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Abstract: The dispersion parameter of a chi-distributed radial error is of in-
terest in numerous target analysis problems as a measure of weapon-system
accuracy, and it is often of practical importance to estimate it. This paper
presents a few classical estimators including the maximum likelihood esti-
mator, an unbiased estimator and a minimum mean squared error estimator
of this dispersion for both when the origin or “center of impact” is known
or can be assumed as known and when it is unknown. Some families of
shrinkage estimators have also been suggested when a prior point estimate of
the dispersion parameter is available in addition to sample information. The
estimators of circular error probable and spherical error probable have been
obtained as well. A simulation study has been carried out to demonstrate the
performance of the proposed estimators.

Zusammenfassung:Der Dispersionsparameter eines chi-verteilten radialen
Fehlers ist bei Zielanalysen als Maß für die Genauigkeit eines Waffensystems
von Interesse. Daher ist es häufig von praktischer Relevanz, diesen Param-
eter zu scḧatzen. Wir pr̈asentieren klassische Schätzer wie den Maximum-
Likelihood Scḧatzer, einen unverzerrten Schätzer, und den minimalen mit-
tleren quadratischen Fehler Schätzer f̈ur diese Dispersion. Die Schätzer wer-
den f̈ur die Situation betrachtet wenn der Nullpunkt, das Einschusszentrum,
bekannt ist oder dies angenommen wird und wenn er unbekannt ist. Fam-
ilien von Shrinkage-Scḧatzern werden auch vorgeschlagen, falls zusätzlich
zur Stichprobeninformation noch eine vorweg Informationüber die Disper-
sion verf̈ugbar ist. Wir erhalten Schätzungen f̈ur den kreisf̈ormigen und den
kugelfg̈ormigen mutmaßlichen Fehler. Eine Simulationsstudie wird durchge-
führt um die G̈ute der vorgeschlagenen Schätzer zu demonstrieren.

Keywords: Circular Error Probable (CEP), Spherical Error Probable (SEP),
Prior Information, Bias, Mean Squared Error.

1 Introduction

The following two paragraphs are taken from Rizos (1999): The uncertainty in a posi-
tion can be expressed as the probability that the error will not exceed a certain amount.
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Under the assumption that position errors follow a normal distribution, this probability
can be related to the magnitude of the standard deviation. For example, in the case of a
linear (one-dimensional) accuracy measure, one standard deviation or one-sigma would
correspond to a 68.27% confidence interval. That is, it is assumed that the mean of an in-
finitely large sample of position results is the correct result, and the standard deviation of
this sample defines the interval on either side of the mean quantity that contains 68.27%
of all the results. 31.73% of the results will therefore be outside this range, and if the
one-sigma quantity is taken as a measure of accuracy, then 68.27% of the results will be
deemed acceptable and the remainder will be outside the accuracy ‘specification’. The
probabilities of the result being in the interval two-sigma and three-sigma are respectively
95.45% and 99.73% on either side of the mean.

Vertical uncertainty can be expressed in this one-dimensional form. This concept can
be extended to two dimensions, so that areas can be constructed corresponding to distinct
error probabilities such as 50%, 95%, etc. These zones are centered at the correct or true
position. In general these zones are elliptical in shape, and they are known as ‘error el-
lipses’ or ‘error ellipsoids’ depending upon the number of dimensions, see Harvey (1994)
for details. However, traditional navigation users have expressed horizontal position un-
certainties in the form of circles and three dimensional position uncertainties as spheres.
This simplification of the error distribution requires the definition of the radial error or
distance root mean square error, which can be determined as

r =
√

x2
1 + x2

2 + · · ·+ x2
p , (1)

where the componentsxk, k = 1, . . . , p, are independently normally distributed about a
zero mean and all of them reflect the same varianceσ2. Navigation system errors generally
follow a known error distribution. It is well known that(r/σ)2 ∼ χ2
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It follows that(r/σ) ∼ χ distribution, and for the probability density function (pdf) ofr,
which is of primary interest here, we have
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, 0 ≤ r ≤ ∞ . (2)

With reference tofp(r), σ is to be regarded as a parameter of scale or of dispersion. It is
to be noted that the pdffp(r) is the generalization of the circular (two-dimensional) and
the spherical (three-dimensional) normal variables. Their probability density functions
are respectively given by
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A variety of error measures are used in positioning deriving from different positioning
requirements. People are generally most familiar with error measures for a scalar random
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variable. The term Sigma is equivalent to the estimated standard deviation of a variable.
The probability rating varies according to the number of parameters implicit in the vari-
able’s pdf. For example, horizontal positioning involves two parameters- latitude and
longitude. Vertical positioning relies on only the height component of the position, and
therefore only involves one parameter. In navigation and positioning, two-dimensional
distributions are of interest for horizontal positioning. Three-dimensional errors are also
important, although very often the vertical direction has very different performance re-
quirements and is specified separately.

