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Abstract: In this paper we compare three procedures for robust Principal
Components Analysis (PCA). The first method is called ROBPCA (see Hu-
bert et al., 2005). It combines projection pursuit ideas with robust covariance
estimation. The original algorithm for its computation is designed to con-
struct an optimal PCA subspace of a fixed dimensionk. If instead the optimal
PCA subspace is searched within a whole range of dimensionsk, this algo-
rithm is not computationally efficient. Hence we present an adjusted algo-
rithm that yields several PCA models in one single run. A different approach
is the LTS-subspace estimator (see Wolbers, 2002; Maronna, 2005). It seeks
for the subspace that minimizes an objective function based on the squared
orthogonal distances of the observations to this subspace. It can be com-
puted in analogy with the computation of the LTS regression estimator (see
Rousseeuw and Van Driessen, 2000). The three approaches are compared by
means of a simulation study.
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1 Introduction

We compare different procedures for robust Principal Components Analysis (PCA). The
first method ROBPCA (ROBust PCA) (see Hubert et al., 2005) combines projection pur-
suit ideas with the MCD covariance estimator (see Rousseeuw, 1984) and is extremely
suitable for high-dimensional data (when the dimensionp is larger than half the number
of observationsn). In Section 2 we describe two different algorithms for its computa-
tion. The first one corresponds with the original algorithm described in Hubert et al.
(2005). It is used to find the optimal PCA-subspace of a certain fixed dimensionk ¿ p.
Consequently the output only includes thek eigenvectors and eigenvalues of this optimal
k-dimensional subspace. When the PCA results are required for several dimensions, typ-
ically k = 1, . . . , kmax, this algorithm is not very efficient as it needs to run the whole
procedure for eachk. However, some computations are common to all dimensionsk and
thus should not be repeated. This leads to the ROBPCA-kmax algorithm, described in
Section 2.2.

As an alternative to ROBPCA, we also consider the LTS-subspace estimator of Wol-
bers (2002); Maronna (2005) which seeks for a subspace that minimizes an objective
function based on the squared orthogonal distances of the observations. The correspond-
ing algorithm is described in Section 3.

In Section 4 a comparison of the three procedures is made by means of a simulation
study, whereas Section 5 concludes.
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2 The ROBPCA Method

2.1 The Original ROBPCA Algorithm

For a complete description of the ROBPCA method we refer to Hubert et al. (2005). Here,
we only indicate the major steps of the algorithm.

The first step of ROBPCA consists of performing a singular value decomposition of
the data in order to project the observations on the space spanned by themselves. Ifp
is much larger thann this step already yields a huge dimension reduction, whereas no
information is lost.

Then a measure of outlyingness is defined for every sample by projecting all the points
on many univariate directions through two data points. On this line, the standardized
distance of each point to the center of the data is determined. For every observation
the largest distance over all directions is stored which is called the outlyingness. The
h(> n/2) points with smallest outlyingness are then gathered in anh-subsetH0 and their
empirical covariance matrix̂Σ0 is computed. The choice ofh determines the robustness
as well as the efficiency of the method. The largerh is taken, the more accurate ROBPCA
will be, but the less robust. The default value ofh is set equal to 75% of the total number
of observationsn.

As initial robustk-dimensional subspace estimate, ROBPCA considers the subspace
V0 spanned by thek dominant eigenvectors of̂Σ0. Note that the influence function of this
estimator is bounded, as shown in Debruyne and Hubert (2005).

To increase the efficiency a first reweighting is then carried out. All data points which
are close toV0 receive weight 1, whereas the observations far away from it receive zero
weight. More precisely, for each observation its orthogonal distance is computed as

OD(xi) = ‖xi − x̂i,k‖

with x̂i,k the projection ofxi in the subspaceV0. In Hubert et al. (2005) it is argued that the
orthogonal distances to the power2/3 are approximately normally distributedN(µ, σ2).
Consequently, observations with OD smaller than(µ̂ + σ̂Φ−1(0.975))3/2, with µ̂ and σ̂
robust estimates ofµ andσ, are retained and their covariance matrixΣ̂1 is computed. An
improved robust subspace estimate is now obtained as the subspaceV1 spanned by thek
dominant eigenvectors of̂Σ1. Note that this reweighting step is not yet described in the
original paper (Hubert et al., 2005) but now has been added as it turned out to improve
the results.

