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Abstract: The prediction of a nonlinear functional of a random field is stud-
ied. The covariance-matching constrained kriging is considered. It is proved
that the optimization problem induced by it always has a solution. The proof
is constructive and it provides an algorithm to find the optimal solution. Us-
ing simulation, this algorithm is compared with the method given in Aldworth
and Cressie (2003).
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1 The Nonlinear Prediction Problem

A random fieldz(t), t ∈ D ⊂ Rd, of the form (1) is observed at locationst1, . . . , tn. Krig-
ing means optimal predicting the unobserved values of the random fieldz. The method of
kriging is well-known (see e.g. Krige (1951), Cressie (1991)). Several modifications of
the kriging procedure are studied, e.g., in Fazekas and Kukush (2003) a version of kriging
is analyzed when the locations where the field is observed are not known precisely.

In this paper, we study problems which require the prediction of nonlinear functionals
of the fieldz. To solve this kind of problems, Aldworth and Cressie (2003) introduced
a predictor, called covariance-matching constrained kriging (see also Cressie (1993)). It
is an optimal linear predictor that matches not only first moments but second moments
(including covariances) as well. Aldworth and Cressie (2003) proved some properties of
the covariance-matching constrained kriging and applied it to real life problems. Here we
prove some further properties of that predictor.

Consider the following linear geostatistical model

z(t) =
∑p

j=0
βjfj(t) + δ(t), t ∈ D ⊆ Rd, (1)

whered is a fixed positive integer,fj(t) are known functions,βj are unknown parameters,
j = 0, 1, . . . , p, δ(t) are random error terms withEδ(t) = 0, Eδ2(t) < ∞, t ∈ D.

Our sample isz(t1), . . . , z(tn), in vector formz = (z(t1), . . . , z(tn))> ∈ Rn. Then
Ez = Xβ, for some known matrixX of typen× (p + 1). Hereβ = (β0, . . . , βp)

>. We
assume that the semivariogram of our random fieldz is kown, therefore var(z) = Σ is a
knownn× n matrix.

We want to predictg(s), whereg is a known scalar-valued function that is nonlinear
in its vector-valued arguments. Heres = (s(B1), . . . , s(Bm))> is a function of the
underlying random fieldz. To predictg(s), consider a predictor of the formg(ŝ), where
ŝ = A>z is a linear predictor ofs, andA is ann×m matrix to be calculated. To obtain an
approximately unbiased predictor, Aldworth and Cressie (2003) used Taylor’s expansion
up to second order forg(A>z) andg(s). Their approach gave the following constraints.

Assume thatA satisfies the constraintsEA>z = Es and var(A>z) = var(s). The first
is the standard unbiasedness condition. Ifs andz are Gaussian, then the above conditions
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imply thatA>z ands have the same distribution. Therefore in the Gaussian caseg(A>z)
is an unbiased predictor ofg(s).

As theL2 error, i.e.,E(g(A>z)− g(s))2 can not be calculated directly, Aldworth and
Cressie (2003) used a first order Taylor’s expansion to approximate it. They obtained the
expressiony> var(A>z − s)y, wherey = g′(µm) = ∂g(µm)/∂x andµm = Es.

To obtain a predictor that can be calculated numerically, we assume thats satisfies
the following. (These assumptions are realistic ifs is a linear function ofz, e.g. if it is
defined by an integral ofz.) Es = µm = X>

mβ, whereXm is a known(p + 1) × m
type matrix. Moreover, var(s) = Σm, cov(z, s) = C, whereΣm is a knownm × m
type matrix, whileC is a knownn×m type matrix. So we obtain the following objective
function and constraints.

Find the matrixA such that the objective function

y>A>Cy (2)

is maximized under constraints
A>X = X>

m , (3)

A>ΣA = Σm , (4)

wherey = g′(µm).
Aldworth and Cressie (2003) gave a matrixA0 that maximizes the Lagrangian func-

tion corresponding to the maximum problem (2)–(4) atm linearly independent directions
of y. However, the original problem is to find the maximum fory = g′(µm). Here
we shall prove (see Theorem 1) that, under realistic conditions, the maximum problem
(2)–(4) has a solution whatevery may be. Actually, we construct the optimal solution.
This construction serves the base of a numerical method what we call algorithm M. Us-
ing computer simulation, we shall compare algorithm M with the naive estimator and the
method suggested by Aldworth and Cressie (2003).

