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Abstract: The problems of statistical forecasting of vector autoregressive
time series with missing values are considered. The maximum likelihood
forecast is constructed and its mean square risk is evaluated for the case of
known parameters. The “plug-in” forecast and statistical estimators are con-
structed for unknown parameters. Asymptotic properties of constructed esti-
mators are analyzed. Results of numerical experiments are presented.
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1 Introduction

Missing values are a typical distortion of model assumptions in data analysis (Little and
Rubin, 1987; Stockinger and Dutter, 1987). It is fairly common for a time series to have
gaps for a variety of reasons (Greene, 2000; Shafer, 1997): 1) the data do not exist at the
frequency we wish to observe them; 2) registration errors; 3) deletion of “outliers”.

Vector autoregression (VAR) is often used in practice for statistical analysis (statis-
tical estimation of parameters, statistical testing of hypotheses, statistical forecasting) of
time series in econometrics (Pantula and Shin, 1993), biometrics (Beran et al., 1998),
technometrics (Jones, 1980) and in many other applications.

If the parameters of the VAR-model are a priori known, then the ML-forecast (Kharin2
and Huryn, 2003) can be used. In practice, the parameters are usually unknown, and there
are three approaches to forecasting in this prior uncertainty: 1) joint maximum likelihood
estimation of the future value of the considered time series and the parameters; 2) appli-
cation of the EM-algorithm (Little and Rubin, 1987); 3) “plug-in” approach, consisting of
two stages: a) estimation of the parameters by some admissible approach; b) calculation
of the forecast putting the estimates of the parameters into the ML-forecast.

The first approach is characterized by significant computational complexity; the sec-
ond approach, and the first approach also, suffice from the multimodality of the objective
function (because of the difficult problem of detection of the main maximum for the situa-
tion with many local ones). To avoid these difficulties we develop here the third approach.

In Section 2 we define the underlying model of time series and formulate main as-
sumptions on probabilistic characteristics of the model and on the “missing patterns”.
Section 3 is devoted to the ML-forecasting under missing values for two levels of prior
uncertainty: 1) parameters of the VAR model are known; 2) the parameters are unknown.
In Section 4 we construct statistical estimators of the paramétefs “plug-in” fore-
casting procedure, and also analyze asymptotic properties of the constructed estimators.
Section 5 contains some numerical results using real statistical data.

1This research was partially supported by the grant INTAS 03-51-3714.
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2 Mathematical Model

Let the observed-vector time serie¥; be described by the VAR(1) model:
Y;=BYi 1+ U, t € Z, 1)

whereZ is the set of integers;; = (Yi1,...,Yw) € R, B = (By) € R4 is a matrix
of unknown coefficients (all eigenvalues of the matBare assumed to be inside the unit
circle), Uy = (Uy,...,Uw) € R%, {U;} are i.i.d. random vector&{U;} = 0, is the
zerod-vector, E{U,U/} = X = Consty, |X| # 0, where byConst;, ;. we will denote
a mathematical object (variable, vector, matrix, etc.) that is independent of the variables
i1,...,in, n € N. There are missing values in observatidi$}. For each vectol;
the binary vector (called “missing pattern?), = (O, ...,0)" € {0,1}% is given,
whereO,; = {1, if Y}; isobserved 0, if Y,; is a missing valug Define the discrete
setM = {(t,i), t € Z, i € {1,...,d} : Oy = 1}, its elements are assumed to be
lexicographically ordered in ascending ordéf;= |M| is the total number of observed
componentst_ = min{t : >.¢ , O, > 0} is the minimal time moment with observed
componentst, = max{t : >.*, O, > 0} is the maximal time moment with observed
components. Without loss of generality assume=1,¢, = T.

Note, that AR(p)-model and VAR(p)-model can be transformed to VAR(1)-model in-
creasing the number of components (Anderson, 1971).

Let us introduce some assumptions on the innovation prdéeasd “missing pat-
terns”{O;}.
Al. The moments of the orders three and four for the innovation process are bounded:
|E{Us, -+ U, }| < Constzs 5y [E{Us, -+ U, }| < Constzs a7t € Z,dx, ... 04 €
{1,...,d}.
A2. The moment of the fourth order for the innovation process is independent of the
time moment and the moments of the orders from 5 to 8 for the innovation process are
bounded:

|E{U4, - - Usis }| < Constrs i < Utipp| < Constg

|E {Util .- Utig}| < CODStt*,i’l 77777 B ALS Zyi1,...,18 € {1, . ,d}

A3. U, is a Gaussian random vect@t:{U; } = N, (04, X).

