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Abstract: The prediction of a nonlinear functional of a random field is stud-
ied. The covariance-matching constrained kriging is considered. It is proved
that the optimization problem induced by it always has a solution. The proof
is constructive and it provides an algorithm to find the optimal solution. Us-
ing simulation, this algorithm is compared with the method given in Aldworth
and Cressie (2003).

Keywords: Kriging, Nonlinear Functional, Optimization.

1 The Nonlinear Prediction Problem

Arandom fieldz(t), t € D C R4, of the form (1) is observed at locatiots . . . , t,,. Krig-
ing means optimal predicting the unobserved values of the randonx figloe method of
kriging is well-known (see e.g. Krige (1951), Cressie (1991)). Several modifications of
the kriging procedure are studied, e.g., in Fazekas and Kukush (2003) a version of kriging
Is analyzed when the locations where the field is observed are not known precisely.

In this paper, we study problems which require the prediction of nonlinear functionals
of the fieldz. To solve this kind of problems, Aldworth and Cressie (2003) introduced
a predictor, called covariance-matching constrained kriging (see also Cressie (1993)). It
Is an optimal linear predictor that matches not only first moments but second moments
(including covariances) as well. Aldworth and Cressie (2003) proved some properties of
the covariance-matching constrained kriging and applied it to real life problems. Here we
prove some further properties of that predictor.

Consider the following linear geostatistical model

A6) =) GifH)+0@t), teDCR (1)

whered is a fixed positive integerf;(¢) are known functionsj; are unknown parameters,
j=0,1,...,p, 6(t) are random error terms withé(¢) = 0, E6%(t) < oo, t € D.

Our sample is(t,), ..., z(t,), in vector formz = (z2(¢,),...,2(t,))" € R™. Then
Ez = X3, for some known matrixX of typen x (p + 1). Hered = (8y,...,05,) . We
assume that the semivariogram of our random fieisl kown, therefore vde) = X is a
knownn x n matrix.

We want to predicy(s), whereg is a known scalar-valued function that is nonlinear
in its vector-valued argument. Heres = (s(By),...,s(B,,))" is a function of the
underlying random field. To predictg(s), consider a predictor of the forg{(s), where
s = AT zis alinear predictor 0§, andA is ann x m matrix to be calculated. To obtain an
approximately unbiased predictor, Aldworth and Cressie (2003) used Taylor’'s expansion
up to second order fay(A' z) andg(s). Their approach gave the following constraints.

Assume thatd satisfies the constrainsA 'z = Es and vatA' z) = var(s). The first
is the standard unbiasedness conditiors.dhdz are Gaussian, then the above conditions
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imply that A" z ands have the same distribution. Therefore in the Gaussiangatez)
is an unbiased predictor gf s).

As theL, error,i.e.E(g(A"z) — g(s))? can not be calculated directly, Aldworth and
Cressie (2003) used a first order Taylor's expansion to approximate it. They obtained the
expressiory ' var(A'z — s)y, wherey = ¢'(u,,) = 9g(n,,)/0x andpu,, = Es.

To obtain a predictor that can be calculated numerically, we assume gsisfies
the following. (These assumptions are realistig i6 a linear function ot, e.qg. ifitis
defined by an integral of.) Es = u,, = X! 3, whereX,, is a known(p + 1) x m
type matrix. Moreover, vds) = %,,, cov(z,s) = C, whereX,, is a knownm x m
type matrix, whileC' is a knownn x m type matrix. So we obtain the following objective
function and constraints.

Find the matrixA such that the objective function

y'ATCy 2)

is maximized under constraints
ATX =X, 3
ATSA=Y,,, (4)

wherey = ¢'(w,,)-

Aldworth and Cressie (2003) gave a matry that maximizes the Lagrangian func-
tion corresponding to the maximum problem (2)—(4)alinearly independent directions
of y. However, the original problem is to find the maximum fpr= ¢'(w,,). Here
we shall prove (see Theorem 1) that, under realistic conditions, the maximum problem
(2)-(4) has a solution whatevgrmay be. Actually, we construct the optimal solution.
This construction serves the base of a numerical method what we call algorithm M. Us-
ing computer simulation, we shall compare algorithm M with the naive estimator and the
method suggested by Aldworth and Cressie (2003).