2 The Solution of the Optimization Problem

Theorem 1. Let Σ be a real symmetric positive definite matrix of typen × n, Σm be a
real symmetric positive definite matrix of typem×m, C be a real matrix of typen×m,
Xm be a real matrix of type(p+1)×m, X be a real matrix of typen× (p+1) with rank
(p + 1). Assume thatn ≥ m + p + 1. Lety be a vector of dimensionm. Let

P = Σm −X>
m(X>Σ−1X)−1Xm . (5)

(a) Then there exists a matrixA satisfying conditions (3) and (4) if and only ifP is
positive semidefinite.

(b) If there exists a matrixA satisfying constraints (3)–(4), then there exists a matrix
A satisfying constraints (3)–(4) and attaining maximum of (2).

Proof. Introduce the following notation.E = Σ1/2AΣ
−1/2
m is a matrix of typen×m,

B = XmΣ
−1/2
m is a matrix of type(p+1)×m, Y = Σ−1/2X is a matrix of typen×(p+1).

Then constraints (3)–(4) are equivalent to the following. Find the matrixE satisfying

E>Y = B> , (6)
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E>E = I , (7)

whereI is them×m type unit matrix,B andY are known matrices.
(a1) First consider the casem = 1. Then constraints (6)–(7) are equivalent to

Y >e = b , e>e = 1, (8)

whereY > is a given matrix of type(p + 1) × n with rankp + 1, b is a given vector of
dimensionp + 1, while we are looking for the unknownn-dimensional vectore.

By the assumptions of the theorem,n > p + 1. Then the general solution ofY >e = b
is a non-trivial linear manifold. The particular solutione0 toY >e = b having the minimal
length, is the one which is orthogonal to each solution of the homogeneous linear equation
Y >e = 0. Therefore, ife is orthogonal to the rows ofY >, thene0 is orthogonal toe.
So e0 is in the subspace spanned by the rows ofY >. That ise0 = Y v for somev.
Thereforeb = Y >e0 = Y >Y v. As Y > is of rankp + 1, soY >Y is invertible, therefore
v = (Y >Y )−1b. So we obtaine0 = Y (Y >Y )−1b.

Any solution ofY >e = b can be written in the forme = e0 +e1, wheree1 is a vector
with Y >e1 = 0. As e1 is orthogonal toe0, our condition is1 = e>e = ‖e0‖2 + ‖e1‖2.
This can be satisfied if and only if‖e0‖2 ≤ 1.

So we obtained the following statement. Ifm = 1, n > p + 1 andY has rankp + 1,
then (8) has a solution if and only if

b>(Y >Y )−1b ≤ 1 . (9)

This is equivalent to the condition that the matrixP defined in (5) is positive semidefinite.
So we obtained part (a) in the casem = 1.

(a2) Now letm be an arbitrary positive integer. If there exists anE satisfying (6)–(7),
then for anya ∈ Rp+1, ‖a‖ 6= 0, we have

a>E>Y = a>B> , a>E>Ea = ‖a‖2 .

Soe = Ea/‖a‖ is a solution to (8) withb = Ba/‖a‖. By the previous part of the proof,
this implies that (9) is satisfied, i.e.

a>B>

‖a‖ (Y >Y )−1 Ba

‖a‖ ≤ 1 ,

that isI − B>(Y >Y )−1B is positive semidefinite. Therefore the matrixP defined in (5)
is positive semidefinite.

Now letP be positive semidefinite. Find the solution of (6)–(7) in the form

E = (I − Y (Y >Y )−1Y >)V + Y (Y >Y )−1B = MV + E0 , (10)

whereV is a matrix to be determined. We remark that in Aldworth and Cressie (2003)
the same scheme was applied. They obtained thatV = Σ−1/2CKΣ

−1/2
m is the optimal

solution atm linearly independent directions ofy.
Now

E> = V >(I − Y (Y >Y )−1Y >) + B>(Y >Y )−1Y > = V >M + E>
0 .
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HereM = I − Y (Y >Y )−1Y > is the orthogonal projection to the orthogonal comple-
ment of the subspace generated by the columns ofY , while E>

0 = B>(Y >Y )−1Y > is a
particular solution ofE>Y = B>. So we obtain that (6) is satisfied.

