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Abstract: Let us consider the problem of robust spectral density estimation.
Conventional methods to obtain estimates of spectral density function are not
robust in the presence of outlying observations. We present different methods
to robustly estimate the spectral density function that are insensitive against
outliers. The proposed methods are applied to simulated and real data and
the results are compared. As a special practical application we focus on the
frequency-domain analysis of short-term heart rate variability measurements
of diabetes patients.
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1 Introduction

The spectral density function is a commonly used tool when analyzing time series in the
frequency domain. Areas of applications are signal processing (cf. Thomson, 1994), geo-
physics (cf. Chave et al., 1987; Jones and Hollinger, 1997) and medicine (cf. Hartikainen
et al., 1998). In medicine the analysis of heart rate variability as non-invasive method is
increasingly used (cf. Pumprla et al., 2002). In the present survey we have in mind the
frequency-domain analysis of short-term heart rate variability measurements.

A commonly used model for outliers in time series is the additive outlier model (AO
model) introduced by Fox (1972). The AO model consists of a stationary core process,
xt, to which occasional outliers have been added. The observed process{yt : t ∈ ZZ} is
said to have additive outliers if it is defined by

yt = xt + vt (1)

where the contaminationsvt are independent, identically distributed withFv = (1−ε)δ0+
εH whereδ0 is the degenerated distribution having all its mass at the origin andH is a
heavy-tailed symmetric distribution with mean zero and varianceσ2

H . Hence, the core
processxt is observed with probability1− ε whereas the core process plus a disturbance
vt is observed with probabilityε. We shall also assume thatxt andvt are independent.

When analyzing heart rate variability data the AO model seems to be an appropriate
model. To access the variability of heart rate in the frequency domain the spectral density
function of the tachogram is estimated. The tachogram is the series of time intervals
between consecutive heart beats (e.g. Figure 1). These intervals are also calledR-R-
intervals, i.e. the periods between anR-peak and the nextR-peak in an electrocardiogram.

In the tachogram, outlying observations can be caused by non-sinus ectopic beats and
other artefacts. For example, if in the electrocardiogram anR-peak is missed this will
result in very large value in the tachogram. On the other hand, if an ectopic beat occurs,
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Figure 1: Tachogram of 1321 consecutive heart beats

i.e., if there is an extra heart beat between two regular beats, the heart beat following
the ectopic beat will be very low and therefore usually missed. This results in a lower
tachogram value followed by a higher one.

Unfortunately, conventional spectral density estimators are not robust in the presence
of additive outliers. For details see Kleiner et al. (1979) or Martin and Thomson (1982).

Hence, in the next section we present different methods to robustly estimate the spec-
tral density function that are insensitive against outliers. In Section 3, we present results
of the previously described methods applied to simulated and real data. Conclusions are
given in Section 4.

2 Robust Spectral Density Estimation

Before analyzing heart rate variability data using conventional frequency domain meth-
ods, extensive editing and review of the electrocardiogram by an experienced operator or
physician is usually required to remove outlying observations, such as ectopic beats and
other artefacts (cf. Pumprla et al., 2002). In the following we present robust methods to
estimate the spectral density function that are insensitive against outliers.
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2.1 A Robust Filter-cleaner Algorithm

The procedure to obtain a robust spectral density estimate proposed by Martin and Thom-
son (1982) incorporates an important data-cleaning operation wherein the robustness is
introduced.

Let {yt, t = 1, . . . , N} denote the observed values of a second-order stationary pro-
cess with mean zero. The cleaning operatorC maps the original datayt into the cleaned
dataCyt. In the context of the AO model (1), we want theCyt to reconstruct the core
processxt, i.e.,Cyt = x̂t, wherex̂t denotes an estimate ofxt at timet. For AO models
with a fraction of contaminationε not too large, it turns out that the data cleaner has the
property thatCyt = yt most of the time, that is about(1 − ε) × 100 percent of the time.
The kind of data cleaner described here is a robust filter-cleaner which uses the past and
present observationsy1, . . . , yt to produce the cleaned dataCyt, t = 1, . . . , N .

