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Abstract: In hypotheses testing, such as other statistical problems, we may
confrontimprecise concepts. One case is a situation in which both hypotheses
and observations are imprecise.

In this paper, we redefine some concepts about fuzzy hypotheses testing, and
then we give the sequential probability ratio test for fuzzy hypotheses testing
with fuzzy observations. Finally, we give some applied examples.

ZusammenfassungBei Hypothesentests wie auch bei anderen statistischen
Problemen &nnten wir mit unpazisen Konzepten konfrontiert sein. Ein
Beispiel daiir ist die Situation in der beides, Hypothesen und Beobachtun-
gen, unpazise sind.

In diesem Artikel definieren wir einige Konzepte bei unscharfen Hypothesen-
tests neu. Dann geben wir den sequentiellen Wahrscheinlichkeits-Quotienten-
test Uir unscharfes Hypothesentesten mit unscharfen Beobachtungen an. Zum
Schluss @ihren wir einige angewandte Beispiele an.

Keywords: Critical Region, Type | and Il Error Rates, Fuzzy Random Vari-
able.

1 Introduction

Fuzzy set theory is a powerful and known tool for formulation and analysis of imprecise
and subjective situations where exact analysis is either difficult or impossible. Some
methods in descriptive statistics with vague data and some aspects of statistical inference
is proposed in Kruse and Meyer (1987). Fuzzy random variables were introduced by
Kwakernaak (1978), or Puri and Ralescu (1986) as a generalization of compact random
sets, Kruse and Meyer (1987) and were developed by others such as Juninig and Wang
(1989), Ralescu (1995),dpez-0az and Gil (1997), bpez-Daz and Gil (1998), and Liu
(2004).

In this paper, because of our main purpose (statistical inference about a parametric
population with fuzzy data), we only consider and discuss fuzzy random variables asso-
ciated with an ordinary random variable.

Decision making in classical statistical inference is based on crispness of data, ran-
dom variables, exact hypotheses, decision rules and so on. As there are many different
situations in which the above assumptions are rather unrealistic, there have been some
attempts to analyze these situations with fuzzy set theory proposed by Zadeh (1965).

One of the primary purpose of statistical inference is to test hypotheses. In the tradi-
tional approach to hypotheses testing all the concepts are precise and well defined (see,
e.g., Lehmann, 1994, Casella and Berger, 2002, and Shao, 1999). However, if we in-
troduce vagueness into hypotheses, we face quite new and interesting problems. Arnold
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(1996) considered statistical tests under fuzzy constraints on the type | and Il errors. Test-
ing fuzzy hypotheses was discussed by Arnold (1995) and Arnold (1998), Delgado et
al. (1985), Saade and Schwarzlander (1990), Saade (1994), Watanabe and Imaizumi
(1993), Taheri and Behboodian (1999), Taheri and Behboodian (2001), and Taheri and
Behboodian (2002), and Grzegorzewski (2000) and Grzegorzewski (2002). Kruse and
Meyer (1987), Taheri and Behboodian (2002) considered the problem of testing vague
hypotheses in the presence of vague hypothesis. Up to now testing hypotheses with fuzzy
data was considered by Casals et al. (1986), and Son et al. (1992). For more references
about fuzzy testing problem see Taheri (2003). Also, for more details about ordinary
sequential probability ratio test, see e.g. Hogg and Craig (1995) and Mood et al. (1974).

This paper is organized in the following way. In Section 2 we provide some defini-
tions and preliminaries. Fuzzy hypotheses testing is defined in Section 3. The sequential
probability ratio test for fuzzy hypotheses testing with vague data is introduced in Section
4. Finally, some applied examples are given in Section 5.

2 Preliminaries

Let (2, F,P) be a probability space. A random variable (RY)s a measurable function
from (2, F,P) to (R, B, Px), wherePy is the probability measure induced Byand is
called the distribution of the R\, i.e.,

Pe(A) = P(X € A) :/ iP. AcB.
XeA
Using “the change of variable rule”, (see e.qg. Billingsley, 1995, p. 215 and 216, or Shao,
1999, p. 13), we have

PX(A):/AdPoXl(x) :/AdPX(x), AeB.