Now, by (7), we have to solve

I = E>E = V >ME0 + E>
0 MV + V >MV + E>

0 E0 = V >MV + B>(Y >Y )−1B .

This equation is equivalent to

V >MV = N . (11)

Here then × n type matrixM is an orthogonal projection to a subspace of dimension
n − (p + 1) (thereforeM is symmetric, idempotent and positive semidefinite).N =
I − B>(Y >Y )−1B is of typem ×m, it is symmetric and positive semidefinite (because
P is positive semidefinite). Now we shall find a sulutionV of (11) using the assumption
n − (p + 1) ≥ m. Let H be an othogonal matrix (containing orthonormed eigenvectors
of M ) such that

H>MH = Λ =




1
.. .

1
0

.. .
0




,

where at the right hand side a diagonal matrix stands in which the firstn−(p+1) elements
in the diagonal are ones while the remaining elements are zeros. LetV > = (N1/2, O)H>,
whereO is a matrix containing zero elements. Then

V >MV = (N1/2, O)H>MH(N1/2, O)> = (N1/2, O)Λ(N1/2, O)> = N.

So we obtained part (a) for arbitrarym.
(b) Now we turn to part (b). Constraints (3)–(4) define a bounded closed set of ma-

tricesA. The objective function (2) is a linear function ofA. As a continuous function
attains its maximum on a compact set therefore part (b) is proved. ¤

3 A Construction of the Solution of Problem (2)–(4)

Here we give a constructive proof for part (b) of Theorem 1. An algorithm will be based
on this construction.

(b1) First we give a simple proof of part (b) in the casem = 1. Now the objective
functiony>A>Cy is of the formw>e, wherew> = y2Σ

1/2
m C>Σ−1/2 (asm = 1, y and

Σm are scalars). Heree is to be determined. We can assume thatw 6= 0 (if w = 0
then the maximum of the objective function is always0). By the above calculations, if
there is a vector satisfying the constraints, then it is of the forme = e0 + e1, wheree0

is uniquely determined, its norm is not greater than1, e1 is not uniquely determined,
but it is the solution ofY >e1 = 0 and‖e1‖2 = 1 − ‖e0‖2. Let w = w0 + w1, where
w0 is in the subspace spanned by the rows ofY > andw1 is orthogonal to the rows of
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Y >. Thenw>e = w>
0 e0 + w>

1 e1 is maximal if and only ife1 is parallel tow1 (use the
Cauchy-Schwarz-Buniakovskii inequality). So we obtained part (b) of Theorem 1 in the
casem = 1.

(b2) Now turn to part (b) in the case of arbitrarym. The proof is the basis of algorithm
M.

We slightly reshape constraints (6)–(7). As thep+1 columns ofY are independent, we
can apply Gram-Schmidt orthogonalization to it. This can be described by an invertible
matrix G. Multiply form the right by thisG the equationE>Y = B>. Then we obtain
E>W = V , whereY G = W and B>G = V . Denote byw1, . . . , wp+1 ∈ Rn the
columns ofW , by e1, . . . , em ∈ Rn the columns ofE, and byvij the elements ofV .
ThenE>W = V can be written into the form

e>i wj = vij, i = 1, . . . , m, j = 1, . . . , p + 1. (12)

Here w1, . . . , wp+1 ∈ Rn are given othonormed vectors,vij, i = 1, . . . , m, j =
1, . . . , p + 1 are given numbers. We have to finde1, . . . , em ∈ Rn.

Let L denote the subspace inRn spanned byw1, . . . , wp+1 andL⊥ its orthogonal
complement. We searche1, . . . , em in the form

ei =
∑p+1

j=1
vijwj + αili, i = 1, . . . , m, (13)

wherel1, . . . , lm are unit (in some special cases zero) vectors fromL⊥. (Asw1, . . . , wp+1

are othonormed vectors, the above representation is valid for vectorse1, . . . , em satisfying
(12).) Because we assume that the constraints (6)–(7) can be satisfied, therefore there exist
orthonormed vectorse1, . . . , em ∈ Rn with the above representation. This implies that∑p+1

j=1 v2
ij ≤ 1 for i = 1, . . . , m, and

αi =

√
1−

∑p+1

j=1
v2

ij , i = 1, . . . , m.