In the next step all then data points are projected onV1. Within this subspace a
slightly adapted version of the FAST-MCD algorithm (see Rousseeuw and Van Driessen,
1999) is performed in order to find a robust center and a robust covariance estimate of the
projected samples. This means that the algorithm first looks for an optimalh-subsetH1

that contains theh observations of which the determinant of their empirical covariance
matrix is minimal. The center̂µraw and scatter matrix̂Σraw of theseh observations are
calculated. Next, a second reweighting procedure is performed to increase further the
efficiency of the algorithm. Weights are based on the robust distance of every point with
respect toµ̂raw and Σ̂raw. Samples obtain a zero weight if their robust distance is too
large. Regular observation receive weight 1. Finally, the reweighted centerµ̂ and covari-
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ance matrix̂Σ are determined as the classical mean and covariance matrix of the weighted
observations.

The last stage of ROBPCA consists of representingµ̂ andΣ̂ in the originalp-dimensional
data space. The robust principal components then correspond with the eigenvectors ofΣ̂.

Note thatV1, thek-dimensional subspace spanned by the ROBPCA eigenvectors, de-
pends onk through the first reweighting step. Hence,V1 will in general not be nested
into thek + 1-dimensional subspace that is found by applying ROBPCA withk + 1 com-
ponents. Consequently, also the resulting principal components are not subsets of each
other.

2.2 The Adjusted Algorithm for Several Components

When analyzing real data, we usually do not know in advance how many componentsk
we need to select. In Hubert et al. (2005) it was suggested to make a scree plot of the
eigenvalues of̂Σ0, but this is a too rough approximation. A more refined technique is
based on the Predicted Residual Error Sum of Squares (PRESS) value (see Joliffe, 1986),
of which the robust version is defined for a certain dimensionk as in Hubert and Engelen
(2004) and in Engelen and Hubert (2004) :

R-PRESSk =
n∑

j=1

wi‖xj − x̂j,k‖2

Here, the indexj runs over all observations from a test set, andx̂j,k denotes the projection
of test samplexj in thek-dimensional PCA subspace. The weightswi are added to obtain
a robust PRESS-value. For more details see Hubert and Engelen (2004). If a test set is
not available, a cross-validated version of the R-PRESS statistic can also be used. The
optimal number of components is then selected as thek for which the R-PRESS value is
small enough.

One sees from the definition of the R-PRESS value that the ROBPCA algorithm has
to be run for every dimensionk = 1, . . . , kmax. It becomes even worse to compute the
cross-validated R-PRESS as then also every observationi (i = 1, . . . , n) at a time has to
be removed from the data set. This results in a very time consuming approach, especially
for robust resampling algorithms such as ROBPCA.

Therefore we propose the ROBPCA-kmax algorithm as a much faster alternative to
ROBPCA. It proceeds as follows:

1. As the first step of ROBPCA (the singular value decomposition of the data) and
the computation of the outlyingness do not depend onk, we compute it just once.
We obtain again̂Σ0 as the covariance matrix of theh data points with smallest
outlyingness.

2. Then we project the data on thekmax dominant eigenvectors of̂Σ0, perform the first
reweighting based on the orthogonal distances, computeΣ̂1 and defineV1 as the
kmax-dimensional subspace spanned by the dominant eigenvectors ofΣ̂1. Within
this subspace, we compute the MCD estimates of locationµ̂ and covariancêΣ.
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3. The optimal PCA subspace of dimensionk is now defined as the space spanned by
thek dominant eigenvectors of̂Σ.

We see that this approach avoids the computation of the outlyingness and the MCD
covariance matrixkmax times. Moreover, the principal components obtained by applying
ROBPCA-kmax with k components are now a subset of the components that are found by
applying ROBPCA-kmax with more thank components.