The filter-cleaner procedure involves a robust estimation of an autoregressive approx-
imation to the core processxt of orderp, with estimated coefficientŝφ1,p, . . . , φ̂p,p. Now,
the residual process

rt = Cyt −
p∑

i=1

φ̂i,pCyt−i , t = p+ 1, . . . , N , (2)

can easily be formed. Since cleaned data are used to obtain these residuals, and theφ̂i,p

are robust estimates, the transformation (2) is called a robust prewhitening operation. The
benefit in the use of prewhitening in the context of spectral density estimation is to reduce
leakage (cf. Blackman and Tukey, 1958).

The robust spectral density estimate is based on the above robust prewhitening as
follows. Let

Ĥp(f) = 1−
p∑

j=1

φ̂j,p exp(i2πjf) (3)

be the transfer function of the prewhitening operator (2), and letŜ(lw)
r (f) denote a lag

window spectral estimate based on the residual processrt. Then the spectral density
estimate is

Ŝ(f) =
Ŝ(lw)

r (f)

|Ĥp(f)|2 , (4)

whereŜ(f) is evaluated at the Fourier frequenciesfk = k/N , k = 0, . . . , [N/2].
The filter-cleaner algorithm as presented in the paper of Martin and Thomson (1982)

relies on the AR(p) approximation of the underlying processxt, represented in the fol-
lowing state-space form, witht = p+ 1, . . . , N :

X t = ΦX t−1 + U t , (5)

where

X t = (xt, xt−1, . . . , xt−p+1)
> , (6)

U t = (εt, 0, . . . , 0)> , (7)



202 Austrian Journal of Statistics, Vol. 34 (2005), No. 2, 199-210

with Φ =




φ1,p · · · φp−1,p φp,p

1 · · · 0 0
...

.. .
...

...
0 · · · 1 0



, cov(U t) = Q =




σ2
ε,p 0 · · · 0
0 0 · · · 0
...

...
.. .

...
0 0 · · · 0




(8)

andyt = xt + vt = (1, 0, . . . , 0)X t + vt with var(vt) = σ2
0 .

The algorithm computes robust estimatesX̂ t of the unobservableX t according to the
following recursion:

X̂ t = ΦX̂ t−1 +
mt

s2
t

st ψ

(
yt − ŷt−1

t

st

)
(9)

with mt being the first column ofM t which is computed recursively as

M t+1 = ΦP tΦ
> + Q (10)

P t = M t − w

(
yt − ŷt−1

t

st

)
mtm

>
t

s2
t

. (11)

The weight functionw(r) = ψ(r)/r whereψ stands for some robustifying function. The
scalest is defined by

s2
t = m11,t (12)

andŷt−1
t denotes a robust one-step prediction ofyt based onY t−1 = (y1, . . . , yt−1)

>, and
is given by

ŷt−1
t = (ΦX̂ t−1)1 . (13)

Finally, the cleaned process at timet results in

x̂t = (X̂ t)1 . (14)

It should be noted that ifψ is the identity function andw ≡ 1, and (12) is replaced
by s2

t = m11,t + σ2
0 with σ2

0 = var(vt) in the AO model, the above recursions are those
of the Kalman filter. Correspondingly,Mt andPt are the prediction and filtering error-
covariance matrices (cf., for example, Jazwinski, 1970).

Important: To use the filter-cleaner algorithm we need robust estimatesφ̂p andσ̂2
ε,p =

s2
ε,p of φp = (φ1,p, . . . , φp,p)

> andσ2
ε,p, respectively. Martin and Thomson (1982) got ini-

tial estimates using bounded-influence autoregression (BIAR) via iteratively reweighted
least squares (IWLS). Details about BIAR may be found in Martin (1980). Initial esti-
mates may also be obtained by robust autoregression using LTS- and LMS-regression.
Details about LTS- and LMS-regression are in Rousseeuw and Leroy (1987). An alterna-
tive way is to use a highly robust autocovariance function estimator (cf. Ma and Genton,
2000) and calculate the initial estimates via the Yule-Walker equations. All these different
approaches lead to similar results.
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2.2 The Biweight Filter-cleaner Algorithm

Tatum and Hurvich (1993a) propose a frequency domain approach to the problem of
cleaning outliers in time series. Their high breakdown method assumes only that the core
process is Gaussian and has a continuous spectrum. It is nonparametric in the sense that
it does not assume a finite parameter model, e.g. an ARMA model, for the core process.
The approach uses robust trigonometric regression to fit a sine and cosine coefficient at
each Fourier frequency and, hence, to obtain a robustified discrete Fourier transform.
These coefficients are then inverse Fourier transformed to get a filtered version of the
data. This procedure is termed biweight filter (BF). On this basis, a cleaned version of the
data is constructed in which observations that appear to be outliers are replaced and most
of the original series remain unchanged. The replacement values are found by a linear
interpolation of all “non-outlying” data points. The interpolation is based on an estimate
of the autocovariance function of the filtered series. This additional step is called biweight
filter-cleaner (BFC).