If Px is dominated by a-finite measure, i.e., Py << v, then using the Radon-Nikodym
theorem, (see e.g. Billingsley, 1995, p. 422 and 423, or Shao, 1999, p. 14), we have

Py(A) = / f(2) dv(z),

where f(x) is the Radon-Nikodym derivative dPx with respect tav and is called the
probability density function (PDF) ok with respect tov.

In statistical texts, the measureis usually a “counting measure” or a “Lebesgue
measure”; henc®y (A) is calculated by~ _, f(z) or [, f(z) dz, respectively.

Let X = {z € R|f(z) > 0}. The setX is usually called “support” or “sample
space” ofX. Arandom vectoX = (Xy,..., X,,) is said a random sample of sizdrom
a population with PDFf(x), if the X's are independent distributed all with POffz)
(X,’s are identically distributed). In this case, we have

fx)=f(x1)-- f(zn), Va;€R,

wherex = (z1,...,z,) is an observed value &.
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In the following we present two definitions from the introduction of Casals et al.
(1986), but in a slightly different way.

Definition 1 A fuzzy sample spac# is a fuzzy partition (Ruspini partition) of’, i.e., a
set of fuzzy subsets ot whose membership functions are Borel measurable and satisfy
the orthogonality constrainds . _ 5 y1z(x) = 1, for eachw € X.

Definition 2 A fuzzy random sample (FRS) of sizeX = (X, ..., X,) associated with
the PDFf(z) is a measurable function frofato X, whose PDF is given by

n

ﬂ%mjw—mX—@—/JL%@ﬁmmmm.

=1

The densityf (x) is often called the fuzzy probability density function.t
The above definition is according to Zadeh (1968). Note that using Fubini’s theorem
(see Billingsley, 1995, p. 233-234), we obtain independency okif i.e.,

f(fla--~ajn): (jl)f(fn)v vjie')ga

)

where

f(i) = /X oy () () ()

andf(l) is the PDF of the fuzzy random variable (FRY), for eachi = 1,...,n. For
eachi, f(z;) really is a PDF onY, because by the orthogonality of the 's, we have

> fa) = 3 [ maledse) doia)

FeX FeX

/facZ (Z,uxl:cz) dv(z;)

T,EX

:Aj@ﬁ@@g:y

Theorem 1If ¢ is a measurable function frodi™ to R, thenY = g(f() is an ordinary
random variable.

Proof: X is a measurable function frofato X andg is a measurable function frosi”
toR. Henceg(X(w)) = goX(w) is a composition of two measurable functions, therefore
is measurable fror to R (see Billingsley, 1995, p. 1821

Note that using Theorem 1, we can define and use all related concepts for ordinary
random variables, such as expectation, variance, etc.

Theorem 2Let X be a fuzzy random sample with fuzzy sample spate andg be a
measurable function frol™ to R. The expectation of(X) is calculated by

ElyX)| = D 9®fx).

xeX™
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Proof: Using the change of variable rule and the Radon-Nikodym theorem, we have

B[o%)] = [ o(X@) dP()
= / g(%X) dPoX (%)

Xxn

=) y®)f(x ..

xEX™

For more details about properties of ordinary RV’'s and their moments see, e.g., Ash
and Doleans-Dade (2000), Billingsley (1995), Chung (2000), Feller (1968), or Ross (2002).

In this paper, we suppose that the PDF of the population is known but it has an un-
known parametef € ©. In this case, we indef by 6 and Writef(fc; 0).

Example 1Let X be a Bernoulli variable with parametgyi.e.,
fz;0)=0"(1—0)'", =01, 0<f<1.
We haveY = {0, 1}. Letz; andz, be two fuzzy subsets of with membership functions

0.9, z=0 0.1, 2=0
“f1<“’>:{0.1 r=1 and “f2(w):{o.9 r=1.

Note that, and, are stated “approximately zero” and “approximately one” values,
respectively. Here, the support &fis X = {7, Z»}. Therefore the PDF oK is

N

Let

Note thatY is a measurable function frodt’ to R and therefore is a classical random
variable. In the following, we calculate the mean and the variangé dthe PDF ofY is

o [09-080, y=0.1
Fr(y;0) = {0.1 1080, y=09.

Therefore, the expectation and the varianc& are

E(Y) = 0.1(0.9 — 0.80) + 0.9(0.1 + 0.86) = 0.18 + 0.646
E(Y?) = 0.01(0.9 — 0.86) + 0.81(0.1 + 0.86) = 0.09 + 0.646
Var(Y) = 0.09 + 0.646 — (0.18 + 0.646) = 0.0576 + 0.40960 — 0.40966> .
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3 Fuzzy Hypotheses Testing

In this section we introduce concepts about fuzzy hypotheses testing (FHT).

