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1 Introduction

Recently the usage of methods of spectral analysis of stochastic processes and random
fields in many areas of scientific research has been considerably extended. A particular
attention has been focused on methods of spectral analysis of discrete-time stationary
processes and homogeneous fields. There are many monographes and papers which are
devoted to the research in this area: Brillinger (1975); Leonenko and Ivanov (1989);
Skorokhod (1989); Demesh and Chekhmenok (2004b). The most represented topic in the
literature is the spectral analysis of processes and fields with finite second-order moments.
Problems dealing with the research of random processes and fields which do not have
second-order moments have become of particular importance. Especially it concernsα-
stable random processes and fields,0 < α < 2, which do not have second-order moments
and only Gaussian processes and fields(α = 2) have finite variance among them. As
it follows from Zolotarev (1986), in case whereα < 2 there are finite moments only of
orderp, 0 < p < α. Therefore traditional methods cannot be applied for solving practical
problems and the development of a special theory is required.

2 Assumptions and Notation

Let us give our basic notations to be used in the article. Denote byN = {1, 2, ...} the
set of natural numbers,Z = {0,±1,±2, ...} the set of integer numbers,Πn = [−π, π]n,
P n = [−τ1, τ1] × [−τ2, τ2] × ... × [−τn, τn] an integer lattice ofn-dimensional paral-
lelepiped whereτj ∈ N , j = 1, n. T = (T1, ..., Tn) the n-dimensional vector having
Tj = 2τj + 1, j = 1, n; NT = T1 × ... × Tn; < a, b > the inner product of the vectors
a = (a1, ..., an) and b = (b1, ..., bn). The notationT −→ ∞ means thatTj −→ ∞,

j = 1, n, we write‖a‖ = (< a, a >)
1
2 ; the notationxT

∼= yT means thatxT − yT −→ 0

as T −→ ∞; the notationλ(1) 6= λ(2)(mod 2π) whereλ(1) =
(
λ

(1)
1 , λ

(1)
2 , ..., λ(1)

n

)
,

λ(2) =
(
λ

(2)
1 , λ

(2)
2 , ..., λ(2)

n

)
∈ Πn means thatλ(1)

j 6= λ
(2)
j (mod 2π), j = 1, n; the nota-

tion T (1) ≥ T (2) whereT (1) =
(
T

(1)
1 , T

(1)
2 , ..., T (1)

n

)
, T (2) =

(
T

(2)
1 , T

(2)
2 , ..., T (2)

n

)
means

that T (1)
j ≥ T

(2)
j , j = 1, n, the notationT (max) = max

{
T (1), T (2)

}
whereT (1) =
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(
T

(1)
1 , T

(1)
2 , ..., T (1)

n

)
, T (2) =

(
T

(2)
1 , T

(2)
2 , ..., T (2)

n

)
means thatT (max)

j = max
{
T

(1)
j , T

(2)
j

}
,

j = 1, n.
Denote byD (p) =

∫∞
−∞ |u|−1−p (1− cos(u)) du,

F (p, α) =
∫∞
−∞ |u|−1−p

(
1− e−|u|

α
)
du, cα = 1

απ

∫ π
0 |cos(u)|α du, and

k (p, α) =
D (p)

F (p, α) (cα)
p
α

. (1)

Let hT (t), t =
(

t1
τ1
, t2

τ2
, ..., tn

τn

)
, be ann-dimensional data window,

H(T )(λ) =
∑

t∈P n

hT (t)exp(−i < t, λ >), (2)

AT =
[∫

Πn

∣∣∣H(T )(λ)
∣∣∣
α
dλ

]− 1
α

. (3)

Let us consider numerical sequencesMTj
, MTj

∈ N , andLTj
, LTj

∈ N , j = 1, n,

whereMTj
−→ ∞ asTj →∞ but

MTj

Tj
−→ 0 asTj →∞, j = 1, n; LTj

−→ ∞,
MTj

LTj
−→ 0,

LTj

Tj
−→ 0 asTj −→∞ for all j = 1, n. Denote by

MT =
n∏

j=1

MTj
, (4)

