AUSTRIAN JOURNAL OF STATISTICS
Volume 34 (2005), Number 2, 91-100

Construction of the Consistent Estimate of the Spectral
Density of a Discrete-Time Homogeneous Stable Random
Fields

Nikolay Demesh and Sergey Chekhmenok
Belarus State University, Minsk

Abstract: In this paper, we construct an estimate of the spectral density of
a discrete-time homogeneous symmetristable random fields usingyr-
periodic spectral windows, and prove its weak consistency.
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1 Introduction

Recently the usage of methods of spectral analysis of stochastic processes and random
fields in many areas of scientific research has been considerably extended. A particular
attention has been focused on methods of spectral analysis of discrete-time stationary
processes and homogeneous fields. There are many monographes and papers which are
devoted to the research in this area: Brillinger (1975); Leonenko and Ivanov (1989);
Skorokhod (1989); Demesh and Chekhmenok (2004b). The most represented topic in the
literature is the spectral analysis of processes and fields with finite second-order moments.
Problems dealing with the research of random processes and fields which do not have
second-order moments have become of particular importance. Especially it coneerns
stable random processes and fiellls; « < 2, which do not have second-order moments

and only Gaussian processes and figlds= 2) have finite variance among them. As

it follows from Zolotarev (1986), in case where < 2 there are finite moments only of
orderp, 0 < p < «. Therefore traditional methods cannot be applied for solving practical
problems and the development of a special theory is required.

2 Assumptions and Notation

Let us give our basic notations to be used in the article. Deno® by {1,2, ...} the
set of natural numbers] = {0, +1, +2, ...} the set of integer numberg" = [—7, 7|",
P" = [—1,71] X [=Te, o] X ... X [=7,,T,] @n integer lattice of.-dimensional paral-
lelepiped wherer; € N, j = 1,n. T = (13,...,1,) the n-dimensional vector having
T; =21+ 1,75 =1,n; Nr =T, x ... x T,,; < a,b > the inner product of the vectors
a = (ay,...,a,) andb = (by,...,b,). The notationI’ — oo means thatl; — oo,

j =1,n,wewrite|a|| = (< a,a >)%; the notationrr = yr means thatr — yr — 0
asT — oo; the notation\) # A2 (mod 27) where \() = ()\gl), AW /\(1)),

“ey n

A2 = (/\52),)\?), )\(2)) e 11" means that\" # A (mod 27), j = T,n; the nota-

ceey n

tion M > 7@ whereT® = (Tfl), él),...,T(l)), T® = (sz),TQ(Q),...,TT(L?)) means

n

that 7V > 7, j = I,n, the notationT ) = maz {TMW,T®} whereT® =
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(T 1( T2 o TD), T = (T, 1, ., T?) means thal )™ = max {1}, T},
] —=
Denote byD (p) = [, |u| "7 (1 — cos(u)) du
}7(p,aﬁ =J

© Nyl VP (1 — e ) du, ey = L [T |cos(u)|* du, and
ar J0

(1)
Let hp(t) (t—l, z, T) be ann-dimensional data window.
Z hp(t)exp(—i < t, X >), (2)
tepm™

Ap =

N H(T)()\)‘adk} B (3)

Let us consider numerical sequendes,, My, € N, andLr,, L, € N, j = 1,n,
whereMT

— o0 asT; — o butMTj — 0asT; —o0,j = 1I,n; Ly; — o0
Af; 0, —jf—>()asT —>C>Of0ra||j—1 n. Denote by
MT = H MT]'7 (4)
j=1
Ly =[] Lx;. (5)
j=1
Let wr(l) = w (zélTl , A}‘T ,M be an-dimensional correlation window, =
(ly,13,...,1,), wherew(x), x € R, satlsfles the following conditions:
sup w(z) = w(0) =1,
rERM
0<w(z)<lzeR"
w?(r)dz < oo, (6)
Rn
andWr (v), v € 11", is a nonnegative spectral data window of the form
1 Mry Mr, M,
Wr(v) =