Definition 3 Any hypothesis of the form# : 6 is H(#)" is called a fuzzy hypothesis,
where “H : #is H(#)” implies thatd is in a fuzzy set 0, the parameter space, with
membership functiot (), i.e., a function fron® to [0, 1].

Note that the ordinary hypothesi$ : § € O is a fuzzy hypothesis with membership
function H(#) = 1 atd € ©, and zero otherwise, i.e., the indicator function of the crisp
seto.

Example 2 Let 6 be the parameter of a Bernoulli distribution. Consider the following

function:
20, 0<6<1/2

H(6) = {2—29, 1/2<0<1.
The hypothesis H : §is H(0)” is a fuzzy hypothesis and it means thatis approxi-

mately 1/2”.
In FHT with fuzzy data, the main problem is testing

H, 0is Ho((g)
{H1 . 0is Hy(6) (1)

according to a fuzzy random sam@e = (X;,...,X,) from a parametric fuzzy popu-
lation with PDF f(z; 6). In the following we give some definitions in FHT theory with
fuzzy data.

Definition 4 The normalized membership function &t () is defined by

H*(Q) _ H](Q)

S AN/
j JoH;(0ydo' 7~

providing to [, H;(#) df < co. Replace integration by summation in discrete cases.

Note that the normalized membership function is not necessarily a membership func-
tion, i.e., it may be greater than 1 for some value8.of

In FTH with fuzzy data, like in traditional hypotheses testing, we must give a test
function®(X), which is defined in the following.

Definition 5 Let X be a FRS with PDF (x; 0). ®(X) is called a fuzzy test function, if it
is the probability of rejecting?, providedX = x is observed.

Definition 6 Let the FRVX have PDFf(i; ). UnderH,;(¢), j = 0,1, the weighted
probability density function (WPDF) ok is defined by

fi(@) = /@ HE(0)F(7:6) b

i.e., the expected value ¢f(i; 0) over H(6), j = 0, 1. If X is a fuzzy random sample
from f(-; ), then the joint WPDF oK is
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Remark 1 f;(i) is a PDF, sincg; () is nonnegative and

S 5@ =3 [ meo)
_ /@H;(e) (Zf(f;@)) 6

:/GH;‘(H)d@:l.

Hence,f;(i1, ... ,%,) is also a joint PDF.

Remark 2 If H; is the crisp hypothesisl;, : 6 = 6;, then f;(i) = f(#;6;) and
fj(fl, . ,i’n) = f(i’l, A ,i’n, ej)!j = O, 1.
Definition 7 Let ti)(f() be a fuzzy test function. The probability of type | and Il errors
of ®(X) for the fuzzy testing problem (1) is defined by, = E,[®(X)] and 8; =
1 — E,[®(X)], respectively, wher&,;[®(X)] is the expected value @f(X) over the joint
WPDF f;(%), j = 0, 1.
Note that in the case of testing a simple crisp hypothesis against simple crisp alterna-
tive, i.e.,
H() . 9 = 90
{ H1 . 9 = 91

and for crisp observations, the above definitiongfandj; gives the classical probability
of errors.

Regarding to definitions of error sizes, it is concluded that fuzzy hypotheses testing
(1) is equivalent to the following ordinary hypotheses testing

Hg: X ~ fo
{H13XNJC1 ©)

Definition 8 A fuzzy testing problem with a test functiahis said to be a test of (signifi-
cance) levet, if oz < «, wherea € [0, 1]. We callag the size ofd.

4 Sequential Probability Ratio Test for FHT

In this section, first, we define the sequential probability ratio test(SPRT) for the ordi-
nary simple hypotheses testing with crisp observations and then concerning Section 3, we
extend the SPRT to the FHT with fuzzy observations.