In Hubert and Engelen (2004) the ROBPCA-kmax approach is used to obtain a fast
method for the computation of the cross-validated R-PRESS value. The approximate
method then needs e.g. only 19.03 seconds for a data set withn = 100 observations
andp = 500 variables versus 5191.1 seconds for the naive approach, whereas the R-
PRESS curves are very similar. Also robust calibration methods such as robust principal
component regression and robust partial least squares benefit from ROBPCA-kmax as
shown in Engelen and Hubert (2005).

On the other hand, this algorithm has the disadvantage that it computes the MCD
estimator inkmax dimensions. This becomes less precise, less robust and more time con-
suming ifkmax is chosen too large. Of course it depends on the number of observations,
but our experience is that with moderate data sets of sizes up to 100, the differences be-
tween the original ROBPCA algorithm and its adjusted version remain small ifkmax is
at most 10 and if the curse of dimensionality is taken into account, i.e.n/kmax > 5.
This will also be illustrated in Section 4. Moreover in many data sets in chemometrics
and bio-informatics with thousands of variables a small number of components is usually
sufficient to summarize the data well. Hence we always setkmax ≤ 10.

Another disadvantage of ROBPCA-kmax is the estimation of the eigenvalues. The
MCD covariance estimator is always multiplied with a consistency factor, which de-
creases with the dimension. If the optimal subspace has a dimensionkopt, much smaller
thankmax, the estimate is not inflated enough. This affects the robust distances within the
subspace, and consequently the reweighted MCD estimates. Hence, we propose to use
the consistency factor based onkmax/2 components instead of the factor associated with
kmax. But when ROBPCA-kmax is used to compute R-PRESS values, which then allows
to select a certaink, we apply ROBPCA fork components with the consistency factor for
k-dimensional variables.

3 The LTS-subspace Estimator

The LTS-subspace estimator is introduced in Rousseeuw and Leroy (1987) and studied in
Wolbers (2002) and in Maronna (2005). It is based on the connection between classical
PCA and subspace estimation. The subspace spanned by thek first principal components
(the dominant eigenvectors of the empirical covariance matrix of the data) has the property
that it also minimizes the sum of the squared orthogonal distances of the observations to
that subspace. From this point of view, a robust alternative can be found in searching the
h-subset that minimizes the objective function:

h∑
i=1

OD2
(i)
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with OD2
(1) ≤ OD2

(2) ≤ · · · ≤ OD2
(n) the ordered squared orthogonal distances andh

defined as in ROBPCA. The resulting subspace is called the LTS-subspace (of dimension
k). Whenk = p− 1, it coincides with robust orthogonal regression.

For its computation, an algorithm can be developed which is very similar to the FAST-
LTS algorithm to compute the LTS regression estimator (see Rousseeuw and Van Driessen,
2000). It starts by drawing many random(k + 1)-subsets. A classical PCA is performed
on these(k + 1) points and the orthogonal distances of all the observations are calculated
with respect to thisk-dimensional subspace. Then for each subspace theh points with
smallest orthogonal distance are stored, and used to compute the classical PCA subspace
of dimensionk. Next, the orthogonal distances with respect to this subspace are calcu-
lated for all data, and theh points with the smallest orthogonal distance are again retained.
This procedure is guaranteed to converge. The optimalh-subset is then defined as theh-
subset which has the lowest objective function over all the obtainedh-subsets. Finally
classical PCA is performed on this optimalh-subset in order to obtain eigenvectors and
eigenvalues. Remark that several time saving techniques as in the FAST-LTS algorithm
can be included as well, but they will not be discussed here.

4 Simulations

In this section a simulation study is performed to gain insight in the performance of
the three robust methods compared with classical PCA. Also the effect ofkmax on the
ROBPCA-kmax results is studied in more detail.

All the data are generated from the following contamination model :

(1− ε)Np(0, Σ) + εNp(µ̃, Σ) (1)

with ε the percentage outliers included in the data. This means that the bulk of the data is
normally distributed with centerµ = 0 and covariance matrixΣ = diag(10, 8, 2, 1, . . .),
where the dots indicate eigenvalues that are negligibly small anddiag represents a diago-
nal matrix.