Consider the problem of directing a projectile, such as a missile, at a target. It ob-
viously is of considerable interest to those involved in strategic planning and targeting
to have a measure of the expected accuracy of the projectile. A well known measure of
accuracy is the Circular Error Probability (CEP), which is the numberr such that on av-
erage half of a group of projectiles will fall within the circle of radiusr about the target
point, see Eckler (1988). When missiles are aimed at a target, the deviations along two
orthogonal directions of the impact point from the target center are often assumed to be
distributed according to a bivariate normal distribution. Harter (1960), Lowe (1960) and
Beyer (1966) gave tables of CEP. Additional information on CEP is provided by Groe-
newoud et al. (1967).

CEP refers to latitude and longitude (horizontal) position accuracy. A CEP of 1m
means that the average horizontal position error is 1m. Another way of stating this is the
horizontal position error is less than 1m 50% of the time. Thus CEP refers to the radius
of a circle in which 50% of the values occur, i.e. if a CEP of 1m is quoted then 50% of
absolute horizontal point positions should be within 1m of the true position. Thus, the
CEP is the root of the equationF2(r) = 1/2 and is therefore given by

C = σ

√
2 log 2

log e
= σ

√
2 · 0.301029995

0.434294481
= 1.1774σ , (4)

whereF2(r) = 1 − exp {−(r/σ)2/2} is the cumulative distribution function (cdf) of the
two dimensional radial errorr = (x2

1 + x2
2)

1/2.
Scott (1997) notes that “Often it is useful to characterize navigation accuracy in terms

of spherical errors. In satellite navigation systems such as GPS and GLONASS, horizon-
tal accuracy is usually much better than vertical accuracy because vertical information is
developed from satellites at high elevation angles. Typically, the highest elevation satellite
is only at 45 to 50 degree elevation whereas there are a multitude of satellites at lower ele-
vation angles.” Else, consider the problem of determining an estimate, which may reflect
light on the accuracy of a weapon system directed against an attacking aircraft. Spheri-
cal Error Probability (SEP) is the three-dimensional analogue of the probable error of a
single variate. Just as the probable error measures the half-width of the mean-centered
interval which includes 50 percent of the normal probability mass, the SEP measures the
radius of the mean-centered sphere which includes 50 percent of a trivariate normal prob-
ability mass. SEP refers to latitude, longitude, and height (3D) position accuracy. This
three-dimensional accuracy is commonly referred to as ‘bomb on target’ since it provides
an altitude enhancement over the two-dimensional CEP. Singh (1962) was apparently the
first who used term SEP.
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The cdf of the three-dimensional radial errorr = (x2
1 + x2
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1/2 is

F3(r) =

∫ r

0

f3(u) du =

√
2

π

∫ r

0

u2

σ3
exp

{
−1

2

(u

σ

)2
}

du , (5)

wheref3(u) is given in (3). As discussed in Singh (1970), the transformation(u/σ)2/2 =
t, (u =
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whereI(·, ·) is the incomplete gamma function.
Further substitutingu/σ = x, (u = xσ, du = σ dx), in (5) results in
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whereG(r/σ) = (2π)−1/2
∫ r/σ

0
exp(−x2/2) dx, g (r/σ) = (2π)−1/2 exp (−r2/2σ2), and

H1(r/σ) = r/σ is the Hermite polynomial of the first order.
The cdf can also be expressed as
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whereg(b)(ψ) = dbg(ψ)/dψb. The value ofr/σ for which F3(r) = 1/2 is obtained from
(6) with the help of the tables of standard Gaussian function and found to be 1.5382, as
noted in Singh (1970). Thus the spherical error probability (SEP) is defined as

S = 1.5382σ . (7)

Suppose that the sample is from a population with distribution according to (2). Thus,
observed values ofr are unrestricted so that any non-negative value can be measured.
Cohen (1955) reported the maximum likelihood estimator (MLE) ofσ, defined as

σ̂mle =

√√√√ 1

np

n∑
i=1

r2
i , (8)

wherer2
i , as defined in (1), is thei-th observed squared miss distance.