Consider testing a simple null hypothesis against a simple alternative hypothesis. In
other words, suppose a sample can be drawn from one of two known distributions and it
Is desired to test that the sample came from one distribution against the possibility that it
came from the other. IK;, X5, - - - denote the iid RV’s, we want to teéf, : X; ~ fo(+)
versusH; : X; ~ fi(-). For a sample of sizen, the Neyman-Pearson criterion rejects
Hy if R, (x) = Lo(x)/L1(x) < k, for some constant > 0, wherex = (z1,..., %),
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Li(x) = [I:%, fi(z;), 7 = 0,1. Compute sequentialli;, R,, .... For fixedk, andk,
satisfying0 < ko < ky, adopt the following procedure: Take observatigrand compute
Ry if Ry < kg, rejectHy; if Ry > kq, acceptHy; and ifky < Ry < ki, take observation
x9, and computeRy; if Ry < kg, rejectHy; if Ry > ky, acceptHy; and ifky < Ry < ky,
take observatiorr;, etc. The idea is to continue sampling as longkgs< R; < k;
and stop as soon a3,, < ko or R,, > ki, rejectingH, if R,, < ko and accepting
Hy if R,, > ki. The critical region of the described sequential test can be defined as
C =2, C,, where
= {(xl,...,xn)|k;0 < Rj([)’}l,...,l'j) < l{il, 7=1,...,n—1, Rn(l'l,...,l’n) < l{}o}

Similarly, the acceptance region can be defined as| J.~, A,, where

An = {(ZEh...,ZL'n)“CO < Rj(l‘l,...,l’j) < k’17 j = 1,...,72—]_, Rn<l’1,...,$n) Z k’l}
Definition 9 For fixedky, andk,, a test as described above is defined to be a sequential
probability ratio test (SPRT). Therefore for the SPRT, the probability of type | and Il errors
is calculated byy = 37 | [ Lo(x) dx,andB = 3_7° | [, Li(x) dx, respectively.

In the following, we brlefly state some results about the classmal SPRT without proofs.
For more details see Mood et al. (1974) or Hogg and Craig (1995).

Let ky andk; be defined so that the SPRT has fixed probabilities of type | and Il errors
a andg. Thenk, andk; can be approximated by, = /(1 — ) andk] = (1 — «) /13,
respectively. Ifa’ and 3" are the error sizes of the SPRT defined Agyand k;, then
o+ 0 <a+p.

If z; = log(fo(x;)/f1(z;)), an equivalent test to the SPRT is given by the following:
continue sampling as long asg(ky) < > ", z < log(ki), and stop sampling when
Yo,z < log(ko) (and rejectH,) or " | z; > log(k;) (and accept)).

Let N be the RV denoting the sample size of the SPRT. The SPRT with error sizes
a and minimizes bothE[N|H, true] andE[/N|H; true] among all tests (sequential or
not) which satisfy

P(H, rejected H true) < «, and P(H, acceptedH, false) < (3.

Using Wald’s equation we obtaltl N| = E[Z,+- - -+ Zy]/E[Z1]. BUtE[Z1+- - -+ Zy] =
plog(ko) + (1 — p)log(ky), wherep = P(rejectH,). Hence,

alogla/(1 - f)] + (1 — a)log|(1 — a)/f]
E[Z1’H0 trud ’
p)logla/(1 — )] + Blog|(1 — @)/ 6]
E[Z,|H, true]

E[N|H, true] ~

1 —
E[N|H, trug ~ .

Now, we are ready to state the SPRT for fuzzy hypotheses testing with vague data.

Definition 10 Let X1, X,,... be an iid sequence of FRV's from a population with PDF
f(+;0). We propose to consider testing

Hy: X~ fo
Hy: X~ fi
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as a SPRT for fuzzy hypotheses testing (1), in whiglt) is the WPDF off (i; ) under
H:(0), j = 0,1 (see Definition 6). Thus, the critical region of the described SPRT for
fuzzy hypotheses testing (1) is definedtas- | J -, C,, where

Co={(F1,...,0n) ko < Rj(Z1,...,%;) <ki,j=1,....,n—=1, Ry(Z1,...,%,) < ko}.

Similarly, the acceptance region can be defined as| .-, A,, where

Ay ={(E1,. .., &)|ko < Rj(Z1,..., %) < ki, j=1,...,n—1, Ry(&1,...,&n) > k1 },

in which

[ Hi)F@soydo /| ie)7(ai0) as

Regarding to the definition of WPDE,, 5 and other related concepts, all results of
the ordinary SPRT are satisfied for this case, of course with the following modifications.
In this case, we have

(0} 1 — s
kl = ® , k/ )
0 1 G ~ 1~ -
H(0)f(X4;0) db
ZZ _log f@ 0( )fN(N ) ) Z:1727
Jo Hy(0)f(X:;0) db
and ~
H(0)f(24;0) dO _
FeX Jo Hi(0) f (7 0) db
Hence,

ag log(ky) + (1 — ag)log(k)
E[Zl|H0 trud

1 — Bg) log(ky) + B log (k1)
E[leHl trUd '

E[N|H, trug ~

E[N|H, trud ~ .

