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1 Introduction

In many problems concerning statistics of stochastic processes absolute continuity or sin-
gularity of distributions play important role. In case of gaussian processes the reproducing
Hilbert spaces of distributions are used in order to formulate necessary conditions of sin-
gularity and to write down mutual densities of measures under considerations Rozanov
(1968). Moreover, explicit view of orthonormal basis in these spaces are used. In Egorov
(1997) an approach was developed to investigation of structure of the spaceL2(X,µ)
over linear topological spaceX with nongaussian measureµ defined by characteristic
functional. The approach is based onL2 -isomorphismŜ from L(P ) ⊂ L2(X,µ) into
L2(Y, µ̂),whereY = L2(X, γ), γ is an arbitrary fixed gaussian measure andµ̂ is a special
gaussian measure onY defined byµ. So that one can hope for applying some analog of
gaussian constructions to some problems of statistic of nongaussian processes. In present
work we consider a class of nongaussian distributions in the space of nonlinear function-
als associated with processes determined by signed measures defined on function spaces.
These measures are of unbounded variation but their characteristic functional have sim-
ple structure, that allows to carry out exact evaluations. We give some characterization
the reproducing Hilbert space of measureµ̂, and in two special cases we get orthonor-
mal basis of this space. Note that since we deal with functionals of stochastic process
ξ(t) = ξ(t, ω), t ∈ T, ω ∈ (Ω, P ) it is convenient for us to use instead ofP the corre-
sponding distributions in functional spaceX of functionsx(t), t ∈ T, with σ-algebraB
generated by cylindrical sets. In this case we can use the formula

Ef(ξ(·)) =

∫

X

f(x(·))dµξ(x(·)),

whereE be the symbol of mathematical expectation,µξ – the distribution defined by
formulaµξ(A) = P{ξ(·) ∈ A}, A ∈ B.

So, letγ is a Gaussian measure on linear spaceX with zero mean value and covariance
functionalK(ξ, η), ξ, η ∈ X ′. The next two Hilbert spaces (see, for example, Egorov
et al., 1993) are used widely in the theory of Gaussian distributions. The spaceH ≡ Hγ

is the closure of the set of linear functional〈ξ, ·〉 (ξ ∈ X ′) in the spaceL2(X, γ), and
the Hilbert spaceH ⊂ X is dual toH. The spaceH is known as the reproducing Hilbert
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space of the measureµ, andH is called the the Cameron-Martin space. For almost all
x ∈ X the next series is defined:(a, x) =

∑∞
k=1〈ϕk, x〉(a, ek)H, where{ϕk}, {ek},

k = 1, 2, . . . , are orthonormal bases inH andH, respectively, withϕk ∈ X ′ for all k and
〈ϕk, ej〉 = δkj; the functional(a, x) is called measurable linear functional. There exists
an isomorphismT of H into H which assigns a basis{ϕk} to the basis{ek}. So one
have〈ξ, x〉 = (T−1ξ, x) and K(ξ, η) = (ξ, η)H = (T−1ξ, T−1η)H. It is known that
arbitrary functionalf(x) ∈ L2(X, γ) can be presented in the form of functional Fourier –
Hermite series

ϕ(x) =
∞∑

n=0

∑
α∈In

aαHα(x),

aα =
1

n(α)!

∫

X

ϕ(x)Hα(x)dγ(x),

whereHα(x) ≡:
∏n

k=1〈ϕαk
, x〉 :γ denotes the functional Hermite polynomial (Wick’s

monomial). Wick’s monomials form orthogonal basis inL2(X, γ) and can be received by
differentiation the Wick’s exponent

:e〈ξ,x〉:γ= e〈ξ,x〉−1/2K(ξ,ξ) =
∞∑

n=0

1

n!
:〈ξ, x〉n :γ≡ ξ̂(x).

2 Gaussian Constructions Connected with Signed Mea-
sure

A nongaussian signed measureµ which we consider here defined by the characteristic
functional

χµ(ξ) =

∫

X

exp{i〈ξ, x〉}dµ(x) = exp{(−1)p

(2p)!
K2p(ξ,

(2p). . ., ξ)},

whereK2p(ξ,
(2p). . ., ξ) is a symmetric2p-linear form onX ′× (2p). . . ×X ′. The above men-

tioned Gaussian measurêµ on Y with zero average value is defined by its correlation
functional