The relative bias (RB), relative variance (RV) and relative mean squared error (RMSE)
of an estimatort of the parameterσ are defined as

RB(t) =
bias(t)
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σ
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Further, the absolute relative bias (ARB) is

ARB(t) =

∣∣∣∣
bias(t)

σ
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∣∣∣∣
E(t)− σ

σ

∣∣∣∣ .

The formula for ther-th moment about zero (see, e.g., Kotz and Johnson, 1982, p. 439)
for theχp-distributed random variableX is given by

E (Xr) = 2r/2 Γ[(p + r)/2]

Γ(p/2)
. (9)

Sincenpσ̂2
mle/σ

2 ∼ χ2
np, we get(np)1/2σ̂mle/σ ∼ χnp. Now using (9) we have
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2
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)j/2

K(n,p,j) , (10)

whereK(n,p,j) = Γ [(np + j)/2] /Γ(np/2) andj 6= 0 is a real number.
Thus, the RB, RV, and RMSE of̂σmle are given by

RB(σ̂mle) =
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K2

(n,p,1) (12)

RMSE(σ̂mle) = 2

(
1−

√
2

np
K(n,p,1)

)
. (13)

It is clear from the results (4) and (7) that the estimation of CEP and SEP is essentially
the estimation of the dispersion parameter of the radial error in two and three dimensions,
respectively. Substitution ofp = 2 andp = 3 in (8) and using (4) and (7) yield the MLE

Ĉmle = 1.1774

√√√√ 1

2n

n∑
i=1

(x2
1i + x2

2i) (14)

Ŝmle = 1.5382

√√√√ 1

3n

n∑
i=1

(x2
1i + x2

2i + x2
3i) (15)

It is trivial to obtain the RB, RV, and RMSE of̂Cmle andŜmle by puttingp = 2 andp = 3
in (11), (12) and (13).

This paper deals with the problem of estimating the dispersion parameter of a chi-
distributed radial error when the population mean is known and also when it is unknown.
Some classical estimators along with a class of shrinkage type estimators are proposed
with their characteristics in both the cases. The estimators of CEP and SEP are derived.
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2 Estimators Based on Sample Information when the
Center of Impact is Known

Many authors together with Chapman and Robbins (1951) and Cohen Jr. (1955) defined
conventional estimators including the uniformly minimum variance unbiased estimator
(UMVUE), the minimum mean squared error (MMSE) estimator, etc., in a class of in-
variant estimators, viz.

σ̂ = c

√√√√
n∑

i=1

r2
i , (16)

with c being a constant. We define a class of estimators ofσ as

σ̂A = Aσ̂mle , (17)

whereA is a constant to be determined such thatMSE (σ̂A) is minimizedt. It is to be
noted that forA = (np/2)1/2K(n,p,1), (17) reduces to the UMVUE in the class (16) as
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is minimized forA = (2/(np))1/2K(n,p,1). Thus, the resulting MMSE estimator in the
class (17) is
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with

RB (σ̂mms) =
2

np
K2

(n,p,1) − 1 , RMSE (σ̂mms) = 1− 2

np
K2

(n,p,1) . (20)

Substitutingp = 2 andp = 3 in (18) and with (4) and (7), gives unbiased estimators
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which are due to Chapman and Robbins (1951) and Moranda (1959).
Similarly, by virtue of (4), (7), and (19) the MMSE estimators of CEP and SEP are

Ĉmms = 1.1774
K(n,2,1)

n

√√√√1

2

n∑
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(x2
1i + x2

2i) (23)
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(x2
1i + x2

2i + x2
3i) , (24)

which are due to Singh (1992) and Singh and Upadhyaya (2003). Respective RV’s, RB’s,
and RMSE’s can be determined as before.

So far we have discussed the classical estimation procedures that were aimed towards
the use of sample information alone. An attempt may be made to combine the sample
information with other relevant aspects of the problem in order to obtain better estimates.
The prior information of the parameter may provide us with the estimators better than the
classical estimators, if used intelligibly. In certain circumstances, this information may
prove to be an invaluable asset in improving the efficiency of the estimators manifold.