LT =
n∏

j=1

LTj
. (5)

Let wT (l) = w
(

l1
MT1

, l2
MT2

, ..., ln
MTn

)
be an-dimensional correlation window,l =

(l1, l2, ..., ln), wherew(x), x ∈ Rn, satisfies the following conditions:

sup
x∈Rn

w(x) = w(0) = 1,

0 ≤ w(x) ≤ 1, x ∈ Rn,

∫

Rn
w2(x)dx <∞, (6)

andWT (ν), ν ∈ Πn, is a nonnegative spectral data window of the form

WT (ν) =
1

(2π)n

MT1∑

l1=−MT1

MT2∑

l2=−MT2

...
MTn∑

ln=−MTn

wT (l)exp(−i < ν, l >), ν ∈ Πn. (7)

Examples of spectral data windows can be found in Brillinger (1975); Trush (1999).
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2.1 Main Results

The definition of a symmetricα-stable random field is due to Nolan (1988). Let0 <
α ≤ 2 andB ⊂ Zn. A complex-valued random fieldX (t) , t ∈ B, is calledα-stable

if for any m ≥ 1, aj ∈ C, t(j) ∈ B, j = 1,m, every linear combination
m∑

j=1
ajX

(
t(j)

)

is a symmetricα-stable random variable. Eachα-stable random fieldX(t), t ∈ B, has
a representation as a stochastic integral: there exists a measurable space(Ω, F, P ) and a
collection{f (t, ·) : t ∈ B} ⊂ Lα (Ω, F, P ) such thatX (t) =

∫
f (t, u) ζ (du). Thenζ is

theα-stable random measure generated byP . A method for constructingζ is described
in Hardin (1982).

Consider a class of symmetricα-stable fields which are called harmonizable random
fields. LetX(t), t ∈ Zn, be a homogeneous symmetricα-stable(0 < α < 2) discrete-
time random field having the spectral representation of the form

X(t) =
∫

Πn
exp(i < t, λ >)dξ(λ)

wheret = (t1, t2, ..., tn), λ = (λ1, λ2, ..., λn), and whereξ(λ) is α-stable random field
with independent increments such that[E|dξ(λ)|p]α

p = C(p, α)ϕ(λ)dλ for p ∈ (0, α).
The constantC(p, α) depends onp andα only, the functionϕ(λ), λ ∈ Rn, is a nonneg-
ative even2π-periodic function in each argument onRn. This function is called spectral
density ofX(t), t ∈ Zn. If α = 2, the fieldX(t), t ∈ Zn, is Gaussian, the functionϕ(λ),
λ ∈ Πn, is the ”usual” spectral density and a standard spectral analysis is then applied. If
0 < α < 2, the functionϕ(λ), λ ∈ Πn, does not represent spectral density in the usual
sense. However, it was shown in Nolan (1988) that for the linear prediction and filtering
the role of this function is quite similar to that played by the spectral density function in
the second-order fields.

Let
{X (t1, t2, ..., tn) , t = (t1, t2, ..., tn) ∈ P n} (8)

beNT observations of the fieldX(t), t ∈ Zn, onP n.
D e f i n i t i o n 1. The statistic

dT (λ) = AT

∑

t∈P n

hT (t)X(t)cos(< t, λ >), λ ∈ Πn, (9)

is called the finite modified Fourier transform of observations (8) of the fieldX(t), t ∈ Zn,
wherehT (t), t ∈ Zn, is ann-dimensional data window andAT is given by (3).

D e f i n i t i o n 2. The statistic

IT (λ) = k(p, α)|dT (λ)|p, λ ∈ Πn, (10)

is called the extended periodogram of observations (8) of the fieldX(t), t ∈ Zn where
dT (λ), λ ∈ Πn, is given by (9) andk(p, α) is defined by (1).

