pk+1 = (k + 1)−1. The lemma is proved.

Now, we come back to the proof of the theorem. By Lemma 2 and Theorem 1 of
Zaigraev (2002), it follows that if the DS-optimal design exists, then it is necessary a
regular simplex design.

Assume, first, thatr2 ≤ k. By Theorem 3.2 of Liski et al. (1999), in order to prove
the theorem it is enough to show that for any given designξ the eigenvaluesλ1(M(ξ)),
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λ2(M(ξ)), . . . , λk+1(M(ξ)) of the moment matrixM(ξ) given by (6), arranged in the
descending order of magnitudes, satisfy the inequalities:

λk+1(M(ξ)) ≤ r2/k,

λk+1(M(ξ)) + λk(M(ξ)) ≤ 2r2/k, . . . ,

λk+1(M(ξ)) + λk(M(ξ)) + . . . + λ2(M(ξ)) ≤ r2,

λk+1(M(ξ)) + λk(M(ξ)) + . . . + λ1(M(ξ)) ≤ r2 + 1.

(8)

The last inequality is evident since

tr (M(ξ)) = tr (PXXT) =
k+1∑
i=1

pi(‖z(i)‖2 + 1) ≤ r2 + 1.

DenoteB =
∑k+1

i=1 piz
(i)z(i)T in (6). By the Sturm separation theorem (see Rao, 1973,

p. 64) we have the sequence of inequalities:

λk+1(M(ξ)) ≤ λk(B) ≤ λk(M(ξ)) ≤ λk−1(B) ≤ λk−1(M(ξ)) ≤ . . . ≤ λ2(B)

≤ λ2(M(ξ)) ≤ λ1(B) ≤ λ1(M(ξ)).

Therefore, in order to prove the inequalities in (8) it is enough to show that

λk(B) ≤ r2/k, λk(B) + λk−1(B) ≤ 2r2/k, . . . ,

λk(B) + λk−1(B) + . . . + λ1(B) ≤ r2.
(9)

We havetr (B) =
∑k+1

i=1 pi‖z(i)‖2 ≤ r2. If tr (B) = r2, then (9) holds with the equality
in the last inequality (see Marshall and Olkin, 1979, Section 1.A). Iftr (B) < r2, then (9)
holds all the more.

Assume, now, thatr2 > k. Here, instead of (8) we should prove that

λk+1(M(ξ)) ≤ 1,

λk+1(M(ξ)) + λk(M(ξ)) ≤ 1 + r2/k, . . . ,

λk+1(M(ξ)) + λk(M(ξ)) + . . . + λ2(M(ξ)) ≤ 1 + r2(k − 1)/k,

λk+1(M(ξ)) + λk(M(ξ)) + . . . + λ1(M(ξ)) ≤ 1 + r2.

(10)

Again we have already had the last inequality. As to all the others, utilizing the extremal
properties of eigenvalues (see Rao, 1973, p. 62) we obtain

λk+1(M(ξ)) = min
a∈Rk+1,‖a‖=1

aTM(ξ)a ≤ eT
∗M(ξ)e∗ = 1,

λk+1(M(ξ)) + λk(M(ξ)) = min
a,b∈Rk+1,‖a‖=1,‖b‖=1,aTb=0

(aTM(ξ)a + bTM(ξ)b)
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≤ eT
∗M(ξ)e∗ + yTM(ξ)y ≤ 1 + λk(B), . . .

wheree∗ = (1, 0, . . . , 0)T andy = (0, y1, . . . , yk)
T, ‖y‖ = 1. Continuing such a process

and taking into account (9), we obtain (10). The theorem is proved.

Proof of Theorem 3.First, observe thatX2 ⊂ X1, X3 ⊂ X1 and bothX2 andX3 contain
all the orthonormal designs. Therefore, it is enough to prove the theorem only for the
experimental domainX1.

We start with proving that an orthonormal design is D-optimal. As in the proof of
Theorem 2, it is easy to show that we can confine ourselves to the case of designs with
equal weights. Such a designξ has the moment matrixM(ξ) = (1/k)XTX. From the
Hadamard inequality (Rao, 1973, p. 56) it follows that

det (M(ξ)) = (1/kk)det (XTX) = (1/kk)det (XXT) ≤ (1/kk)
k∏

i=1

‖x(i)‖2 ≤ (r2/k)k.

Equality holds if and only ifXXT = r2Ik, that is if and only if the designξ is orthonor-
mal. Thus, an orthonormal design is D-optimal onX1.

In order to show that an orthonormal design is DS-optimal, it remains to prove that
for any given designξ the following inequalities

λk(M(ξ)) ≤ r2/k,

λk(M(ξ)) + λk−1(M(ξ)) ≤ 2r2/k, . . . ,

λk(M(ξ)) + λk−1(M(ξ)) + . . . + λ1(M(ξ)) ≤ r2

hold (cf. (8)). But these inequalities are evident due to the relation

tr (M(ξ)) =
k∑

i=1

pi‖x(i)‖2 ≤ r2.

The theorem is proved.
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