A4. The “missing patterns{O,} satisfy the asymptotics 8t — oo (i,5 € {1,...,d}):

T-1

T
T 040y — vy € (0,1, (T =17 00105 — v € (0,1], (2
t=1 t=1

v is the limit frequency for the pair of componerisj) observed at the same time

moment,~" is the limit frequency for the pair of componenis j) observed at the

)

neighbor time moments.
A5. The “missing patterns{O,} satisfy the asymptotics &8t — oc:

T-1
(T - |T’ - ]‘)_1 Z OtiOtht/i’Ot’j/(St—t/,T - Vi("Qj?i/’j/(T) - [O, 1],
t,it'=1
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ug)” (7) is the limit frequency for the pair of componeriis;) observed together with

the pair(i’, j/) at the delayr, v, ””(0) =, 9;,; is the Kronecker symbol;

1y !

T-1

(T = || =1)~ Z 0104 Op 41,4 O 04— 7 — v, (1) e [0, 1],

4,7, .5
tit'=1

z/l(?;)” (7) is the limit frequency for the pair of componeriis;) observed together with

the component§’, ;') observed at the delay— 1 andr;

T-1

(T —|[r|=1)" Z O141,i04j0y 41,0 Oy i 04—y 7 — vy (1) € 10,1],

1,550 ,5"
tt'=1

u,fi)” (7) is the limit frequency for the pair of componertts;) observed at the neighbor

time moments and the pdif, ;') observed at the neighbor time moments at the dejay
v (0) = v, wherer € Z, i, 4,1, € {1,....d}.

17]713] ’LJ !
Let Y., € R? be a “future vector” to be forecasted for> 1, Yr., = Yr . (X):
RE — R? be a forecasting statistic (procedure). Introduce the matrixRiskR?*¢ and

the (scalar) risk of forecasting:

~ ~ /
R=E { <YT+T - YT+T) <YT+T - YT+T> } 7 = tr(R) > 0.

It is known (Greene, 2000), that for the case of complete observations and known param-
etersB, ¥ the minimal riskry = tr (3.7, | B'Y(B')) > 0is attained for the forecast
(Greene, 2000)Y;.. = B"Yr.

3 ML-Forecasting Under Missing Values

Define a bijectionM — {1,..., K} : k = x(t,4) and the inverse functioft, i) = y(k).
Compose thes-vector of all observed componenty: = (X,,..., Xg) € RE, X} =
Yy, k € {1,...,K}. Note, thatifO,, = 1,¢t € {1,...,T},7 € {1,...,d}, then the
process; is observed offil, 7] without any missing values = Td, X = (Y{,...,Y}),
X)) =i+ (t—1)d; x(k) = ((k—=1)/d]+1, (k—=1)modd+1),ke{1,...,K}.
Denote the matrices? = (F};) = cov{X, X} € RF*K H = (H,;;) = cov{X,Yr,} €
RKXd, G = (G”) = COV{YT+T,YT+T} € RdXd, G1 = COV{YT+T+1,YT+7—} € RdXd,
Ay = Ao(B,Y) = H'F~' € R™K_ Note, that according to Anderson (197Q) =
S, B’X(B'Y, Gy = BG.

Lemma 1 Let the model (1) take place. The following expressiongfal hold:

Fy = Fj; = (B2—xa0)g) i,je{l,....K}, i>j; 3)

x2(4),x2(5) ’

Hy; = (BT+—%06)

.]a)_CQ(Z) ’

ie{l,....K}, je{l,...,d}.
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Proof. Using the expression for the covariance matrix for the VAR(1) model (Anderson,
1971): cov{Y;,Y;} = B"7G, i > j, we find covariancesF;; = cov{X;, X;} =

cov (Vo V) = (€0¥ (Va0 Yao Dy = BYO00) o 0 the
same way we find{. [J

Theorem 1 Let the model (1) and the assumption A3 take place. If the true valugs
are known, andF| # 0, then the ML-forecasting statistic and its risk functionals are