2 The Solution of the Optimization Problem

Theorem 1. Let X be a real symmetric positive definite matrix of type n, X, be a
real symmetric positive definite matrix of typex m, C' be a real matrix of type. x m,
X, be areal matrix of typép + 1) x m, X be a real matrix of type x (p + 1) with rank
(p+ 1). Assume that > m + p + 1. Lety be a vector of dimensiom. Let

P=%,-X (X"S'X)'X,,. (5)

(a) Then there exists a matrix satisfying conditions (3) and (4) if and only i is
positive semidefinite.

(b) If there exists a matrixl satisfying constraints (3)—(4), then there exists a matrix
A satisfying constraints (3)—(4) and attaining maximum of (2).

Proof. Introduce the following notationt = $/2AY.,.'/? is a matrix of typen x m,
B = X,,3,"/* is amatrix of typgp+1) xm, Y = $-1/2X is a matrix of typen x (p+1).
Then constraints (3)—(4) are equivalent to the following. Find the matrsatisfying

E'Y =B", (6)
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E'E=1, (7)

wherel is them x m type unit matrix,B andY” are known matrices.
(al) First consider the case = 1. Then constraints (6)—(7) are equivalent to

Y'e=b, ele=1, (8)

whereY " is a given matrix of typgp + 1) x n with rankp + 1, b is a given vector of
dimensiorp + 1, while we are looking for the unknowm-dimensional vectoe.

By the assumptions of the theorem;> p + 1. Then the general solution &f"e = b
is a non-trivial linear manifold. The particular solutiento Y "e = b having the minimal
length, is the one which is orthogonal to each solution of the homogeneous linear equation
Y Te = 0. Therefore, ife is orthogonal to the rows of T, thene, is orthogonal toe.
So ey is in the subspace spanned by the rowsdf. That ise, = Ywv for someuw.
Thereforeb = Y'ey, = Y 'Yv. AsY T is of rankp + 1, soY 'Y is invertible, therefore
v = (YY) !b. So we obtaire; = Y (Y TY)"!b.

Any solution ofY "e = b can be written in the forre = e, + e,, Wheree, is a vector
with Y Te; = 0. As e is orthogonal tae,, our condition isl = e"e = ||eg||> + ||e1]?.
This can be satisfied if and only|ik]|*> < 1.

So we obtained the following statementnif= 1, n > p+ 1 andY has rankp + 1,
then (8) has a solution if and only if

b' (YY) < 1. (9)

This is equivalent to the condition that the matfdefined in (5) is positive semidefinite.
So we obtained part (a) in the case= 1.

(a2) Now letm be an arbitrary positive integer. If there existsfasatisfying (6)—(7),
then for anya € R?*!, ||al|| # 0, we have

a'E'Y =a'B", a'E"Ea = ||a|?.

Soe = FEa/||al| is a solution to (8) wittb = Ba/||a||. By the previous part of the proof,
this implies that (9) is satisfied, i.e.

thatis/ — BT (Y "Y)~1B is positive semidefinite. Therefore the matfxdefined in (5)
is positive semidefinite.
Now let P be positive semidefinite. Find the solution of (6)—(7) in the form

E=I-YY'Y)'YOHYWV+YY'Y)'B=MV + E, (10)

whereV is a matrix to be determined. We remark that in Aldworth and Cressie (2003)
the same scheme was applied. They obtainedithat »-120KE,? is the optimal
solution atm linearly independent directions gt

Now

ET=VII-YY'Y)'YOH+B(Y'Y)'Y' =VIM+E.
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HereM = I — Y(YTY)~"'Y'" is the orthogonal projection to the orthogonal comple-
ment of the subspace generated by the columns,afhile £/ = BT(Y'Y) 'Y T isa
particular solution of2"Y = B". So we obtain that (6) is satisfied.