By orthogonality ofei andek,

0 = e>i ek =
∑p+1

j=1
vijvkj + αiαkl

>
i lk, i, k = 1, . . . ,m, i 6= k. (14)

So we have to find the vectorsl1, . . . , lm fromL⊥ such that

l>i lk = dik , i, k = 1, . . . , m, (15)

wheredik = 0 if αiαk = 0; dii = 1 if αi 6= 0; dik = −
(∑p+1

j=1 vijvkj

)/
(αiαk) if i 6= k

andαiαk 6= 0.
The objective function to be maximized is

y>C>Ay = y>C>Σ−1/2EΣ1/2
m y = f>

∑m

i=1
xiei , (16)

wheref = Σ−1/2Cy and(x1, . . . , xm)> = x = Σ
1/2
m y. Using (13),

∑m

i=1
xiei =

∑m

i=1

∑p+1

j=1
xivijwj +

∑m

i=1
xiαili . (17)
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As the first summand here is fixed, we have to find the maximum of
∑m

i=1
f>xiαili . (18)

Finally, introducing the notationf⊥ for the orthogonal projection off toL⊥, and choos-
ing γi = xiαi, i = 1, . . . , m, we have to find the vectorsl1, . . . , lm from L⊥ such that
(15) is satisfied and

f>⊥
(∑m

i=1
γili

)
(19)

is maximized. By the Cauchy-Schwarz-Buniakovskii inequality,

f>⊥
(∑m

i=1
γili

)
≤ ‖f⊥‖

√∑m

i=1

∑m

j=1
γiγjdij . (20)

If f⊥ = 0, or
∑m

i=1

∑m
i=1 γiγjdij = 0, thenl1, . . . , lm can be arbitrarily chosen fromL⊥

such that (15) is satisfied.
Now assume thatf⊥ 6= 0 and

∑m
i=1

∑m
j=1 γiγjdij > 0. In (20) we have equality if

and only if ∑m

i=1
γili = λf⊥ (21)

with λ > 0. So we shall findl1, . . . , lm fromL⊥ such that (15) and (21) are satisfied. We
see that

λ =

√∑m

i=1

∑m

j=1
γiγjdij

/
‖f⊥‖ .

Fix an orthonormed basish1, . . . , hn−(p+1) inL⊥ so thatf⊥ is in the subspace spanned
by the firstm basis vectors. From now on we identify the vectors inL⊥ with their coor-
dinate sequences according to the basish1, . . . , hn−(p+1). Find l1, . . . , lm in the form

li =

(
D11 O
O D22

)
hi , i = 1, . . . , m,

whereD11 is of typem×m andD22 is of type(n−m− p− 1)× (n−m− p− 1). Now,
by (15),

dij = l>i lj = h>i

(
D>

11D11 O
O D>

22D22

)
hj = (D>

11D11)ij , i, j = 1, . . . ,m.

ThereforeD>
11D11 = D0, whereD0 = (dij)

m
i,j=1. SoD11 = UD

1/2
0 , whereU is anm×m

type orthogonal matrix. Then

li =

(
(UD

1/2
0 )i

0

)
, i = 1, . . . , m,

where(UD
1/2
0 )i is theith column ofUD

1/2
0 . We have to findU so that (21) is satisfied.

This gives

U
(
D

1/2
0

∑m

i=1
γih̃i

)
= λf̃⊥, (22)

whereh̃i is theith unit vector inRm, while f̃⊥ consists of the firstm coordinates off⊥.

As λ is chosen such that the vectors
(
D

1/2
0

∑m
i=1 γih̃i

)
andλf̃⊥ have the same length,

one can find an orthogonal matrixU satisfying (22).
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4 Numerical Results

In this section we compare three methods of prediction of the nonlinear functionalg.
The first one is algorithm M described in the constructive proof of Theorem 1 in Sec-

tion 3. To obtain a feasible method, instead ofy we usêy when we solve the optimization
problem (2)–(4). Here

ŷ = g′(µ̂m) = g′(X>
mβ̂) , (23)

whereβ̂ = (X>Σ−1X)−1X>Σ−1z is the generalized least squares estimator ofβ. The
resulting estimator iŝgopt = g(A>

optz), whereA>
opt is the solution given by algorithm M

if y in (2) is substituted bŷy given in (23).
The second estimator is the one given by Aldworth and Cressie (2003). This estimator

is denoted bŷgac. Here
ĝac = g(A>

0 z),

where

A0 = Σ−1(I −X(X>Σ−1X)−1X>Σ−1)CK + Σ−1X(X>Σ−1X)−1Xm , (24)

whereK = Q−1/2P 1/2,

P = var(s)− var(X>
mβ̂) = Σm −X>

m(X>Σ−1X)−1Xm (25)

is the matrix in (5), moreover

Q = var(ŝuk)− var(X>
mβ̂) = (26)

= C>(Σ−1 − Σ−1X(X>Σ−1X)−1X>Σ−1)C .