YT+T,ML = E{YT+T‘X} = A0X7 (4)
Rur =G —H'F'H = 0,ry = tr(G) — tr(F'HH'). (5)

Proof. DenoteY, = (X',Y/,,) € RET. By Theorem 1 assumptions, the veciar
has the Gaussian distribution. By the Anderson theorem (Anderson, 1971), the likelihood
function(w.r.tY,., ) is

[ (Yrir; B,Y) = i (X[0k, F)ng (Yro |HF'X,G — H'F'H), (6)

wheren (X |u, 2) means the<-dimensional Gaussian p.d.f. with the paramejers.
The ML-forecast is the solution of the extremum problenYy ., .; B, ¥) — maxy,, .
Since the first multiplier in (6) does not depend¥n,. ., we come to the unique solution
(4): YTH,ML = H'F~'X = AyX. Using the total mathematical expectation formula and

(4), we find the risk (5)Ry1, = E { (YT+TM _ YT+T> (Vronit, — YT+T)’} _

E{E {(E{Yr | X} - Vo) (B{Y74 | X} = Y7 ) [ X } ] =
E {cov{Yri,,YVr .| X1} =E{G - H'F'H}=G - H'F'H.O

Theorem 2 Let the model (1) and the assumption A3 take placds, If are unknown,
|F'| # 0, then the ML-forecast df, . has the “plug-in” form:

57T+T,ML = Ao (Ba E)X7 (7)

where the ML-estimator8, ¥ of the model parameters are the solution of the minimiza-
tion problem:(;(B,Y) = X'F'X + n|F|+ In|G — H'F'H| - mingy .

Proof. According to the equation (6), the joint ML-estimatorsef, ., B, Y are the
solution of the extremum problen(Yr,,; B,3) — maxy,,  pyx. From Theorem 1 we
get (7), where the ML-estimatoiB, > of the model parameters are the solution of the
problem: ny (X|0x, F)ng (H'F'X|H'F~'X,G — HF'H) — maxgx. Taking the
logarithm, we come to the statement.

4 “Plug-in” Forecasting in the Case of Unknown B, ¥

Because of computational complexity of the minimization problem in (7), we propose to
construct more suitable estimator fds instead ofA,(B, X) in (7).
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Let us define the minimal admissible observation time for the observed time series
{Y;} To = min {T eN: minm Z?:l OtiOtj > O, minm 23“2711 Ot+1,i0tj > 0}, and ma-

tricesG, G, € R4 for T' > Ty:

G — S Y;tiY;ijtiOtj’ (@ >ij _ = }/t—&—l,i}/i%jot—i-l,iotj,i’j c{l,....d}. (@8

Zj Zthl OtiOtj tT;ll Ot-l—l,iOtj

It follows from the underlying model (1), tha€z| # 0 and the matrice®, G, G, satisfy

the matrix equatiorG;, = BG, consequentlyB = G;G~!. Following the “plug-in”
principle and using the previous equation let us construct a matrix statisfi¢| (# 0):

B=Gy(G) (9)

Putting then the statisticB, G (instead ofB, G) into (3) we get the matrices, H, the
statistic (if || # 0) ) o
AO - H/Fil,

and the “plug-in” forecasting procedure:
YT—&—T,plug—in = AOX

According to Lemma 1, theorems 1 and 2, the performance of the “plug-in” forecast-
ing procedure is determined by the performance of the underlying estimatorsG .
Let us analyze asymptotic propertiés {~ oo) of the proposed estimators (8), (9). De-
note functions#, ¢, € Z, T € N, i,5,i,7 € {1,...,d}) generated by the “missing
patterns”:

T-1 T T -1
) (M) =T 0404005 Opjidy—y - (Z 0401 ) on-/otj/) :
t=1 t=1

tt'=1

T-1 T T-1 -1
@ (D) =T 0404;0p41,6Opjrdi—y - (Z 004 > Otﬂ,yotj/) ,
t=1 t=1

=1
T—1 T—1 T -1
(3) _
Gagarg (L) =T ) 01104000 Opji bty 7 O41,045 Y OwOyyr |,
tt'=1 t=1 t=1