As an estimate of the function[ϕ(λ)]
p
α , λ ∈ Πn, we consider a smoothed periodogram

of the form
f̂T (λ) =

∫

Πn
WT (ν)IT (λ+ ν)dν, λ ∈ Πn, (11)
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whereν = (ν1, ν2, ..., νn), dν = dν1dν2...dνn, and whereIT (λ), λ ∈ Πn, is given by (10)
and the spectral windowWT (ν), ν ∈ Πn, is defined by (7). Let us consider the statistic

ϕ̂T (λ) =
[
f̂T (λ)

]α
p , λ ∈ Πn, (12)

as an estimate of the spectral densityϕ(λ), λ ∈ Πn.
D e f i n i t i o n 3. A set of even2π-periodic in each argument functinsGT (λ), λ ∈

Πn, is called a kernel onΠn if it satisfies the following conditions:
∫

Πn

GT (λ) dλ = 1 for anyT = (T1, T2, ..., Tn), Tj = 1, 2, ...j = 1, n,

∫

Πn\{‖λ‖≤δ}
GT (λ) dλ −→ 0 for any fixedδ ∈ (0, π) asT →∞.

T h e o r e m. Assume that the spectral densityϕ (λ), λ ∈ Πn, of the fieldX (t) , t ∈
Zn, is positive and continuous onΠn. LetWT (ν), ν ∈ Πn, and|HT (λ)|α =

=
∣∣∣ATH

(T ) (λ)
∣∣∣
α
, λ ∈ Πn, be a kernel onΠn whereAT andH(T ) (λ) are defined by (3)

and (2), respectively. Assume also that
∫

Πn

∣∣∣HT

(
λ(1) − µ

)
HT

(
λ(2) − µ

)∣∣∣
α
2 dµ −→

T→∞
0 (13)

for all λ(1), λ(2) ∈ Πn, λ(1) 6= λ(2)(mod 2π). Then

ϕ̂T

(
λ(0)

)
P−→

T→∞
ϕ

(
λ(0)

)
(14)

for all λ(0) ∈ Πn, whereϕ̂T (λ), λ ∈ Πn, is given by (12).

3 Appendix

Proof of Theorem.
Let us consider the mathematical expectation of the estimation (11) and show that

Ef̂T

(
λ(0)

)
−→

[
ϕ

(
λ(0)

)] p
α asT −→ ∞, That is for anyε > 0 there existsT (ε), that∣∣∣∣Ef̂T

(
λ(0)

)
−

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ ≤ ε for all T ≥ T (ε). As it follows from Trush and Orlova

(1994), we have
EIT (λ) = [ψT (λ)]

p
α , λ ∈ Πn, (15)

where
ψT (λ) =

∫

Πn
|HT (ν)|α ϕ (λ+ ν) dν, λ ∈ Πn. (16)

As far as the functionWT (ν), ν ∈ Πn, is a kernel onΠn, then by (15) and (16), we obtain
∣∣∣∣Ef̂T

(
λ(0)

)
−

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ =
∣∣∣∣E

∫

Πn
WT (ν) IT

(
λ(0) + ν

)
dν −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ =
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=
∣∣∣∣
∫

Πn
WT (ν)

[
ψT

(
λ(0) + ν

)] p
α dν −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ =

=
∣∣∣∣
∫

Πn
WT (ν)

[[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

]
dν

∣∣∣∣ ≤

≤
∫

Πn
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν.