T oo Y wr(Dexp(—i < vl >),vell”
(2m) hi=—Mp, lo=—Mr,  la=—Mr,

(7)
Examples of spectral data windows can be found in Brillinger (1975); Trush (1999)
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2.1 Main Results

The definition of a symmetrie--stable random field is due to Nolan (1988). llek

a < 2andB C Z". A complex-valued random field (¢),t € B, is calleda-stable

if foranym > 1, a; € C,tY) € B, j = T,m, every linear combinatiory_ a;X (t(j))
j=1

is a symmetricy-stable random variable. Eaehstable random field((¢), t € B, has
a representation as a stochastic integral: there exists a measurabl¢(space) and a
collection{f (¢,-) : t € B} C L*(Q2, F, P) such thatX (t) = [ f (t,u) ( (du). Then( is
the a-stable random measure generatedbyA method for constructing is described
in Hardin (1982).

Consider a class of symmetrestable fields which are called harmonizable random
fields. LetX (¢),t € Z™, be a homogeneous symmetriestable(0 < « < 2) discrete-
time random field having the spectral representation of the form

X(t) = / eap(i < t,\ >)dE(N)

wheret = (1,19, ....,t5), A = (A1, A2, ..., An), @and where£()\) is a-stable random field
with independent increments such tha{d<(\)[P]» = C(p, a)p(A)dA for p € (0, ).
The constant(p, «) depends o anda only, the functionp(A), A € R", is a nonneg-
ative everr-periodic function in each argument @tf. This function is called spectral
density of X (t),t € Z". If a = 2, the field X (¢),t € Z", is Gaussian, the functiop()),
A € 11", is the "usual” spectral density and a standard spectral analysis is then applied. If
0 < a < 2, the functionp(X), A € 11", does not represent spectral density in the usual
sense. However, it was shown in Nolan (1988) that for the linear prediction and filtering
the role of this function is quite similar to that played by the spectral density function in
the second-order fields.
Let
{X (t1,ta, . tn) , t = (t1,ta, ..., 1) € P"} (8)

be N observations of the fiel& (¢),¢ € Z", on P™.
Definition 1. The statistic

dT()\> =Ar Z hT(t)X(t)COS(< t, A >>, A eIl (9)

tepn

is called the finite modified Fourier transform of observations (8) of the Keld, t € 2",
wherehr(t), t € Z", is ann-dimensional data window andr is given by (3)
Definition 2. The statistic

]T()‘) = k‘(p, a/)|dT(/\)|p7 Aell”, (10)

is called the extended periodogram of observations (8) of the K¢td,t € Z" where
dr(X), A € 11", is given by (9) and:(p, «) is defined by (1)

As an estimate of the functiqt;v()\)]g, A € 11", we consider a smoothed periodogram
of the form
Fr) = [ We@)Ir(A+ v)dv, X € 1", (11)
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wherev = (v, vy, ..., 1), dv = dvidvs...dv,, and wherd(\), A € 1", is given by (10)
and the spectral windoW'r(v), v € 11", is defined by (7). Let us consider the statistic

er(N) = [fr V)] Aer, (12)

as an estimate of the spectral densify\), A € I1".
Definition 3. A set of everzr-periodic in each argument functirs; (\), A €
11", is called a kernel onI™ if it satisfies the following conditions:

/GT (N d\=1 foranyT = (T}, Ty, ... T,)). T; = 1,2, ..j = T,
Hn

Gr (\) dA — 0 for any fixed) € (0, 7) asT — oc.
I\ {[[A| <6}

Theorem. Assume that the spectral densjty\), A € 11", of the fieldX (¢),t €
Z", is positive and continuous di*. LetWr (v), v € 11", and|Hr (\)|* =
= ’ATH(T) (A)‘a, A € I, be a kernel o™ where A and H™) ()\) are defined by (3)
and (2), respectively. Assume also that

/ Hy (AY = 1) Hy (X2 = )| du — 0 (13)
o
forall A\, \® e 11", AW £ A2 (mod 2). Then
er (\9) = o (A?) (14)

for all A© ¢ II", where@ (A\), A € 11", is given by (12).

