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Abstract: We discuss the robust estimation of a linear trend if the noise
follows an autoregressive process of first order. We find the ordinary repeated
median to perform well except for negative correlations. In this case it can be
improved by a Prais-Winsten transformation using a robust autocorrelation
estimator.
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1 Introduction

We discuss the robust estimation of a linear trend from a noisy time seriesY1, . . . , Yn of
moderate sizen in the presence of autoregressive disturbances of first order, AR(1), and
irrelevant measurement artifacts (outliers). The model reads

Yt = µ + β(t−m− 1) + εt, t = 1, . . . , n = 2m + 1, (1)

εt = φεt−1 + δt, (2)

whereδt are innovations from a white noise process with zero mean and varianceσ2 > 0.
We center time to interpretµ as the central level and assume stationary errors,|φ| < 1.

The estimation of linear trends in the presence of AR(1) errors has received consid-
erable attention in econometrics. A number of papers compares the efficiencies of the
ordinary least squares (OLS), the generalized least squares (GLS), the first differences
(FD), the Cochrane-Orcutt (CO) and the Prais-Winsten (PW) estimators among others
for estimation of the slopeβ, often under the idealized assumption thatφ is known (see
Krämer, 1980, 1982, Steman and Trenkler, 2000, and the references cited therein). How-
ever, methods based on least squares are highly vulnerable to contamination by outliers.
This makes simple robust alternatives interesting.

Robust fitting of linear trends to data within a moving time window of lengthn has
been investigated recently by Davies, Fried and Gather (2004). In this context, the cen-
tral levelµ and the case of moderaten are of primary interest. Based on a comparison
of robust regression techniques, they find Siegel’s (1982) repeated median (RM) to be
very suitable for automatic estimation of trends because of its robustness, stability and
computational tractability. However, application of the ordinary repeated median means
treating the data as independent, although autocorrelations can cause monotonic data pat-
terns similar to time-varying trends.

We investigate here whether the repeated median can be improved in the presence
of AR(1) noise. One possibility is simultaneous estimation of the autoregressive and the
trend parameters by robust regression. Robust regression techniques for fitting AR models
to data with a constant level have been suggested before by Rousseeuw and Leroy (1987)
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and Meintanis and Donatos (1999). Another approach is preliminary estimation ofφ,
followed by trend estimation from transformed data.

We compare repeated median approaches for robust estimation of linear trends. Sec-
tion 2 reviews least squares techniques and transfers them to repeated median regression.
Section 3 presents a comparison for small samples. Section 4 gives some concluding
remarks.

2 Methods for Linear Trend Estimation

We first review transformations for includingφ in the estimation ofµ andβ. Setting
Y = (Y1, . . . , Yn)′ andε = (ε1, . . . , εn)′, the model equations (1) and (2) can be expressed
in vector form as

Y = µ1 + βJ + ε

ε ∼ N

(
0,

σ2

1− φ2Σ

)

Σ =




1 φ . . . φ2m

φ 1
. ..

...
...

. .. . .. φ
φ2m . . . φ 1


 ,

where1 = (1, . . . , 1)′ is a vector of ones andJ = (−m, . . . , m) are the centered time
points. The inverse correlation matrix isΣ−1 = P ′P /(1− φ2),

P =




√
1− φ2 0 . . . . . . 0
−φ 1 0 . . . 0

0
.. . . .. .. .

...
...

.. . −φ 1 0
0 . . . 0 −φ 1




.

The PW estimator ofµ andβ corresponds to OLS applied to the whitened data

PY = µP 1 + βP J + Pε . (3)

The CO estimator does not make use of the first line ofP , i.e. it uses onlyY2 −
φY1, . . . , Yn − φYn−1, conditioning onY1. The difference between the two estimators
can be supposed to be negligible for largen, but it can be relevant for smalln. If we do
not knowφ we first estimate it and use a two-stage procedure withφ being substituted by
the preliminary estimate in a second step.

Simultaneous estimation ofµ, β andφ is possible by substitutingεt in equation (1) by
its expression (2), andεt−1 in turn by (1). This results in

Yt = µ(1− φ) + β[1 + (t−m− 2)(1− φ)] + φYt−1 + δt , t = 2, . . . , n.
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Settingν = µ(1 − φ) + β andα = β(1 − φ) we get a linear regression model with
autoregressive term conditioning onY1

Yt = ν + α(t−m− 2) + φYt−1 + δt , t = 2, . . . , n. (4)

The original parameters areβ = α/(1 − φ) andµ = (ν − β)/(1 − φ), i.e. there is a
one-to-one correspondence if we restrictφ to (−1, 1).