Sinceϕ (λ), λ ∈ Πn, is continuous at the pointλ(0), then for allε1 > 0 there existsδ > 0,
such that for anyx, ‖x‖ ≤ δ, it can be written

∣∣∣ϕ
(
λ(0) + x

)
− ϕ

(
λ(0)

)∣∣∣ ≤ ε1. (17)

Therefore, for anyδ1, 0 < δ1 < δ < π,
∫

Πn
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν =

=
∫

‖ν‖≤δ1
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν+

+
∫

Πn\{‖ν‖≤δ1}
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν = A1 + A2,

where
A1 =

∫

‖ν‖≤δ1
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν,

A2 =
∫

Πn\{‖ν‖≤δ1}
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν.

Consider the itemA1. By the inequality

|xq − yq| ≤ q

2
|x− y|

(
xq−1 + yq−1

)
(18)

valid for x, y > 0, q ∈ (0, 1], q ≥ 2, and assumingx = ψT (λ(0) + ν), y = ϕ(λ(0)), q = α
p
,

we obtain

A1 =
∫

‖ν‖≤δ1
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν ≤

≤ max
‖ν‖≤δ1

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣
∫

‖ν‖≤δ1
WT (ν) dν ≤

≤ max
‖ν‖≤δ1

p

2α

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α
−1

+
[
ϕ

(
λ(0)

)] p
α
−1

∣∣∣∣
∣∣∣ψT

(
λ(0) + ν

)
− ϕ

(
λ(0)

)∣∣∣ =

= C1 max
‖ν‖≤δ1

∣∣∣ψT

(
λ(0) + ν

)
− ϕ

(
λ(0)

)∣∣∣ ,

where
C1 = max

ν∈Πn

p

2α

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α
−1

+
[
ϕ

(
λ(0)

)] p
α
−1

∣∣∣∣ <∞. (19)

By (16), we have
max
‖ν‖≤δ1

∣∣∣ψT

(
λ(0) + ν

)
− ϕ

(
λ(0)

)∣∣∣ =
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= max
‖ν‖≤δ1

∣∣∣∣
∫

Πn
|HT (µ)|α ϕ

(
λ(0) + ν + µ

)
dµ− ϕ

(
λ(0)

)∣∣∣∣ ≤

≤ max
‖ν‖≤δ1

∫

Πn
|HT (µ)|α

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ dµ.

For any fixedδ2, 0 < δ2 < δ < π, 0 < δ1 + δ2 < δ, we obtain

max
‖ν‖≤δ1

∫

Πn
|HT (µ)|α

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ dµ =

= max
‖ν‖≤δ1

∫

‖µ‖≤δ2
|HT (µ)|α

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ dµ+

+ max
‖ν‖≤δ1

∫

Πn\{‖µ‖≤δ2}
|HT (µ)|α

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ dµ ≤

≤ max
‖ν‖≤δ1

max
‖µ‖≤δ2

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣
∫

‖µ‖≤δ2
|HT (µ)|α dµ+

+ max
‖ν‖≤δ1

max
µ∈Πn

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣
∫

Πn\{‖µ‖≤δ2}
|HT (µ)|α dµ ≤

≤ max
‖ν‖≤δ1

max
‖µ‖≤δ2

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ +

+ max
‖ν‖≤δ1

max
µ∈Πn

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣
∫

Πn\{‖µ‖≤δ2}
|HT (µ)|α dµ.

By the ineqiality
‖ν + µ‖ ≤ ‖ν‖+ ‖µ‖ ≤ δ1 + δ2 ≤ δ,

and (17),
max
‖ν‖≤δ1

max
‖µ‖≤δ2

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ ≤ ε1. (20)

Since the functionϕ (λ), λ ∈ Πn is bounded onΠn, then

C2 = max
‖ν‖≤δ1

max
µ∈Πn

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣ <∞. (21)

As far as|HT (µ)|α, µ ∈ Πn, is a kernet onΠn, then for a givenε1 there exists a vector
T (1) =

(
T

(1)
1 , T

(1)
2 , ..., T (1)

n

)
, such that for allT ≥ T (1) the inequality

∫
Πn\{‖µ‖≤δ2} |HT (µ)|α dµ ≤ ε1 holds. Then for allT ≥ T (1),

max
‖ν‖≤δ1

max
µ∈Πn

∣∣∣ϕ
(
λ(0) + ν + µ

)
− ϕ

(
λ(0)

)∣∣∣
∫

Πn\{‖µ‖≤δ2}
|HT (µ)|α dµ ≤ C2ε1. (22)

Consider the itemA2.