3 Appendix

Proof of Theorem.
Let us consider the mathematical expectation of the estimation (11) and show that

Efr (/\(°)> — [go (A(O))}g asT — oo, That is for anye > 0 there existsl’ (), that

57 () ~ [o (x)]*
(1994), we have

< eforall T > T (¢). As it follows from Trush and Orlova

Elr () = [br (V)] , A € T, (15)
where
vr) = [ [H W e (A +v)dnr e (16)

As far as the functiomV;(v), v € 11", is a kernel oril", then by (15) and (16), we obtain
B (\) = [ (\)]* ’

Wr (v) It ()\(0) + I/) dv — [gp ()\(0)”

:‘E

Hn
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dv.

<o ()~ )

Sincey (M), A € 11, is continuous at the point®), then for alle; > 0 there exist$ > 0,
such that for any, ||z|| < 4, it can be written

o (0 +5) o (49 <. a

Therefore, forany,,0 < 6; < § <,

[
= / Wr (v
llv]|<é1

[vr (X0 +)]

P P
a a

dv =

z/JT )\(0) + 1/)}

- o)
4] - o (o)

o))

dv+

WT (V)

—|—/ dv = Al + A27
I\ {[Jv[|<é1}

where 5 N
= [l W0 (0 ) = o ()
Ar = /H”\{Ilu||§61} Wr ()| [or (A + ”ﬂg G (A(O))ﬁ dv.
Consider the item¥,. By the inequality
27—y < Do =yl (277 +y") (18)
valid for 2,y > 0, ¢ € (0,1], ¢ > 2, and assuming = (A + 1),y = o(A©), ¢ = e,
we obtain
ai= [ W) for (W0 +0)] = [ (1) <
< g |[vr (X0 +0)" = [ OO)]| ) Wr @) <
Ivi<5: 20 [wr (X +v)] T ()] o [or (A9 +v) o (X)] =
= Oy [or (0 4v) =0 (W)
where - -
m [ (O ] 0O e a9

By (16), we have

max |Pr
[[vll<dx




96 Austrian Journal of Statistics, Vol. 34 (2005), No. 2, 91-100

= max /H [Hr ()] @ (A9 + v+ ) dpn — ()\(0))’ <
Sugﬁ%{l/ [He ()| o (X + v+ ) = (AO) | dp.

For any fixedy,, 0 < 9, < 6 < 7,0 < &1 + d2 < J, we obtain

max/ |Hr (1 ‘gp( +V—i-,u) go()\(o)ﬂdu:

l[v[I<é1

= i<, /Hu||<62 [Hr " [0 (X v 4 ) =0 (A) | dut

+ max / H o (At v+ 1) — o (MO du <
]| <61 H"\{||m|g52}| r (1)l ’90( “> ‘P( )‘ P
max max MO 4+ / du+
< s e o 2 ") s, 127 T
+ max max /\()—|—y+ / Ydp <
Ivli<or pelir o b ‘ sy T I

< max max
vl <61 [[pll <62

© ()\(0) + v+ u) - ()\(0)) ’ /Hn\{||u||<62} | Hr (12)|" dype.

go()\(o)—iru—iru)—go()\o))‘—l—

+ max max
llv[|<o1 pell™

By the ineqiality
v+ pll < (vl + llull < 01+ 62 <6,

and (17),
(0) _ )] <
max max o (X0 +v4u) =0 ()] < e (20)
Since the functiorp (\), A € 11" is bounded o™, then

o (A0 v+ ) — o (\V)] < o0, (21)

Cy = max max
V]| <6y peTm

As far as|Hr (u)|*, u € 11", is a kernet ofl™, then for a giver, there exists a vector
TW = (Tfl),TQ(”, LT ) such that for all” > 7@ the mequahty
S guy<soy Hr (1)]" dpp < €1 holds. Then for alll” > T

max max
lv]|<81 pell™

P+ ) =0 () gy Vi 09170 < G (22

Consider the itemd,.