K̂(f, g) =

∫

X

∫

X

K̂(x1, x2) f(x1)g(x2) dγ(x1) dγ(x2),

where

K̂(x1, x2) =

2p−1∑
r=1

(r! (2p− r)!)−1

∞∑
i1,...,ir=1

j1,...,j2p−r=1

K2p(ϕi1 ,
(r). . ., ϕir ,

ϕj1 ,
(2p−r). . . , ϕj2p−r) :

r∏

l1=1

〈ϕil1
, x1〉 :γ :

2p−r∏

l2=1

〈ϕjl2
, x2〉 :γ .
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Using the properties of Hermite polynomials we get

K̂(Ξ,Ψ) = K2p(ξ1, . . . , ξn, ψ1, . . . , ψm), n+m = 2p, (1)

where Ξ =:
n∏

l=1

〈ξl, x〉 :γ, Ψ =:
m∏

l=1

〈ψl, x〉 :γ, ξl, ψl ∈ X ′; and K̂(Ξ,Ψ) = 0 for

n+m 6= 2p.
Let us defineµ- andµ̂-exponentials

:e〈ξ,x〉 :µ= exp{〈ξ, x〉 − (−1)p

(2p)!
K2p(ξ,

(2p). . ., ξ)}, :e〈
bξ,y〉 :bµ= exp{〈ξ̂, y〉 − 1

2
K̂(ξ̂, ξ̂)}

and consider the map

Ŝ : e〈ξ,x〉 :µ →:e〈
bξ,y〉 :bµ, x ∈ X, y ∈ Y.

The following equality take place

〈Ŝ(:e〈ξ,·〉 :µ), Ŝ(:e〈η,·〉 :µ)〉L2(Y,bµ) = 〈:e〈ξ,·〉 :µ, :e〈η,·〉 :µ〉L2(X,µ). (2)

It can be proved by using explicit form of characteristic functionals of measuresµ and
µ̂. As µ- and µ̂-exponentials are generating functionals of Appel polynomials (Wick’s
polynomials in case of Gaussian measures), by differentiation it is possible to receiveŜ-
images of the relevant polynomials and extendŜ on their linear envelop. The formula (2)
can used to obtain the next equality valid at least for functional polynomials ofx ∈ X

∫

X

f(x) : e〈ξ,x〉 :µdµ(x) =

∫

Y

(Ŝf)(y − abξ)dµ̂(y) =

=

∫

X

Ŝ−1[(Ŝf)(· − abξ)](x)dµ(x),

whereabξ = T̂−1ξ̂ and the map̂T−1 is defined by the kernel̂K(x1, x2).
By virtue of polarization identity for symmetric multilinear forms, it is sufficient to

define correlation functional on functions of the form: 〈ξ, x〉n :γ, n = 1, 2, . . . Therefore,
in what follows we will only consider the linear functionals onY of the form

Ξ ≡ Ξ(x) =
∞∑

n=0

: 〈ξn, x〉n :γ, ξn ∈ X ′, n = 1, 2, . . . (3)

Note thatK̂(Ξ,Ψ) = 0 if the functionalsΞ,Ψ include only Wick’s monomials of
degree≥ 2p, so the summation in (3) is taken overn = 1, 2, . . . , 2p− 1.

Let us define the spacêH = Hbµ. For this goal we define symmetric bilinear form in
Y ′ by equality(Ξ,Ψ) bH = K̂(Ξ,Ψ). Then we denotêHr the linear envelope of functionals

Ξ(x) =: 〈ξr, x〉 :rγ + : 〈ξ2p−r, x〉 :2p−r
γ , r = 1, p, (4)
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where bothξr and ξ2p−r are not equal to zero. The functionals (4) for differentr are
orthogonal inL2(Y, µ̂)-metrics and

(Ξ,Ψ) bH = K(ξr,
(r). . ., ξr, ψ2p−r,

(2p−r). . . , ψ2p−r) +K(ψr,
(r). . ., ψr, ξ2p−r,

(2p−r). . . , ξ2p−r), (5)

‖Ξ‖2
bH ≡

∫

Y

(Ξ, y)2dµ̂(u) = 2K(ξr,
(r). . ., ξr, ξ2p−r,

(2p−r). . . , ξ2p−r). (6)

The bilinear form(Ξ,Ψ) bH doesn’t define a norm inY, because there exist elementsΞ ∈
Y ′ such that‖Ξ‖2

bH < 0. We suppose also that the measureµ̂ is nondegenerate, that is

‖Ξ‖2
bH = 0 only if Ξ = 0. By virtue of nondegeneracy of the norm (6) the spaceĤr can

be presented as orthogonal sum of subspacesĤr+ andĤr− of elements with positive and
negative norm respectively:

Ĥr = Ĥr+ + Ĥr−.