Now, by (7), we have to solve

I=E"E=V'ME, +E,MV +V "MV +EE,=V MV +B"(Y'Y)'B.
This equation is equivalent to
VIMV =N. (11)

Here then x n type matrix M is an orthogonal projection to a subspace of dimension
n — (p + 1) (thereforeM is symmetric, idempotent and positive semidefinité). =
I — BT (YY) 'Bis of typem x m, itis symmetric and positive semidefinite (because
P is positive semidefinite). Now we shall find a sulutignof (11) using the assumption
n— (p+ 1) > m. Let H be an othogonal matrix (containing orthonormed eigenvectors
of M) such that

1

H ' MH = A = 1

4
where at the right hand side a diagonal matrix stands in which the.firsp+1) elements

in the diagonal are ones while the remaining elements are zerog.Let (N2, O)H T,
whereQ is a matrix containing zero elements. Then

VIMV = (NY2, O)H" MH(N'Y? 0)" = (N2 O)A(N'/?,0)T = N.

So we obtained part (a) for arbitrany.

(b) Now we turn to part (b). Constraints (3)—(4) define a bounded closed set of ma-
trices A. The objective function (2) is a linear function df As a continuous function
attains its maximum on a compact set therefore part (b) is proved. !

3 A Construction of the Solution of Problem (2)—(4)

Here we give a constructive proof for part (b) of Theorem 1. An algorithm will be based
on this construction.

(b1) First we give a simple proof of part (b) in the case= 1. Now the objective
functiony T AT Cy is of the formw e, wherew ! = 251 °CTY~12 (asm = 1, y and
Y, are scalars). Here is to be determined. We can assume thatt 0 (if w = 0
then the maximum of the objective function is alwa)ys By the above calculations, if
there is a vector satisfying the constraints, then it is of the ferm e, + e;, wheree,
Is uniquely determined, its norm is not greater tHane; is not uniquely determined,
but it is the solution off "e; = 0 and|le,|> = 1 — ||eo||?. Letw = wy + w,, Where
wy is in the subspace spanned by the row’df andw, is orthogonal to the rows of
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Y. Thenw'e = wj ey + w{ e; is maximal if and only ife, is parallel tow, (use the
Cauchy-Schwarz-Buniakovskii inequality). So we obtained part (b) of Theorem 1 in the
casen = 1.

(b2) Now turn to part (b) in the case of arbitrary The proof is the basis of algorithm
M.

We slightly reshape constraints (6)—(7). As thel columns ofY” are independent, we
can apply Gram-Schmidt orthogonalization to it. This can be described by an invertible
matrix G. Multiply form the right by thisG the equation® 'Y = BT. Then we obtain
E™W =V, whereYG = W and B'G = V. Denote byw;,...,w,,; € R" the
columns of W/, by ey, ..., e,, € R" the columns ofF, and byv;; the elements of/.
ThenETW = V can be written into the form
e] w; = vy, i=1,....m, j=1,...,p+1. (12)

1

Here w,,...,w,;; € R" are given othonormed vectorsy;;, < = 1,...,m, j =
1,...,p+ 1 are given numbers. We have to fiad . . ., e,, € R".
Let £ denote the subspace & spanned byw;, ..., w,; and £* its orthogonal

complement. We searah, .. ., e, in the form
p+1 .
e, = Zj:l Uij’UJj —+ Oéili, 1 = 1, ., (13)
wherel,, . .., 1, are unit (in some special cases zero) vectors ffom(Aswy, . .., w1

are othonormed vectors, the above representation is valid for vegtors, e,, satisfying

(12).) Because we assume that the constraints (6)—(7) can be satisfied, therefore there exist
orthonormed vectors,, ..., e,, € R™ with the above representation. This implies that
S 2 <1fori=1,...,m,and

Jj=1"1j
p+1 .
ai:Ul—Ej_lvfj, i=1,...,m.