A= fagazan T (V>HwT (A0 +v)]" = [ (O)]"|dv <
<o (0 ] = Lo QONF o W 00
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Since the functiongr (A), A € I, andy (\), A € 11", are bounded ofl" , then

x| [er (X +0)]" = [ (V)]

C3 = max
As far asWy (v), v € 11", is a kernel ofi1", then for a giver; there exists a vector
T® = (Tl(Q), T, . TT(LZ)) such, that for all” > 7 inequality
o\ gwj<sny Wr (v) dv < e holds. Then, for all” > 7)

ye
«

Qs

< 00. (23)

A2 S 0361. (24)

By (20), (22) and (24) for a givesy > 0 there exists the vector
Trnas = MaAT {T(l), T<2)}, that for allT” > T.,,..., it can be written

B (X) = [ (1)

whereC', Cy, C3 are given by (19), (21), (23), respectively. Suppose, etham
then for anye > 0 there existsl' (¢) = T, such that for alll' > T (¢) inequality

Efr (A) = [ (\0)]*] < e holds,ie.

ya
a

= Al —|—A2 S 0161 +0102€1 +Cg€1 = (Cl -+ 0102 -+ Cg) €1,

P
«a

Efr (N0) ;= [# (A7)

—0Q0

(25)

Consider the variance of the estimation (11). We divide the coordjnateéhe par-

allelepipedII” into Ly, equal parts. These partitionings generate the partitioning of the

parallelepipedI” into L, parts. LetQ), be the parallelepiped with numbeand lety ()
is some point belonging 1@,, s = 1, L.
We have

Vm’j?T (/\(0)) = Var ( - Wr (v) It ()\(0) + 1/) dy) o

=~ Var (i Wr (V(S)) Ir ()\(0) + V(S)) (2[/7;)n) -

s=1

Lp n
=S Var (WT () Ir (A© +0) (2m) ) asT — oo. (26)
s=1 LT
As it follows from Orlova (1993), we have
Varlp(A) = V(p, o) [br (A)] = , A € IT", (27)
whereV (p, a) = % 1 and where);()\), A € II*, is given by (16). By substituting

(27) into (26), we can write

Vs (1) 2 () $5 102 () V) e (404 0]+
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(7 7§§5m<>m<wmwwww>hwww»s

=1r=1,s#

v (NO )] ¥ o+

+ max  cov {IT ()\( + ) S ()\(0) + V(r))} X

=1L, s#r
(Ve & wmen

Since

V(p, @) [wT ( + V)} o < 00 and(;;)n / W2 (v)dy = My /R" wi(x)dx
asT — oo, we have

(27)"
LT I

W2 W)V (p,a) [vor (A0 + y)}% dv =0 (A;; asT —s co.  (28)

by (6) and by the properties of the sequentesand My, j = 1, n.

Consider
()& 2wty () < (L) 5 S o) e o) -

= ((22;)" % WT(;/(S))) 2 o (/nn WT(V)dV)2 =1lasT — oc.

s=1

As it follows from Demesh and Chekhmenok (2004a), we have

o i (X0 +09) (00} =0 (s (49 =) (17 =1)

By (28), we then obtain

gdl/).

VarfT ()\(0)) e 0. (29)

To prove (14), we show tha? (’cﬁ ()\(0)) (A(O))‘ ) — 0asT — oo for

anya > 0. Let f ()\(0>) = [cp (/\(0 )] Assuming in the inequality (18) = fT( )
y=f (/\(0)), ¢ = 2, we obtain

‘@7’ (MO)) _p (Am))‘ _ {AT (“0’)}& B

< g 5 (00) - (O] ([ () [ o)),
t

By (25)and 29)E |7 (\®) — f (\O)[* = Dfr (X)) 4 (Efr (@) — £ (A®))” —
0 asT — oo. Therefore

S
—
~
~

>
—
(en)
=
~—
—
S|
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[fT (A(‘)))] Can [f (/\(0))} Py [f (/\(0))} » "' asT — 0. Using the Chebyshev
inequality for anyaz > 0 we have:

Bl7 () - r ()

a?

p (‘@T ()\(0)) — ()\(O)N > a) < Const

— 0.

asT — oco. Theorem is proved.
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