A2 =
∫

Πn\{‖ν‖≤δ1}
WT (ν)

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ dν ≤

≤ max
ν∈Πn

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣
∫

Πn\‖ν‖≤δ1
WT (ν) dν.
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Since the functionsψT (λ), λ ∈ Πn, andϕ (λ), λ ∈ Πn, are bounded onΠn , then

C3 = max
ν∈Πn

∣∣∣∣
[
ψT

(
λ(0) + ν

)] p
α −

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ <∞. (23)

As far asWT (ν), ν ∈ Πn, is a kernel onΠn, then for a givenε1 there exists a vector
T (2) =

(
T

(2)
1 , T

(2)
2 , ..., T (2)

n

)
such, that for allT ≥ T (2) inequality

∫
Πn\{‖ν‖≤δ1}WT (ν) dν ≤ ε1 holds. Then, for allT ≥ T (2),

A2 ≤ C3ε1. (24)

By (20), (22) and (24) for a givenε1 > 0 there exists the vector
Tmax = max

{
T (1), T (2)

}
, that for allT ≥ Tmax, it can be written

∣∣∣∣Ef̂T

(
λ(0)

)
−

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ = A1+A2 ≤ C1ε1+C1C2ε1+C3ε1 = (C1 + C1C2 + C3) ε1,

whereC1, C2, C3 are given by (19), (21), (23), respectively. Suppose, thatε = ε1
C1+C1C2+C3

then for anyε > 0 there existsT (ε) = Tmax such that for allT ≥ T (ε) inequality∣∣∣∣Ef̂T

(
λ(0)

)
−

[
ϕ

(
λ(0)

)] p
α

∣∣∣∣ ≤ ε holds, i.e.

Ef̂T

(
λ(0)

)
−→
T→∞

[
ϕ

(
λ(0)

)] p
α . (25)

Consider the variance of the estimation (11). We divide the coordinatej of the par-
allelepipedΠn into LTj

equal parts. These partitionings generate the partitioning of the
parallelepipedΠn into LT parts. LetQs be the parallelepiped with numbers and letν(s)

is some point belonging toQs, s = 1, LT .
We have

V arf̂T

(
λ(0)

)
= V ar

(∫

Πn
WT (ν) IT

(
λ(0) + ν

)
dν

)
∼=

∼= V ar




LT∑

s=1

WT

(
ν(s)

)
IT

(
λ(0) + ν(s)

) (2π)n

LT


 =

=
LT∑

s=1

V ar

(
WT

(
ν(s)

)
IT

(
λ(0) + ν(s)

) (2π)n

LT

)
asT →∞. (26)

As it follows from Orlova (1993), we have

V arIT (λ) = V (p, α) [ψT (λ)]
2p
α , λ ∈ Πn, (27)

whereV (p, α) = (k(p,α))2

k(2p,α)
−1 and whereψT (λ), λ ∈ Πn, is given by (16). By substituting

(27) into (26), we can write

V arf̂T

(
λ(0)

) ∼=
(

(2π)n

LT

)2 LT∑

s=1

W 2
T

(
ν(s)

)
V (p, α)

[
ψT

(
λ(0) + ν(s)

)] 2p
α +
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+

(
(2π)n

LT

)2 LT∑

s=1

LT∑

r=1,s 6=r

WT

(
ν(s)

)
WT

(
ν(r)

)
cov

{
IT

(
λ(0) + ν(s)

)
, IT

(
λ(0) + ν(r)

)}
≤

≤ (2π)n

LT

∫

Πn
W 2

T (ν)V (p, α)
[
ψT

(
λ(0) + ν

)] 2p
α dν+

+ max
s,r=1,LT ,s 6=r

cov
{
IT

(
λ(0) + ν(s)

)
, IT

(
λ(0) + ν(r)

)}
×

×
(

(2π)n

LT

)2 LT∑

s=1

LT∑

r=1,s6=r

WT

(
ν(s)

)
WT

(
ν(r)

)
.