Note thatZ; is an ordinary RV.

5 Some Examples

In this section, we present four important examples to clarify the theoretical discussions
so far.
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Example 3Let X, Xs, ... be a sequence of iid RV’s from Bernou#l, 0 < 6 < 1. We

want to test
HO 10~ 90
Hl (0~ 01

where
H;(0)=60%(1-6), V9e(0,1),7=0,1,forap=7, oy =1/7

according to two fuzzy data (fuzzy subsetsf= {0, 1}) z; andz,;; where their mem-
bership functions are defined by

0.9, 2 =0 0.1, 2=0
Har () =93 01 2 =1 e (®) =94 09 =1,

The normalized membership function &f(0) is
HZ(0) = (a; +2)(a; +1)0% (1 = 0).

If we denote this FRV, its fuzzy observation and its PDEXyz, and f(i; 0), respec-
tively, then using Example 1, we have

o [09-080,F =i
f<x’0)_{0.1+0.89,i::%11.
It is easy to show that
- (026, % =7 o [0609,F =7
Jo(@) = {0.74, i=ip, hi@) = {0.391, i=ip.

Hence, fori = 1,2, ..., we obtain

Zi =

o fol@) [ —0.85114, & = iy

&)\ 0.63794, & =Ty

Assume thatyg = 0.1 andfg = 0.01. Then we obtaidog(k{) = —2.2925, log(k}) =
4.4998, E[Z;|Hy true] = 0.25078, andE|[Z;| H; trug = —0.26891. Hence E[N|H, trug =
15.235, then we take: = 16 andE[N|H, trugl = 8.273, thus we take: = 9.

Example 4Let X, X5, ... be a sequence of iid RV's from a N(c?) population, i.e.

f(z;0) = L exp(—M>, r,u€R, 0>0.

oV 2T 202

We want to test
Hy @ pp~ po
Hy:p=
with membership functions

— )2
HJ(M):GXP<—M>7 j:0717 N6R700>07

2
204
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using the SPRT, according to three fuzzy data (fuzzy subsets$ ef (—oo, +0)) 7,
Z11, andz;;;, where their membership functions are defined by

(@) = 1—e 2 <0
Harl) =3 0., >0,
,u’:iu(m) = €7x2/27 YIS Ru

0, x <0
/’L-'EIII('I) = 1 — e—x2/2 r>0.

The fuzzy subsets;, z;;, andz;;; can be interpreted as the values of “very small”, “near
to zero”, and “very large”.

Note that theu's are measurable and satisfy the orthogonality constraint (see Defini-
tions 1 and 2).

The normalized membership function 8§ (0) is

1 (u—u‘)z) :
H(y) = exp | =) 501, ueR, 05> 0.
](H’) 0_0\/% p( 20_3 J H 0

Denote this FRYV, its fuzzy observation and its PDEbyz, andf(#; 0), respectively. Let
po =0, uy = 1, 0% = 4, ando? = 0.5. It is easy to show that

) 0.3796, & = ; i 0.2907, & = 7;
fo(@) =< 0.2408, & = 7y, fi(@) =< 02339, & = &y
0.3796, = = 171, 04754, 2 = Zyy1 -
Hence, fori = 1,2,..., we get
o 0.2668, T; = 71
2 = log M = 0.0291, &; = @y,
fi(@) —0.2250, & = &1 .
Suppose thaty; = (3 = 0.1. We havelog(k|) = —2.19722, log(k}) = 2.19772,
E[Z;|Hy trug = 0.02287, and E[Z;|H, trug = —0.02261. Thus, E[N|H, true| =

76.815, then in this case, we take = 77 and E[N|H, trug = 77.658, thus we must
taken = 78.

Example 5Let X, X,,... be a sequence of iid RV’s from an Exponential population
with meand, i.e. .
€

f(z;0) = —exp(—z/0) , z,60>0.