The FD estimator is based on the common idea to remove non-stationarities by taking
differences. For the model described in (1) and (2), the first differencesZt = Yt − Yt−1

follow a non invertible ARMA(1,1) process

Zt = α + φZt−1 + δt − δt−1 , t = 2, . . . , n.

Estimation ofα andφ usingZ2, . . . , Zn allows to clean the data from the trend and the
autocorrelations. The mean of the differences is rather efficient for estimatingα if φ is
large andn is small (Kr̈amer, 1982). However, the robust analogue, the median of the first
differences, can be improved substantially by the repeated median applied toY1, . . . , Yn

(Fried, 2004). We therefore neglect estimators based on first differences.

2.1 Regression Estimators ofφ

The multiple linear regression model (4) can be fitted to datay2, . . . , yn for simultaneous
estimation ofµ, β andφ, conditioning ony1. Conditional least squares (CLS) minimizes

n∑
t=2

(yt − ν − α(t−m− 2)− φyt−1)
2 .

Solving the normal equations we get simultaneous CLS estimates (SCLS)

ν̂SCLS = yn − φ̂SCLS · y1 + α̂SCLS/2

α̂SCLS =

n∑
t=2

(t−m− 2)(yt − yn − φ̂SCLS(yt−1 − y1))

n∑
t=2

(t−m− 2)(t−m− 1.5)

,

whereyn andy1 are the arithmetic mean ofy2, . . . , yn, andy1, . . . , yn−1, respectively. The
estimate ofφ reads

φ̂SCLS =

n∑
j=2

yj−1




yj − yn −

n∑
t=2

(t−m− 2)(yt − yn)

n∑
t=2

(t−m− 2)(t−m− 1.5)

(j −m− 1.5)




n∑
j=2

yj−1




yj−1 − y1 −

n∑
t=2

(t−m− 2)(yt−1 − y1)

n∑
t=2

(t−m− 2)(t−m− 1.5)

(j −m− 1.5)




,
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where the second terms in the numerator and the denominator are the separately OLS
detrended observationsy2, . . . , yn andy1, . . . , yn−1, respectively. This trend correction
would be missing if we restrictedα to be zero. We note that the resulting estimatesµ̂SCLS

andβ̂SCLS correspond to the CO approach based onφ̂SCLS. This suggests a construction
of PW type estimatorŝµPW−SCLS andβ̂PW−SCLS usingφ̂SCLS.

A related approach is the joint initial detrending ofy1, . . . , yn by OLS, followed by
the estimation ofφ from the residuals and the construction of OLS estimates from the
transformed data (3). We denote the resulting estimators by CO-DLS and PW-DLS.

To derive formulae for simultaneous RM estimators ofν, α andφ we note that each
triple (i, yi−1, yi), (j, yj−1, yj), (k, yk−1, yk), i 6= j 6= k 6= i, corresponds to a unique
solution(νijk, αijk, φijk) of (4) with

φijk =

yk − yi − k − i

j − i
(yj − yi)

yk−1 − yi−1 − k − i

j − i
(yj−1 − yi−1)

whenever the data are in general position. General position here means that no triple of
observations lies on a straight line. This condition avoids zero denominators, and is almost
surely fulfilled if the data come from a continuous distribution. We can drop all triples
for which it is not fulfilled from the calculations otherwise. Again, the second terms in
the numerator and the denominator mean a trend correction and would be missing if the
slope was set to zero. Siegel’s (1982) repeated median in our situation now reads

φ̂SRM = medi=2,...,nmedj 6=imedk 6=i,j

yk − yi − k − i

j − i
(yj − yi)

yk−1 − yi−1 − k − i

j − i
(yj−1 − yi−1)

(5)

α̂SRM = medi=2,...,nmedj 6=i
yi − yj − φ̂SRM(yi−1 − yj−1)

i− j

ν̂SRM = medi=2,...,n

(
yi − α̂SRM(i−m− 2)− φ̂SRM · yi−1

)
.

A drawback of the simultaneous RM is theO(n3) computation time needed by a straight-
forward implementation even if a routine for calculation of the median in linear time is
used.