2.2.1 The Biweight Filter

Any time series{yt}N−1
t=0 (note that we have changed the indexing in this section for ease of

notation), can be represented as the sum ofN cosines and sines at the Fourier frequencies
ωk = 2πk/N , k = 0, 1, . . . , [N/2]. The representation is

yt = A0 +
∑

0<k<N/2

{Akcos(ωkt) +Bksin(ωkt)}+ (−1)tAN/2 , (15)

where the last term is only included ifN is even.
The Fourier coefficients,{Ak}[N/2]

k=0 and{Bk}[N/2]−1
k=1 , are identical to those that would

be found by least squares regression of{yt} on the Fourier sinusoids,{cos(ωkt)} and
{sin(ωkt)}. If a core process,{xt}, is subjected to contamination, then the Fourier trans-
form of the resulting series{yt} will also reflect the contamination. Hence, inversion of
the Fourier transform will simply return the contaminated data.

Tatum and Hurvich (1993a) propose a robust Fourier transform whose aim is to obtain
estimates of the sine and cosine coefficients of the core process{xt} that are insensitive
to the contaminating series{vt}.

The robust regression is based on reducing the influence of large residuals by using
Tukey’s biweightψ-function,

ψ(u) =

{
u(1− u2)2 |u| ≤ 1
0 |u| > 1 .

(16)

The cosine and sine coefficients at frequencyωk,A′k andB′
k, are minimizing the function

N−1∑

t=0

ρ(uk,t) (17)

whereρ′(r) = ψ(r) anduk,t = {yt − A′kcos(ωkt) − B′
ksin(ωkt)}/(cSk). Sk is a scale

parameter of{uk,t}, e.g. the median absolute deviation, andc is a tuning constant.
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The regression can resist a high proportion of outliers as long as it is supplied with
good starting values. Tatum and Hurvich (1993a) used Siegel’s repeated median (cf.
Siegel, 1982) to supply high breakdown initial values.

When the series is of prime length, the repeated median has an asymptotic breakdown
point of 50%, as shown in Tatum and Hurvich (1993b). We will only consider this case
in the following. In the caseN is not prime, details can be found in Tatum and Hurvich
(1993a).

The series is centered by removing a robust location estimateỹ. At each Fourier fre-
quency, a sine and cosine coefficient is separately estimated by robust regression. The sum
of the squared coefficients at each frequency gives a robust periodogram. Since the core
process is assumed to have a continuous spectrum, the robust periodogram is smoothed
using an appropriate lag window to obtain a lag window spectral estimate. Tatum and
Hurvich (1993a) suggest to determine the amount of smoothing by the frequency domain
version of the corrected AIC proposed by Hurvich and Beltrão (1990).

In the biweight filter the order in which the frequencies will be used is determined by
this smoothed periodogram, largest periodogram values first. Using that order, a sinusoid
is fitted at each Fourier frequency by robust regression and then swept out of the residuals
from the previous step.

The cosine and sine coefficients found by the biweight filter algorithm are then inverse
Fourier transformed to give a filtered series,yF

t , t = 0, . . . , N − 1, where

yF
t = ỹ +

∑

0<k<N/2

{A′kcos(ωkt) +B′
ksin(ωkt)} . (18)

2.2.2 The Biweight Filter-cleaner

On the basis of the biweight filter, Tatum and Hurvich (1993a) develop a biweight filter-
cleaner which has output exactly equal to the input for most values and interpolates the
remaining values.

The biweight filter-cleaner initially compares the filtered series to the original and
flags discrepant points using the residuals relative to a robust scale estimate of the resid-
uals. The flagged values are replaced by linear interpolation. Finally, the estimated in-
terpolation variance is used to compare the distance between the interpolated points and
their original values. When this distance is “relatively small”, the original observation is
reintroduced. “Relatively small” here means in respect to the estimation (or interpolation)
error of thefilter-cleanedvalue. This last step helps to counterbalance the tendency of the
first step to flag too many uncontaminated observations.