T-1 -1 T-1 -1
(4) _ E : E
Crigil j! (T) =T Ot+1,iOtht’+1,i’Ot’j’6t—t’,r Ot+1,i0tj Ot+1,i’0tj’ )

tt'=1 t=1 t=1

Sy = Vo . Sy oy = V.o -y
KEXZVELARY] ,7,v", J Ty8,7,05] 2,750 J

-1 -1
3) _ .03 (0), (1) (4) Y 1, @)
O A Vi/,j/,i,j(_T) (V'/ SV ) ,O o = U A (7—) <VU Vi' ) 9

—1 —1
O = vy ) (V0)) Cy =0 (1) (VW)

S . i S, I
T7Z7J7Z b2 7 j Z] T7Z7J7Z 7] Z?]7Z 7] ]

and covariances:

iy = BAYaYy — E{Y,Yy}) (Yer Yoy — B{Yir Y )},

gt_t/ﬂvjvllvj/
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) = E{(YuYs; — E{YaVy}) Vi Yoy — B{Yi Yy D)},

gt_t/7i7j7i/7j/

@) = B{(YiersYy — E{Yi1Vi ) YooYy — B{Yu Y D)},

gt—t/7l7j7l/7_j/

@ =BV Yy — B{Yi1Yy ) Yo Yoy — B{Yi0Yey D)}

gt_t/7i7j72/7.7/

The following lemma is straightforward and the proof is omitted.

Lemma 2 Let the model (1) and the assumptions A4, A5 take place. THER-ato the
following asymptotic behavior of the “missing patterng?,} takes place:

T-1

1

T_11-1 =1 Z O141,i040pi Op b4y 7 — VZ»(,%;/M(—T) € [0, 1];
T tt'=1
C(r]fz‘),j,z‘zj’(T) - Cf—f?j,i’,j” ke{1,2,3,4};
(k) _ (k) (3) P) gy
CT,i’,j’,i,j - C—T,i,j,i’7j’? ke {1? 4}7 07—71‘/7‘7‘/"5‘7]‘ - 0_7-7@]‘71‘/7]‘/, T € Z, 1,7,v,] < {1, Ce ,d}

Lemma 3 Let the model (1) and the assumption A2 take place. Then the covariance
E{(YirwiVsy — E{YiuiVii}) Yesw o Yoy — B{Yopw oYy })}
depends functionally on the time momentsthrough their difference — ¢’ only,
E{(YiguiYey — E{YiruiYs}) Yeorw oYy — E{Yypw o Yey})H < /\lt_tllconStz,t’u
wheret, ', u, v’ € Z, A € [0,1), and the relations for covariances take place:

k k 3 2 o
gg,i),?j,m = g(_7)7i7j7i,7j,, ke {1,4}, gii),’j,ﬂ.,j = g(_7)7i7j7i,7j,, T€Zi,5,47,5 €{l,...,d}

Proof. The first statement of this lemma follows from the invariance property (w.r.t. time
t) of the momentsZ, ™. The second statement — from the inequality for powers of
the matrix B (Anderson, 1971):‘(37)2.].‘ < X Const-;;, whered € [0,1), 7 € N,

i,j € {1,...,d}. By replacement of indices one can easy come to the third statement of
lemma.]

Theorem 3 Let the model (1) and the assumptions Al, A4 take place. Then the estimators
(8), (9) are consistent &' — oo:

B —>P B,é —>P G,él —>P Gl.

Proof. The statement follows from the expression (9) for mafsiand the properties of
estimators for covariances (&)1

Next results on asymptotic normality d&f are based on the following central limit
theorem form-dependent random vectors (Shergin, 1976; Maejima, 1978).
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Theorem 4 Let {Zt(T),t =1,2,... ,kT} be a sequence of-dependent random vari-

t=1

ables withE{Zt(T)} = 0forall tandT, kr — oo atT — oo, Sy = SF7 zM),

) = P (Sr < Dyx) be the distribu-

t=1

D2 = E{S2}, Dz = Y E{(Z(T> Fr(z
tion function ofSy, Ar(x) = |Fr(z) — ®(z)|, ®(x) is the standard normal distribution,
<

§(8 2 3(5+2
Vs = ﬁ 1, er = D3*m;° . Suppose that

E{ o

_ 246
D3 =0 D T B{ |27} = 0 08, ke = 0(03), 9 Dy < 1

for large T, 6)er — 0. ThenAy(z) < (1+C|°I|1)S2t+s e73 for all .