By varying the values forε, n, p, k, kmax and µ̃ different simulation settings are
created. Here is an overview of the values assigned to these parameters :

• The data matrix isn = 40 by p = 200, andn = 100 by p = 1000.

• The percentage of outliersε is set to 0%, 10% and20%.

• The quantileh used in all the algorithms is set to roughly0.75n (the default) in
order to obtain an outlier resistance of approximately 25%. As we prefer to use the
sameh value for all algorithms, we takeh = min{[2[(n+kmax +1)/2]−n+2(n−
[(n + kmax + 1)/2])α], n} with α = 0.75, kmax = 8 if n = 40 andkmax = 10 if
n = 100. This formula forh yields an interpolated value between the minimal one
[(n + kmax + 1)/2] if α = 0.5 and the maximal valuen if α = 1. Here, it implies
thath = 32 if n = 40 andh = 77 if n = 100.

• In ROBPCA-kmax, the maximal number of componentskmax is taken as 5 or 8 if
n = 40 and as 7, 10 or 15 ifn = 100. No higher values are considered to avoid the
curse of dimensionality.
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• The number of principal components is chosen ask = 2 andk = 4. Forn = 40,
two components account for 79% of the total variance, whereas four components
explain 92% of the variance. Forn = 100 these percentages are 84%, and 98%
respectively.

• The center of the outliers̃µ is set toµ̃ = (0, 0, 0, 0, 15, 0, . . . , 0)′ to generate orthog-
onal outliers (O.O), and tõµ = (15, 15, 15, 15, 15, 0, . . . , 0)′ to obtain bad leverage
(B.L.) points (with respect to the 2-dimensional and 4-dimensional subspaces).

For every setting we have constructed 100 data sets. We did not take a higher value be-
cause the LTS-estimator is rather computationally intensive, as we will see further on.
To evaluate the simulation results, we have computed the maximal angle between the
space spanned by the estimated principal components andEk, whereEk is the subspace
spanned by thek dominant eigenvectors ofΣ. Thus,Ek = span{e1, . . . , ek} with ej

thejth column ofIp,k (the subscripts indicate the dimensions of the matrix). A measure
to calculate this angle is proposed by Krzanowski (see Krzanowski, 1979) and is called
maxsub(see Hubert et al., 2005). Let the loading matrixPp,k contain the estimated eigen-
vectors columnwise, thenmaxsub is computed as

maxsub= arccos(
√

λk)

whereλk is the smallest eigenvalue ofI ′k,pPp,kP
′
k,pIp,k. It represents the largest angle

between a vector inEk and the vector most parallel to it in the estimated PCA subspace.
To standardize this value, we have divided it byπ

2
. The closer this Krzanowski measure

is to 0, the more accurate the method.
From the simulation results in Tables 1-4, we conclude that at uncontaminated data

both PCA and the three robust methods work well, with (not surprisingly) the best per-
formance achieved by classical PCA. In all situations where outliers were included, we
see that PCA immediately breaks down, whereas ROBPCA always yields very accurate
results and clearly outperforms the two other robust approaches. These robust results in-
dicate that thek-dimensional subspacesV0 andV1 are not influenced by outliers, nor is
the MCD-estimator applied to the projected data inV1.

With 10% contamination, both LTS-subspace and ROBPCA-kmax still attain robust
results, but they break down in some situations withε = 20%. With this large amount of
contamination, we notice for the LTS-subspace estimator a high bias whenn = 40 and
k = 4, but the outliers are no longer a cause for concern whenn = 100.

With ROBPCA-kmax breakdown occurs in several situations where a large value of
kmax is taken (equal to 8 ifn = 40 and to 15 whenn = 100). Whenkmax is small to
moderate, we obtain low values formaxsub. From these results and the very accurate
estimates of ROBPCA-kmax for smallerkmax-values, we can conclude that this method
can be used as a robust alternative for PCA, at least when selectingkmax small enough.

Finally, we compare the mean computation times (in seconds) of the three robust
algorithms (on a Pentium IV with 2.40Ghz). Table 5 shows that their computation time
is comparable in small dimensions, but the LTS-subspace method becomes significantly
slower when the data matrix becomes larger.