By orthogonality ofe; andey,
pt+1 , ,
0= el-Tek = ijl VijUkj + ai&kljlk, L,k=1,....m, 1#k. (14)
So we have to find the vectols . . ., l,, from £+ such that
1, = dy,, ik=1,...,m, (15)
anda;ay # 0.
The objective function to be maximized is
y CTAy =y OIS PES Py = T3 wiey, (16)

wheref = X-12Cy and(a1, ..., z,)" = & = S y. Using (13),

Zm m p+1 m I (17)
rie; = g E TV w; + E Tioul; .
=1 " i=1 j=1 L =1 v
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As the first summand here is fixed, we have to find the maximum of

Zil flaioil;. (18)
Finally, introducing the notatioif, for the orthogonal projection of to £+, and choos-
ingv; = x;04,7 = 1,...,m, we have to find the vectods, . ..,I,, from £ such that

(15) is satisfied and

fI (Zj; %lz‘> (19)

Is maximized. By the Cauchy-Schwarz-Buniakovskii inequality,

ST ETATN) DD DEE S 20)

If fL =0,0r> ", > vvdi; =0, thenly,... 1, can be arbitrarily chosen from-*
such that (15) is satisfied.

Now assume thaf, # 0and) " > ™ ~v;d; > 0. In (20) we have equality if
and only if

> li=Af (21)
with A > 0. So we shall find, ..., 1,, from £+ such that (15) and (21) are satisfied. We
see that

A= S0 S s 1441
Fix an orthonormed basis,, . . ., h,,_(,+1) in £+ so thatf  is in the subspace spanned
by the firstm basis vectors. From now on we identify the vector€inwith their coor-
dinate sequences according to the basis . ., h,,_,41). Findl,, ... [, in the form
- D11 O ) .
lz—(O DQQ)hZ, Z—l,...,m,

whereD;; is of typem x m and Dy, is of type(n —m —p—1) x (n—m —p—1). Now,
by (15),

D/,D @) .
dij =11; =h ( 110 H DQTQDQQ) h; = (D{,D11)i; ihj=1...,m.

ThereforeD/, D1, = Dy, whereD, = (dij)i%=1- SOD1y = UD(l)/Q, whereU is anm x m
type orthogonal matrix. Then

1/2y
llz((Ul?]O )l), izl,...,m,

where(UD,/%); is theith column of/ D}/%. We have to findJ so that (21) is satisfied.
This gives

2N B ) =\ F
U (D320 ki) = A (22)
whereh; is theith unit vector inR™, while f, consists of the first» coordinates off, .

As )\ is chosen such that the vectc(rﬁ)é/2 Yo %ﬁi) and )\ﬁ have the same length,
one can find an orthogonal mattix satisfying (22).
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4 Numerical Results

In this section we compare three methods of prediction of the nonlinear funcional

The first one is algorithm M described in the constructive proof of Theorem 1 in Sec-
tion 3. To obtain a feasible method, insteadjafie usey when we solve the optimization
problem (2)—(4). Here R

Y=g (Bn) = 9(X.0), (23)

where@ = (X T¥1X)~1X T2 is the generalized least squares estimatg.oTThe
resulting estimator ig,,. = g(AoTptz), WhereAIpt is the solution given by algorithm M
if ¥ in (2) is substituted by given in (23).

The second estimator is the one given by Aldworth and Cressie (2003). This estimator
is denoted byj,.. Here

Eac = g(AgZ),

where
A= - XX X) XY HOK + 2 X (X T2 X)X, (24)
whereK = Q~1/2p1/2,
P =var(s) —varX,8) =%, — X (X' S'X)'X,, (25)
Is the matrix in (5), moreover
Q = var(3y) — var(X,,8) = (26)
=CT(E! -y X(XTETI X)X T e
Here N R
S =X B+C'Y 1 (z—XPB)
Is the universal kriging predictor.
Finally, the third estimator is the naive estimator.