Since SRM in fact estimateŝφ using a trend correction first, it suggests itself to detrend
all observations applying the ordinary RM, and then to estimateφ from the residualsri,
i = 1, . . . , n, using

φ̂DRM = medi=2,...,nmedj 6=i
ri − rj

ri−1 − rj−1

.

Thereafter we can insert̂φDRM into the equations (5) instead ofφ̂SRM to calculate esti-
matesµ̂DRM andβ̂DRM . This reduces the computation time toO(n2) or less when using
the algorithm by Matousek, Mount and Netanyahu (1998).
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We note that estimators based on (5) are of CO type. We can construct PW analogues
includingy1 in the estimation ofµ andβ setting(i?, y?

i ) to (i− φ̂(i− 1), yi − φ̂yi−1) for

i ∈ {2, . . . , n}, and to
√

1− φ̂2(1, y1) for i = 1:

β̂PW = medi=1,...,nmedj 6=i

y?
i − y?

j

i? − j?
(6)

µ̂PW = medi=1,...,n(y?
i − β̂PW · i?) ,

whereφ̂ can be either chosen aŝφSRM or φ̂DRM .
A difficulty of regression methods is thatφ may be estimated to be larger than one,

corresponding to an explosive behavior. This causes further problems in the subsequent
estimation ofµ andβ. The estimate ofφ needs thus to be restricted artificially by an upper
and lower bound to prevent non-stationary estimates.

2.2 Correlation Estimators of φ

A possible remedy to overcome non-stationary estimates ofφ is to use the fact thatφ =
γ(1)/γ(0) is the lag-one autocorrelation coefficient in the AR(1) model, whereγ(h) is the
lag-h autocovariance. Correlation estimates are usually guaranteed to be at most one in
absolute value. We may then correct the observations for the dependencies and estimate
µ andβ from the transformed data using the CO or the PW approach.

The traditional Yule-Walker (YW) estimator ofφ is the lag-one sample autocorrelation
based on a constant level. The difference to the CLS estimate is that the overall meany
is generally used for centering and that the variability in the denominator is estimated
from all observations. This causes an increased bias toward zero in small samples. To
cope with the trend in the data we can again detrend the data by OLS before calculating a
Yule-Walker estimate from the residualsr1, . . . , rn.

φ̂DY W =

n∑
t=2

rt−1 · rt

n∑
t=1

r2
t

.

Instead of̂φDY W we can use the ordinary sample correlation for(r1, r2), . . . , (rn−1, rn)

φ̂DSC =

n∑
t=2

(rt−1 − r1)(rt − rn)

√√√√
n∑

t=2

(rt−1 − r1)2

n∑
t=2

(rt − rn)2

.

This estimate neglects the fact thatσ is the same forr1, . . . , rn−1 andr2, . . . , rn. It stan-
dardizes by two estimates of the variability based on the first and the lastn− 1 residuals
and also guarantees|φ̂DSC | ≤ 1 because of the Cauchy-Schwarz inequality.
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A highly robust estimation method for the autocovariances and autocorrelations has
been proposed by Ma and Genton (2000). Their SSD method uses

γ(h) =
1

4
[V ar(Yt + Yt−h)− V ar(Yt − Yt−h)] (7)

and estimates these variances byQn of Rousseeuw and Croux (1993). TheQn-scale
estimate is based on an order statistic of all pairwise differences,

Qn(x1, . . . , xn) = cn · {|xi − xj| : 1 ≤ i < j ≤ n}(`) , ` =

(bn/2c+ 1

2

)
.

Qn has a high asymptotic efficiency of 82% and can be computed inO(n log n) time.
The finite sample correctioncn cancels out in the estimation ofφ. We found it superior
to scaleγ̂SSD(1) using the sum of the variances in (7) instead ofγ̂SSD(0). This was also
suggested by Ma and Genton (2000). For robust detrending we apply the ordinary RM
and estimateφ from the residuals. The resulting estimate

φ̂DSSD =
Q2

n−1(r2 + r1, . . . , rn + rn−1)−Q2
n−1(r2 − r1, . . . , rn − rn−1)

Q2
n−1(r2 + r1, . . . , rn + rn−1) + Q2

n−1(r2 − r1, . . . , rn − rn−1)

is guaranteed to lie within[−1, 1]. If less than 25% of the observations in general position
are replaced by outliers, the terms in the numerator and the denominator will neither
become zero nor infinity, guaranteeing an asymptotic breakdown point of 25%. Using
φ̂DSSD we can obtain CO and PW type estimates ofµ andβ via (5) and (6), respectively.