Further we notice that ROBPCA is slightly faster than ROBPCA-kmax, which is to be
expected as ROBPCA computes the MCD only in ak-dimensional subspace. However,
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Table 1: The simulation results forn = 40, p = 200 andk = 2.

PCA ROBPCA LTS-subspace ROBPCA-kmax

kmax = 5 kmax = 8
ε = 0% 0.109 0.151 0.151 0.155 0.140
ε = 10% B.L. 0.586 0.143 0.145 0.139 0.136

O.O. 0.913 0.143 0.144 0.151 0.140
ε = 20% B.L. 0.600 0.128 0.227 0.122 0.130

O.O. 0.946 0.128 0.130 0.153 0.158

Table 2: The simulation results forn = 40, p = 200 andk = 4.

PCA ROBPCA LTS-subspace ROBPCA-kmax

kmax = 5 kmax = 8
ε = 0% 0.148 0.182 0.195 0.186 0.1918
ε = 10% B.L. 0.340 0.179 0.229 0.182 0.188

O.O. 0.980 0.181 0.188 0.196 0.206
ε = 20% B.L. 0.399 0.170 0.368 0.170 0.171

O.O. 0.984 0.170 0.480 0.204 0.472

Table 3: The simulation results forn = 100, p = 1000 andk = 2.

PCA ROBPCA LTS-subspace ROBPCA-kmax

kmax = 7 kmax = 10 kmax = 15
ε = 0% 0.061 0.079 0.097 0.069 0.067 0.067
ε = 10% B.L. 0.567 0.078 0.090 0.070 0.069 0.069

O.O. 0.947 0.080 0.089 0.069 0.069 0.069
ε = 20% B.L. 0.575 0.076 0.085 0.070 0.071 0.487

O.O. 0.971 0.076 0.076 0.071 0.074 0.082
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Table 4: The simulation results forn = 100, p = 1000 andk = 4.

PCA ROBPCA LTS-subspace ROBPCA-kmax

kmax = 7 kmax = 10 kmax = 15
ε = 0% 0.047 0.056 0.063 0.057 0.058 0.060
ε = 10% B.L. 0.391 0.054 0.073 0.055 0.056 0.057

O.O. 0.988 0.054 0.058 0.055 0.056 0.057
ε = 20% B.L. 0.392 0.055 0.070 0.055 0.055 0.082

O.O. 0.991 0.055 0.056 0.055 0.059 0.538

when several solutions are required, for example the components fork = 2 andk = 4,
the computation times for ROBPCA need to be cumulated, whereas ROBPCA-kmax yields
those components in one single run of the algorithm.

Table 5: The mean computation time in seconds of ROBPCA, ROBPCA-kmax and the
LTS-subspace.

ROBPCA ROBPCA-kmax LTS-subspace
n = 40, p = 200 k = 2 3.84 kmax = 5 3.99 5.58

k = 4 3.92 kmax = 8 4.32
n = 100, p = 1000 k = 2 4.26 kmax = 7 4.62 19.49

k = 4 4.37 kmax = 10 4.88
kmax = 15 5.35

5 Conclusions

We have shown that the original ROBPCA method is very robust as it can withstand
many types of contamination. To save computation time (for example in order to se-
lect the number of principal components), we have constructed the fast ROBPCA-kmax

method. In our simulations we found that ROBPCA-kmax performs almost as well as the
original ROBPCA algorithm, unlesskmax is set too large. This makes ROBPCA-kmax

a valuable alternative to ROBPCA, especially to compute cross-validated statistics. We
also compared these ROBPCA methods with the LTS-subspace estimator. This method
appears to be less robust in some particular contamination settings, and it requires more
computation time. We thus conclude that ROBPCA and ROBPCA-kmax are more in favor
to use.

The ROBPCA method is available at the website

http://www.wis.kuleuven.ac.be/stat/robust.html
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as part of LIBRA, the Matlab Library for Robust Analysis, (see Verboven and Hubert,
2005). In the future also ROBPCA-kmax will be integrated into this library.
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