3 Results

We concentrate on the robust filter-cleaner algorithm by Martin and Thomson (1982) and
the biweight filter-cleaner transform by Tatum and Hurvich (1993a), and present results
of these methods applied to simulated and real data. Both methods yield robust estimates
of the spectral density function by cleaning the time series in a robust way first and cal-
culating the spectral density function afterwards.



B. Spangl and R. Dutter 205

−
20

−
10

0
10

20

(a)

Time
0 20 40 60 80 100 120−

20
−

10
0

10
20

(b)

Figure 2: Plot of simulated AR(2) process: core process (a), with AO’s (b)

For the robust filter-cleaner algorithm the orderp of the autoregressive approximation
is determined by AIC. As robustifying function Hampel’sψ-function is used.

3.1 Simulated Data

We consider a simulated AR(2) process of lengthN = 127 given by

xt = xt−1 − 0.9xt−2 + εt , (19)

with εt ∼ N(0, 1). To obtain the processyt contaminated by additive outliers, noise from
0.9δ0 + 0.1N(0, 100) is added to the core processxt (cf. Figure 2).

As shown in Figure 3, the resulting series obtained by both filter-cleaner algorithms
approximate the underlying core processxt quite well. All outliers are revealed, even
relatively small ones, compared to the variability of the neighboring data points, e.g.,
at time t = 60 and t = 105. However, the biweight filter-cleaner algorithm slightly
underestimates the core process, especially at timet = 82, t = 93, andt = 125.

Figure 4 shows spectral density estimates of the simulated process. The dot-dashed
line represents the spectral density estimate of the filter-cleaned process obtained by the
robust filter-cleaner algorithm, whereas the thin solid line is the one of the filter-cleaned
data set computed by the biweight filter-cleaner procedure. Since both filter-cleaner yield
similar results that approximate the underlying core process well (cf. Figure 3), both spec-
tral density estimates are similar in shape and power and approximate the true spectral
density function of the core process (thick solid line) quite well, too.
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Figure 3: Plot of the filter-cleaned process

3.2 Heart Rate Variability Data

The heart rate variability data consist ofR-R-intervals of 1321 consecutive heart beats and
were provided by J. Pumprla and K. Howorka, Department of Biomedical Engineering
and Physics, General Hospital of Vienna. A tachogram of the data is plotted in Figure 1.

For further analysis only the first 256 seconds of the heart rate variability data are
considered. In Figure 5 this part of the original tachogram along with the results of both
filter-cleaner algorithms is shown. The only outlying observations in this tachogram se-
quence that were identified by an expert are those around 55 seconds. This contamination
is also revealed by both filter-cleaner algorithms. However, the biweight filter-cleaner
procedure identifies additional outliers around 10, 20, and 220 seconds. Again, it tends
to underestimate the underlying core process, whereas the robust filter-cleaner algorithm
approximates the core process in a better way.

Figure 6 shows spectral density estimates of the tachogram sequence. The spectral
density estimate of the filter-cleaned process obtained by the robust filter-cleaner algo-
rithm (dot-dashed line) is very similar in shape and power to the spectral density estimate
of the tachogram that was cleaned by the physician (thick solid line). This corresponds
to the extremely good approximation of the core process by the robust filter-cleaned
tachogram sequence (cf. Figure 5).
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Figure 4: Plot of the spectral density estimates of the simulated process

4 Conclusions

In order to get a robust estimate of the spectral density function, that is insensitive against
outlying observations, it turned out that cleaning the time series in a robust way first and
calculating the spectral density function afterwards leads to encouraging results.

The robust filter-cleaner algorithm proposed by Martin and Thomson (1982) approx-
imates the underlying core process very well, especially, if there are only few outliers
present. The biweight filter-cleaner procedure proposed by Tatum and Hurvich (1993a)
leads also to good approximations, but tends to underestimate the core process.

Varying the tuning constants and remaining parameters of the biweight filter-cleaner
algorithm to solve the problem of underestimation seems worth trying. Moreover, further
research and additional simulation studies have to be done.
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