3 Simulations

In the following we perform Monte Carlo experiments to compare the methods introduced
above for a small sample sizen. It is straightforward to check that the estimators are well-
behaved w.r.t. changes of location, scale, or a constant trend, i.e. they possess desirable
equivariance and invariance properties due to the initial detrending in the estimation ofφ.
Hence we restrict the analysis w.l.o.g. toµ = β = 0 andσ2 = 1. To prevent problems
because of non-stationary estimates we set the estimate ofφ to ±0.99 whenever these
bounds are exceeded. We concentrate on the PW type estimators since we found them
to be superior to the CO versions, in particular forµ in case of a large positiveφ. This
verifies the postulation of (Beach and MacKinnon, 1978) also for the methods based on
the RM. The least squares (LS) methods are included just for comparison.

3.1 Gaussian Innovations

We compare the finite sample efficiencies of the methods measured by the mean square
errors for the estimators ofµ, β andφ in the case of Gaussian innovations. We consider
time series of moderate lengthn = 31 and approximate the MSEs as a function ofφ from
10000 time series for eachφ ∈ {−0.9,−0.8, . . . , 0.9}, see Figures 1 and 2.

Figure 1 compares the biases and relative efficiencies for the estimators ofφ. All
methods are biased towards zero, and the biases are increasing in|φ|. DYW is the most
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Figure 1: Bias (left) and finite sample efficiency (right) forφ relative to SCLS (solid):
DCLS (wide-dashed), DYW (narrow–dashed), DSC (dotted), SRM (bold solid), DRM
(bold dashed), DSSD (bold dotted).

biased, followed by the DSSD. For positiveφ, the SRM is similarly biased as the DYW.
For φ close to zero, DYW is the most efficient method, while SCLS and DCLS are more
efficient for|φ| ≥ 0.5. DSC is the best for negativeφ. Among the robust methods, DSSD
is the most efficient, while SRM and DRM are close to each other.

For µ andβ, all methods are unbiased because of the underlying symmetry. There-
fore we only compare the efficiencies relative to the optimal GLS estimator knowingφ in
Figure 2. The PW type LS estimators perform about equally well for negative and mod-
erately large positiveφ. For high positiveφ, the DSC is the most efficient one, followed
by the DCLS. OLS is more efficient than the CO type estimators then, but it is less effi-
cient than the PW methods for large|φ|. See Maeshiro (1976), Chipman (1979), Krämer
(1980, 1982) or Steman and Trenkler (2000) for more information. As opposed to this,
the ordinary RM is more efficient than the RM based PW type estimators for positiveφ
throughout. For negativeφ, the adjusted RM based estimators of both PW and CO type
perform about equally well, but for large positiveφ the SRM and the DRM deteriorate.
This is even more so for the CO versions, and then also happens for the SCLS and, to
a smaller extent, the DCLS. These problems are due to a few estimates ofφ which are
very close to one, resulting in very large errors in the estimation ofµ andβ. See Park and
Mitchell (1980) for a discussion of this phenomenon.

Such problems diminish with increasing sample size. Increasingn to 101 e.g., we
found the CO-DRM to offer more than 60% efficiency forµ if φ = 0.8. Nevertheless, the
ordinary RM stays considerably more efficient than the other RM approaches in case of
positiveφ also for a largern.
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Figure 2: Finite sample efficiency forµ (left) andβ (right) relative to GLS: OLS (dash-
dot), SCLS (solid), DCLS (wide-dashed), DYW (narrow-dashed), DSC (dotted), SRM
(bold solid), DRM (bold dashed), DSSD (bold dotted) and RM (bold dash-dot).

3.2 Heavy Tailed Innovations

We compare the performance of the methods in case of heavy tails, which may gener-
ate so called innovative outliers. We repeat the previous analysis but now generate the
innovations from Student’s t-distribution with 3 degrees of freedom.

Figure 3 compares the biases and the efficiencies for the estimators ofφ. W.r.t. bias,
the main difference to the case of Gaussian innovations is that now DSSD is generally the
least biased. The relative performances of the LS methods are about the same as before
as was to be expected, while the robust methods gain some efficiency. The DRM and the
SRM do so over the whole range ofφ, while for the DSSD this is true only for large|φ|.
The traditional methods perform well in this respect. This corresponds to the fact that
innovative outliers can result in super-efficient estimation ofφ, but not ofµ andβ.