Example. Consider the domai® = [—rh, +rh] x [—rh,+rh] C R? and a random
field z(z, y) on D with linear mean value function:

2(z,y) = Po + Pix + Poy + do(x,y) + 01 (z,y), (27)

where(z,y) € D. The parameters,, f;, 3 are unknown. (For simulation we chose
Bo =20, 51 =1, B, = —1.) The fieldjy(z, y) is a zero mean Gaussian random field with
Gaussian semivariogram

Y0(t) = w(1—exp (= [¢]*/a?) ) (28)

fort = (t1,t2) € R?, where||t||> = ¢? + t3. (We assume that the covariance structure

is completely known. Actually, is an Ornstein-Uhlenbeck type random field. For the
Ornstein-Uhlenbeck random field see Terdik and Woyczynski (2005) and the references
therein.) The random variablés(z, y), where(x, y) € D, are independent and uniformly
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distributed on[—0.57,4+0.57]. The random field9,(z,y), (z,y) € D, andd;(z,y),
(z,y) € D, are independent. We used several values of the parametetsandr. By
simulation we generated the fieldon the h-lattice points ofD. We usedr = 6 and
h =2.

We predicted the function

Z Z ((2k + 1)h, (2L +1)R)]* | (29)

k—=—2l-—2

wherem = 16 is the mumber of locations, where the values of the random field are
included in the above expression.

For prediction we used the observations of the random fieldy) at locationsz, y) =
((=r + 2k)h, (—r + 20)h), k,1=0,1,...,r. l.e. our sample size was= 49.

With the help of these observations we predigjés).

The so called naive approach is the following. Using universal kriging, we predict the
field z(x,y) at theh-lattice points(z,y) = (ih, 7h) included in expression (29). So the
naive predictor is

Gnaive(8 ZZ ((2k + 1)h, (20 + A) | (30)

k‘=—214*—2

wherez is the universal kriging predictor.

Using the same observations, we calculaigdandg,., too.

We made 1000 replications. (The simulations were performed with MATLAB.)

For each predictor, we calculated the ratio of the mean squared error and the average.
l.e. in Table 1 the values of

1000 1000

1

are shown. (We remark that in the program the value &f expressed in terms af)

The results of some other experiments were similar. The conclusions are the follow-
ing. The naive approach (i.8,.:,. based on universal kriging) performed pourly for non-
linear predictands. The performances of the two different calculations of the covariance-
matching constrained kriging, i.@.,. andg,. are similar. The advantages @f are the
following. It is easy to calculatg,. while g, requires an implementation of algorithm
M. Moreover, for Gaussian random fields with large variangess more stable thaf,p: .

A careful analysis of the distribution of the underlying random fieislnecessary in each
particular case when we want to compagg andg,..
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Table 1: The relative errors of the estimators

Parameters g values for the predictors
w| @[ 7] Goaive Jopt | ac
1571 2| 3| 28.17 %| 0.310 %| 0.356 %
3.142| 4| 3| 25.88 %/ 0.844 %| 0.583 %
6.283| 2| 3| 27.38%| 0.681 %| 1.306 %
12.566| 4| 3| 27.01 %| 3.008 %| 2.809 %
42.412| 6| 3| 21.32%| 5.710 %| 3.304 %
1.178| 6| 3| 26.59 %| 2.737 %| 2.436 %
1571 2|4 | 39.55%)| 0.499 %| 0.411 %
6.283| 2|4 | 40.88%| 0.850 % | 1.029 %
25.133| 2| 4 || 43.21 %| 2.049 %| 2.636 %
50.265| 4| 4 || 41.63%| 1.393 %| 1.223 %
42412 6| 0| 4.78%  5.842%| 3.346 %
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