Since

V (p, α)
[
ψT

(
λ(0) + ν

)] 2p
α <∞ and

(2π)n

LT

∫

Πn
W 2

T (ν)dν ∼= MT

LT

∫

Rn
w2

T (x)dx

asT −→∞, we have

(2π)n

LT

∫

Πn
W 2

T (ν)V (p, α)
[
ψT

(
λ(0) + ν

)] 2p
α dν = O

(
MT

LT

)
asT −→∞. (28)

by (6) and by the properties of the sequencesLTj
andMTj

, j = 1, n.
Consider

(
(2π)n

LT

)2 LT∑

s=1

LT∑

r=1,s 6=r

WT

(
ν(s)

)
WT

(
ν(r)

)
≤

(
(2π)n

LT

)2 LT∑

s=1

LT∑

r=1

WT

(
ν(s)

)
WT

(
ν(r)

)
=

=


(2π)n

LT

LT∑

s=1

WT (ν(s))




2

∼=
(∫

Πn
WT (ν)dν

)2

= 1 asT −→∞.

As it follows from Demesh and Chekhmenok (2004a), we have

cov
{
IT

(
λ(0) + ν(s)

)
, IT

(
λ(0) + ν(t)

)}
= O

(∫

Πn

∣∣∣HT

(
ν(s) − ν

)
HT

(
ν(r) − ν

)∣∣∣
α
2 dν

)
.

By (28), we then obtain
V arf̂T

(
λ(0)

)
−→
T→∞

0. (29)

To prove (14), we show thatP
(∣∣∣ϕ̂T

(
λ(0)

)
− ϕ

(
λ(0)

)∣∣∣ > a
)
−→ 0 asT −→ ∞ for

anya > 0. Let f
(
λ(0)

)
=

[
ϕ

(
λ(0)

)] p
α . Assuming in the inequality (18)x = f̂T

(
λ(0)

)
,

y = f
(
λ(0)

)
, q = α

p
, we obtain

∣∣∣ϕ̂T

(
λ(0)

)
− ϕ

(
λ(0)

)∣∣∣ =
∣∣∣∣
[
f̂T

(
λ(0)

)]α
p −

[
f

(
λ(0)

)]α
p

∣∣∣∣ ≤

≤ α

2p

∣∣∣f̂T

(
λ(0)

)
− f

(
λ(0)

)∣∣∣
([
f̂T

(
λ(0)

)]α
p
−1

+
[
f

(
λ(0)

)]α
p
−1

)
,

By (25) and (29),E
∣∣∣f̂T

(
λ(0)

)
− f

(
λ(0)

)∣∣∣
2

= Df̂T

(
λ(0)

)
+

(
Ef̂T

(
λ(0)

)
− f

(
λ(0)

))2 →
0 asT −→∞. Therefore



N. Demesh and S. Chekhmenok 99

[
f̂T

(
λ(0)

)]α
p
−1

+
[
f

(
λ(0)

)]α
p
−1 P−→ 2

[
f

(
λ(0)

)]α
p
−1

asT −→∞. Using the Chebyshev
inequality for anya > 0 we have:

P
(∣∣∣ϕ̂T

(
λ(0)

)
− ϕ

(
λ(0)

)∣∣∣ > a
)
≤ Const

E
∣∣∣f̂T

(
λ(0)

)
− f

(
λ(0)

)∣∣∣
2

a2
−→ 0.

asT −→∞. Theorem is proved.
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