This becomes clear when looking at the efficiencies for estimators ofµ andβ com-
pared to the GLS in Figure 4. Here, the robust approaches are superior, except for very
large positiveφ. The relative performances of the linear methods are again the same as
in the Gaussian case. While the OLS is inferior to the PW estimators based on LS for
large |φ|, the ordinary RM performs best among the robust methods in case ofφ ≥ 0.
The corrections for autocorrelations improve its performance in case ofφ < 0, but these
methods deteriorate in case of high positiveφ. The DSSD is somewhat better in this re-
spect. Again, these problems are larger for the CO type estimators, and they also occur
for the SCLS and to a smaller extent for the DCLS then.

3.3 Patches of Additive Outliers and Shifts

Additive outliers (AOs) and patches of subsequent AOs cause more severe difficulties
in the estimation of time series parameters than innovative outliers do. A related phe-
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Figure 3: Bias (top) and finite sample efficiency (bottom) forφ relative to SCLS (solid)
in case oft3-innovations: DCLS (wide-dashed), DYW (narrow-dashed), DSC (dotted),
SRM (bold solid), DRM (bold dashed), DSSD (bold dotted).
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Figure 4: Finite sample efficiency relative to GLS with knownφ in case oft3-innovations
for µ (left) andβ (right): OLS (dash-dot), SCLS (solid), DCLS (wide-dashed), DYW
(narrow-dashed), DSC (dotted), SRM (bold solid), DRM (bold dashed), DSSD (bold dot-
ted), RM (bold dash-dot).
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nomenon in the extraction of a time-varying trend is the occurrence of a level shift. A
level shift can be considered as a long patch of additive outliers intruding subsequently
into the moving window. To analyze the effects of a long patch of additive outliers gen-
erated e.g. by a level shift, we generate 10000 time series forφ = 0.5 and each number
1, 2, . . . , 10 of subsequent additive outliers of same size 20 at the end of the series.

Figure 5 compares the biases and the root of the mean square errors (RMSEs). In the
estimation ofφ, the bias toward zero of the traditional methods caused by a single AO be-
comes obvious. In case of two or more subsequent AOs these methods become strongly
positively biased, in particular the regression based estimators. The robust methods re-
sist a few outliers well. However, they also slowly deteriorate if the number of outliers
increases. In case of eight outliers they typically estimateφ to be close to one, which
resembles the breakdown point stated above. DSSD is the most stable method, but for
two or more AOs DYW mostly shows a smaller RMSE here due to its smaller variability.

W.r.t. µ andβ, the classical methods show a strongly increasing bias and RMSE for
an increasing number of outliers. The modified LS methods perform even worse than
OLS. For the RM methods, the PW approach seems superior, as was to be expected.
AO patches increase the risk of estimates close to non-stationarity, in particular for the
regression methods. The SRM and even more the DRM deteriorate a lot for the level if
there are at least five or two subsequent AOs, respectively. The DSSD performs better but
it is clearly outperformed by the ordinary RM. This is in agreement with the increased
sensitivity of robust functionals in case of the use of lagged versions of the time series as
regressors noted by Rousseeuw and Leroy (1987) and Meintanis and Donatos (1999).

In the same analysis forφ = −0.5, we found the PW transformed RM methods using
a robust estimator ofφ to be slightly superior to the ordinary RM w.r.t. both bias and
variability up to about seven AOs, with the SRM being best. For eight or more subsequent
AOs, however, the ordinary RM is again best, according to its optimal breakdown point.

4 Conclusions

While ordinary least squares regression can be improved considerably by a Prais-Winsten
transformation if the errors have strong AR(1) autocorrelations, for the repeated median
this is apparently true only for negative correlations. For positive AR-parameter it seems
better not to adjust for the autocorrelations.

Regression based approaches for estimation ofφ have difficulties with positive corre-
lations in samples of moderate size since the estimate may become almost equal to or even
larger than one. Using the Cochrane-Orcutt transformation increases further the subse-
quent problems in the estimation of the trend parameters due to the loss of the information
about the first observation. A correlation based method offers the advantage of stationary
estimates and is easier to calculate than a simultaneous robust regression approach.
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