Const is a constant) < §

246
} < oo and the following assumptions are satisfied: 2} — oo, 2)

Let a sequence of random vectgrs = (£7;) € R? converges in distribution to random
vectoré = (&) € RY atT — oo. If the covariancesov {¢;,§;} < oo existVi,j €
{1,...,d},thenletus call these covariances as the asymptotic covariances of the sequence
&1, and let us denote them in the following form:

acov{(ﬁT)i , (§T)j} =cov{{, ¢}, .5 €{1,...,d}.

In the same manner define the asymptotic variance and asymptotic mathematical expec-
tation of the sequencg: aE {¢r} = E{¢}, aD {¢r} =D {&} i€ {1,...,d}.

Lemma 4 Let the model (1) and the assumptions A2, A4, A5 take place. THer-ato
the vector, composed of elements of matrig&s (G — G), VT (G*l — G1>, has the
asymptotically normal distribution with zero mean and asymptotic covariances:

acov{ﬁ(é—G)U,\/—<G G)} ngz o (10

acov{ﬁ(é’l—Ch)U \/_<G1 ) } Z 9542]@] 74132/3/7
acov{ﬁ(é—G)ij,\/_(Gl ) ‘/} Z g””,j, ””,],,

wherei, j,7', 7' € {1,...,d}.

Proof. According to the theorem of Shiryaev (1995), a vector has an asymptotically nor-
mal distribution if and only if any linear combination of its elements has an asymptotically
normal distribution. Define the linear combination with arbitrary coefficientss;; € R:

vy (s (- 0),

ij=1 Y

+ By (él - Gl) ) =m(T) +n2(T) + n3(T),

)
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where
i (Ytng)Ytng) —E {KE’””KE”T)}) 01Oy

A +
t=1 i,j=1 Ztl:l OtliOtu'

g (VDY — B{VEDY™ }) OunsOy

T-1
t1=1 Ot1+1,i0t1j

Qi <Yt£‘mT)Ut(jmT) —E {Ytng)Ut(ng)}> OtiOtj

T +
t=1 4,j=1 Ztlzl OtliOtu'

o (Ut(imﬂ}égmﬂ _E { Utng)Y(mT)}) 040y,
> ti21 OniOn;j

j (Ut(imﬂUt(JmT) _E {Utng)U mr) }) 040y
> 21 O0niOn;

B ( t+1,0 U(mT) —E {}Qﬁfi)Utng)D Oy 41,i04;

T-1
t1=1 Ot1+1,i0t1j

+

+

+

@'j (Ut(fsz)Y ) —-E {Ut(ﬁTz)Y(mT }) Ot-i—l,iOtj

+
t1:1 Ot1+1,iOt1j

ﬁ’LJ ( t+1 z (mT) —-E {Ut(-Tsz)U }) Ot+1 zOt]

T-1
t1=1 Otl""l»lotl]

d
s (YysYri — BA{YeiYp:}) Ori0
(T =TS i (Y7 TJZ {OTOTJ}) riOr;
=1 1=1 01Oy

Y, = Y(mT) + U(mT) Y, (m7) Z BsUt 5 UL (mr) _ EzmTJrl BsU,_,,mr € Nis a
parameter of decomposition.

By choosingg =1, kr =T — 1, mp = [T%} , where[-] means integer part,

s (Y;Em:r)}/;(‘m:r) _E {)/t-glmT)}/;J }) OtzOt]

J

ST_ZTZ

T +
= i,j=1 Ztl:l OtliOtlj

ﬁl] < t+1,0 Y(mT) —-E {Y;Eﬁi)y }) Ot+1 zOt]

T-1
t1=1 Otl""l»lotl]
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and using lemmas 2, 3, one can easy verify the assumptions of Theorem 4 and thereby
prove thaty, (T) has the asymptotically normal distribution with zero mean and asymp-
totic variance:

1) (2)
Z Z <aZ]O‘/1J/gszz’j’CTz]z’ ’+a1]ﬁ1]/gﬂ-zjz’ ’Cszz’j’_l_

T=—00 1,i’,5,j'=1

3) 3) (4)
/Bijai/j/gr,i,j,i’,j CT’L] i’ g’ + ﬁl]ﬁl 'J gsz i CT7i,j,i/,j/) :

The convergence in probability of the second and the third terms to zero takes place:
m(T) —T 0, m3(T) —T 0atT — oo.