We will use the same notations for completion of these spaces. Because of orthogonality
of functional (4) under differentr, we can define the space:

Ĥ =

p∑
r=1

Ĥr =

p∑
r=1

(Ĥr+ + Ĥr−).

If we obtain orthogonal basis in̂H we can write orthogonal system of Hermite polynomial
in L2(Y, µ̂)-metrics. Note that in fact the spacêH is defined here as linear manifold, and
the question of completion of this space in some topology require special development.

3 Orthonormal Basis in Ĥ

Consider two examples when the basis in the spaceĤr+ ( respectivelyĤr− ) may be
received in explicit form.

1. LetX = C[0, 1] be the space of continuous functions and

K̂2p(ξ1, . . . , ξ2p) =

1∫

0

(2p). . .

1∫

0

min(t1, . . . , t2p)dξ1(t1) . . . dξ2p(t2p)

whereξi(t), i = 1, . . . , 2p, are the functions of bounded variation (see Hochberg, 1978,for
corresponding signed measureµ).

SinceK̂2p(ξ1, . . . , ξ2p) =
1∫
0

ξ1(u) . . . ξ2p(u)du, the equality (5) can be transformed

into

(Ξ,Ψ) bH =

1∫

0

[ξr
r(u)ψ

2p−r
2p−r(u) + ψr

r(u)ξ
2p−r
2p−r(u)]du

Let {αk ≡ αk(t), k = 1, 2, . . .} be orthonormal basis inL2[0, 1]; α
1
r
k = (αk(t))

1
r . Then

the set

A
(r)
k (x) =

1√
2
[: 〈α

1
r
k , x〉r :γ + : 〈α

1
2p−r

k , x〉2p−r :γ], k = 1, 2, . . . , (7)
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is the orthonormal basis in̂Hr+. In fact, substituting (7) into (5), we obtain

(A
(r)
k , A

(r)
j ) bH =

1∫

0

αk(u)αj(u)du = δkj,

∞∑

k=1

(Ξ, A
(r)
k )2 =

∞∑

k=1

(

1∫

0

[ξr
r(u) + ξ2p−r

2p−r(u)]αk(u)du)
2 = ‖ξr

r + ξ2p−r
2p−r‖2

L2[0,1].

Taking into accountξr(u) 6= 0, ξ2p−r 6= 0,
1∫
0

ξ2p
r (u)du < ∞,

1∫
0

ξ
(2p−r)2

2p−r (u)du < ∞, r =

1, p and completeness of{αk(u)}, k = 1, 2, . . . , in L2[0, 1], one gets from these equali-
ties the statement.

2. Now let

K̂2p(ξ1, . . . , ξ2p) =
∞∑

k=1

λk

2p∏

l=1

(ξl, ϕk)Hγ ,

where{ϕk}k=1,2,... is orthonormal basis inHγ and

∑
λk(ξl, ϕk)

4p−2 <∞, l = 1, 2p. (8)

Then we have

(Ξ,Ψ) bH =
∞∑

j=1

λj[(ξr, ϕj)
r
Hγ

(ψ2p−r, ϕj)
2p−r
Hγ

+ (ψr, ϕj)
r
Hγ

(ξ2p−r, ϕj)
2p−r
Hγ

], r = 1, p.

(9)
It is not difficult to verify that the set

A
(r)
k =

1√
2
[: 〈λ−

1
2r

k ϕk, x〉r :γ + : 〈λ−
1

2(2p−r)

k ϕk, x〉2p−r :γ], k = 1, 2, . . . , (10)

is the orthonormal basis in̂Hr+. Really, substituting (10) into (9) we get:

(A
(r)
k1
, A

(r)
k2

) bH =
∞∑

j=1

1

2
λj[(λ

− 1
2r

k1
ϕk1 , ϕj)

r
Hγ

(λ
− 1

2(2p−r)

k2
ϕk2 , ϕj)

2p−r
Hγ

+

+(λ
− 1

2r
k1

ϕk2 , ϕj)Hγ (λ
− 1

2(2p−r)

k2
ϕk1 , ϕj)Hγ ] = δk1k2

∞∑

k=1

(Ξ, A
(r)
k )2

bK =
∞∑

k=1

[(ξr, ϕk)
r
Hγ

+ (ξ2p−r, ϕk)
2p−r
Hγ

]2 <∞

The last inequality is valid due to (8).
Note that basis inĤr− can be obtained by change of sign in front of the second term

in (7) and (10).
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