9
We want to test
H()Zem 1/2
H120%3/2,

where the membership functioi (¢) and H,(6) are defined by
20, 0<6<1/2 20—2,1<6<3/2

Ho(f)=<2—-20,1/2<6<1 Hi(0) =< 4—-20,3/2<6<2
0, otherwise, 0, otherwise
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using the SPRT, according to three fuzzy data, fuzzy subsets of (0, +o0), %, /7,
andz;;;, where their membership functions are defined by

T 0<gel l—e*, 0<a<1
Mfl<x) = 7 :uin(x): L, I<z<2
0, z=1, e " x> 2

0, O<ar<?2
N@H(x) = l—e 2 1>92.

We can interpret the fuzzy subsets z;;, andz;;; as the values of “near to zero”, “near
to 3/2”, and “very large”. Note that’'s are measurable and satisfy the orthogonality
constraint.

The normalized membership function &f(0) is

H:(0) = 2H;(0), j=0,1.

Denote this FRYV, its fuzzy observation and its PDFbyi, andf(i; 0), respectively.
It can be shown that

) g [1— e OT/f] =
0= 1 g e ] e e
67/_9—‘,-_167(+)/7 :L':.'L‘E}
and hence,
N 0.648, z = z; R 0.328, x = 7y
fo(fﬁ) - 0326, fi’ - Zi']] fl(jj) - 0425, i’ - IINZ']]
0.026, z = zyyy, 0.247, x = Zyyy -
Thus, fori = 1,2, ..., we obtain
: 0.681, #; = i
2 = log {O(Dfl) —{ 0265, 7 =iy
[@) | Z2.951, & = #p01 .

If g = B3 = 0.05 we getlog(kl)) = —2.9444, log (k) = 2.9444, E[Z;| H, trug = 0.296,
andE[Z;|H, trug = —0.445. Hence E[N|H, trug = 8.95, and we therefore take = 9,
whereasi[N|H, trug = 5.95 and we taker = 6.

Example 6Let X be a RV with PDF
flz;0) =20z +2(1—-0)(1—2), O0<z<1l, 0<O<]1.

We want to test
{ Hy:0=~1/4 (0is approximatelyl /4)

Hy:0~3/4 (0isapproximatel\3/4).
where the membership functions are defined as
460,  0<6h<1/4 40 —2,1/2 <0 <3/4

Ho(f) =< 2—40,1/4 <6< 1/2 Hi(0) =< 4—-40,3/4<0<1
0, otherwise, 0, otherwise,
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according to three fuzzy data (fuzzy subsetstof (0, 1)) z;, £;7, andz 7, with mem-
bership functions

(@) = 0.8—08z,0<z<1/2 @)= 02+08z,0<z<1/2
Harlt) =1 0, 1/2<z<1. = 1-08z, 1/2<a<1.
(2) = 0, O0<x<1/2

He\®) = 0.8z, 1/2 <z < 1.

We can interpret the fuzzy subsets z;;, andz;;; as the values of “near to zero”,
“near to 0.5”, and “near to 1”. It is clear that gifs are measurable and satisfy the
orthogonality constraint of Definition 1.

If we denote this FRV, its fuzzy observation and its PDEbyz, andf(i:; 0), respec-
tively, then using Definition 2, we have

B 1 0.467 —0.3330, = = 7;
F@:6) = [ psla) f(a:0) dz = { 0.400. i — i

0 0.13340.33360, x = zy7 -
On the other hand, the normalized membership functiof @9) is

H:(0) = 4H,(6), j=0,1.

It is easy to show that the WPDF's &f are

~ . ) 0.383, 7 = i
fo(@) = | Hg(0)f(z;0) do = { 0.400, T = 24
0 0.217, & = F111
) ! ) 0.217, & = &
Fi@) = [ Hi@)F@s6)ds = 0400, 5 =
0 0.383, x =Zyyr.
Therefore, we get
. 0.570, 7 = 7;
2 = log Ji‘)(gfl) — ¢ 0000, 7 = i
h@) | —0570, 2 = iy .

Let ag = 0.05 and 53 = 0.01. We obtainlog(k)) = —2.9857, log(k}) = 4.5539,
E[Z;|H, trug = 0.095, andE[Z;|H, trugl = —0.095. Hence,E[N|H, trug = 43.968,
and we must take = 44, whereasi[N|H, trug = 30.635, thus we take: = 31.
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