Here
ŝuk = X ′

mβ̂ + C ′Σ−1(z −Xβ̂)

is the universal kriging predictor.
Finally, the third estimator is the naive estimator.
Example. Consider the domainD = [−rh, +rh] × [−rh, +rh] ⊂ R2 and a random

field z(x, y) onD with linear mean value function:

z(x, y) = β0 + β1x + β2y + δ0(x, y) + δ1(x, y), (27)

where(x, y) ∈ D. The parametersβ0, β1, β2 are unknown. (For simulation we chose
β0 = 20, β1 = 1, β2 = −1.) The fieldδ0(x, y) is a zero mean Gaussian random field with
Gaussian semivariogram

γ0(t) = ω
(
1− exp

(− ‖t‖2/a2
))

(28)

for t = (t1, t2) ∈ R2, where‖t‖2 = t21 + t22. (We assume that the covariance structure
is completely known. Actuallyδ0 is an Ornstein-Uhlenbeck type random field. For the
Ornstein-Uhlenbeck random field see Terdik and Woyczynski (2005) and the references
therein.) The random variablesδ1(x, y), where(x, y) ∈ D, are independent and uniformly
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distributed on[−0.5τ, +0.5τ ]. The random fieldsδ0(x, y), (x, y) ∈ D, and δ1(x, y),
(x, y) ∈ D, are independent. We used several values of the parametersω, a2 andτ . By
simulation we generated the fieldz on theh-lattice points ofD. We usedr = 6 and
h = 2.

We predicted the function

g(s) =
1

m

1∑

k=−2

1∑

l=−2

[z((2k + 1)h, (2l + 1)h)]3 , (29)

wherem = 16 is the mumber of locations, where the values of the random field are
included in the above expression.

For prediction we used the observations of the random fieldz(x, y) at locations(x, y) =
((−r + 2k)h, (−r + 2l)h), k, l = 0, 1, . . . , r. I.e. our sample size wasn = 49.

With the help of these observations we predictedg(s).
The so called naive approach is the following. Using universal kriging, we predict the

field z(x, y) at theh-lattice points(x, y) = (ih, jh) included in expression (29). So the
naive predictor is

ĝnaive(s) =
1

m

1∑

k=−2

1∑

l=−2

[ẑ((2k + 1)h, (2l + 1)h)]3 , (30)

whereẑ is the universal kriging predictor.
Using the same observations, we calculatedĝac andĝopt, too.
We made 1000 replications. (The simulations were performed with MATLAB.)
For each predictor, we calculated the ratio of the mean squared error and the average.

I.e. in Table 1 the values of

q =

√√√√ 1

1000

1000∑
i=1

(ĝi − gi)2

/
1

1000

1000∑
i=1

|gi|

are shown. (We remark that in the program the value ofω is expressed in terms ofπ.)

The results of some other experiments were similar. The conclusions are the follow-
ing. The naive approach (i.e.ĝnaive based on universal kriging) performed pourly for non-
linear predictands. The performances of the two different calculations of the covariance-
matching constrained kriging, i.e.̂gopt andĝac are similar. The advantages ofĝac are the
following. It is easy to calculatêgac while ĝopt requires an implementation of algorithm
M. Moreover, for Gaussian random fields with large variancesĝac is more stable than̂gopt.
A careful analysis of the distribution of the underlying random fieldz is necessary in each
particular case when we want to compareĝopt andĝac.
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Table 1: The relative errors of the estimators

Parameters q values for the predictors
ω a2 τ ĝnaive ĝopt ĝac

1.571 2 3 28.17 % 0.310 % 0.356 %
3.142 4 3 25.88 % 0.844 % 0.583 %
6.283 2 3 27.38 % 0.681 % 1.306 %

12.566 4 3 27.01 % 3.008 % 2.809 %
42.412 6 3 21.32 % 5.710 % 3.304 %
1.178 6 3 26.59 % 2.737 % 2.436 %
1.571 2 4 39.55 % 0.499 % 0.411 %
6.283 2 4 40.88 % 0.850 % 1.029 %

25.133 2 4 43.21 % 2.049 % 2.636 %
50.265 4 4 41.63 % 1.393 % 1.223 %
42.412 6 0 4.78 % 5.842 % 3.346 %
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