Then according to the theorem of Shiryaev (1995) the vector, which is composed
of the elements of the matricegl’ (G — G), VT (Gl — G1>, has the asymptotically

normal distribution with zero mean and asymptotic covariances (10).

Theorem 5 Let the model (1) and the assumptions A2, A4, A5 take place. Then at
T — oo the vector, composed of the elements of the mexﬁ&(é — B), has the asymp-
totically normal distribution with zero mean and asymptotic covariances:

"\/T<B B) } Z Z )l’j’x (11)

j

acov {\/T (B - B)

[,I!'=1T1=—00
d
1) (4) (2) (2)
E , szB’k’gfklk' Ok +g7’zlz’ vCrigiy =2 E :Blkgﬂ'klz’ vCraiw |
ke k'=1 k=1

wherei, j, 7', 7" € {1,...,k}.
Proof. Transform the normed deviation using the formula (9):

VT (B=B) =VT (-Gi& (G- 6) 67 + (G- i) 67).
Define the linear combination with arbitrary coefficients € R:

Za”\/_<B B) ﬁialjx

4,j=1 i,j=1

(30(66),(6-0), 6, 360, 6,

k=1

Using Theorem 3, Lemma 4 and the well known theorem on continuous functional trans-
formations of random vectors (Barndorff-Nielsen and Cox, 1989), we come to the asymp-
totic normality of the linear combination with zero mean and asymptotic variance:

aD {\/T zd: o (Zd: D (G-G) (G7),+

ij=1 k=1
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£0-a) )} 5w S 060,

1,5, ,j'= LI'=1T=—00

d

1 1 4 4 2 2

( Z BikBi/k’gg,k):,l,k@l’Cﬁ,k),l,k’,l’ + gg,i),l,z",l’Cﬁ,i),l,z",l’ —2 Z Bikgik);,l,i’,l’Ci,l?;,l,z”,l’) :
k,k'=1 k=1

Thus the vector, composed of the elements of the mazfﬂTX(B — B), has the asymp-

totically normal distribution with zero mean and asymptotic covariances [(11).

5 Numerical Results

To evaluate the performance of the estimators (9), the experiment on the celebrated “Bev-
eridge price index for wheat 1500 — 1869” (Anderson, 1971) was made. The AR(3) model
ISy, 1 = 0.7489y, — 0.3397y; 1 +0.0388y;_o + &, where{¢, } are i.i.d. Gaussian random
variables with zero mean and the varianée= 4,¢t_ = 1,t, = T = 100. This model

was transformed to the 3-variate VAR(1)-model (1) with= (Y}, Y;_1,Y;_2)" € R® and

was considered for the “missing pattern’ = {O,t = [T—‘d} i, i€ {l,...,[(T—

(T—d)y]+1
d)v]}; 1,else}, wherev is a given portion of missing valued, = 3. Dependence of
the sample varianct = ;4 1% S (B} — Byy)? (for 400 Monte-Carlo replica-

tions) for the estimator (9) on the IengIhof observed time series is presented in Figure
1 for different portions of missing values € {0,0.07,0.1}. Also the empirical risk of

forecasting’ = ;% L5400 (580 )1 — yr41)? for the forecastiry = (YT+17plug_in> was
1
evaluated, its dependence on the lerifjtis presented in Figure 2.

0,7
0,6 1
0,5 1
0,4 1
0,3
0,2 1
0,1 1

0 T T T T T 1
5 10 20 30 40 50 60

—— Gamma=0
—— Gamma=0.07
—— Gamma=0.1

Variance

Figure 1: Sample variance of the estimafor
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ﬁ Gamma=0
e - N Gamma=0.1
T
Figure 2: Empirical risk for the foreca®t: ;1 piug-in
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