3 Estimators Based on Prior Information when the
Center of Impact is Known

It is well known that the defence and space research organizations keep very up-to-date
and systematic data about the operations related with targeting a missile or a bomb or po-
sitioning of satellites, etc. To test the efficiency of a defence weapon against an air attack
or the efficiency of an aircraft attacking a target on the land or in the sea, observations are
generally recorded in the form of deviations of the impact point from the target center.
Due to this considerable handling of positioning data, one may have a reliable estimate of
the dispersion parameterσ. Generally, this guessed or specified value ofσ, sayσ0, comes
from past experiments about similar situations involving similar parameter.

We define the following class of estimators, viz.

σ̂(α,β) = σ0

[
α + W

(
σ̂unb

σ0

)β
]

, (25)

whereα andβ are real numbers such that0 < α < ∞ andβ 6= 0, W is a constant to be
determined such that
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with λ = σ0/σ, is at its minimum. Using (10) we get

MSE
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)
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which is minimized for
W = (1− αλ)λβ−1W(n,p,β) , (27)

whereW(n,p,β) = Kβ
(n,p,1)K(n,p,β)/K(n,p,2β). As W in (27) is a function of the unknown

parameterσ, therefore replacingσ by its unbiased estimator̂σunb, we get an estimate of
W which now becomes random, as

Ŵ =

{
1− α

σ0

σ̂unb

}(
σ0

σ̂unb

)β−1

W(n,p,β) .

Substitution ofŴ in place ofW in (25) yields a workable form of the estimator as

ˆ̂σ(α,β) = ασ0 + W(n,p,β) (σ̂unb − ασ0)

= ασ0

(
1−W(n,p,β)

)
+ σ̂unbW(n,p,β) , (28)

with

ARB
(
ˆ̂σ(α,β)

)
=

∣∣(αλ− 1)(1−W(n,p,β))
∣∣ (29)

RMSE
(
ˆ̂σ(α,β)

)
= (αλ− 1)2

(
1−W(n,p,β)

)2
+

{
np

2K2
(n,p,1)

− 1

}
W 2

(n,p,β) . (30)

Thus, by virtue of (4), (7), (21), (22), and (28), we define the estimators

ˆ̂
C(α,β) = 1.1774ασ0

(
1−W(n,2,β)

)
+ ĈunbW(n,2,β) (31)

ˆ̂
S(α,β) = 1.5382ασ0

(
1−W(n,3,β)

)
+ ŜunbW(n,3,β) . (32)

Puttingp = 2 andp = 3 in (29) and (30), the ARB’s and RMSE’s ofˆ̂C(α,β) and ˆ̂
S(α,β)

can easily be obtained.
Many estimators can be generated from (28) by substituting different values of(α, β).

The following points are of interest in this regard:

1. It can be easily proved that0 ≤ W(n,p,β) ≤ 1, implying that the suggested estimator
is the convex combination ofασ0 andσ̂unb.

2. The smaller the values ofW(n,p,β) the less biased and more efficient the estimators
are. However,W(n,p,β) is an increasing function inn, i.e.,W(n,p,β) → 1 asn →∞.

3. The proposed estimator boils down to the unbiased estimator forW(n,p,β) = 1.

4. Thus,β may be chosen such that0 < W(n,p,β) < 1, W(n,p,β) → 0, andβ > −np/2.

5. The suggested estimator is not only unbiased but renders maximum gain in effi-
ciency if α = λ−1. Thus,α = 1 represents very strong belief in the guessed value
illustrating thatσ = σ0. Hence, it is recommended to selectα close to1. However,
if σ << σ0, thenα << 1 would give better results, whereas ifσ >> σ0 thenα >> 1
would give certainly good results.

6. The RMSE of the suggested class of estimators (28), or in particular those of (31)
and (32), increases as sample size increases. In other words, the relative efficiency
of these classes of estimators decreases with increasing sample size. Thus, the
proposed classes of estimators give better results for smaller samples.
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3.1 Special Case

For (α, β) = (1, 1), the class (28) reduces to

ˆ̂σ(1,1) = σ0 + W(n,p,1) (σ̂unb − σ0) ,

with W(n,p,1) = 2(np)−1K2
(n,p,1). Putting(α, β) = (1, 1) in (30) gives

RMSE
(
ˆ̂σ(1,1)

)
=

(
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np
K2

(n,p,1)

)[
(1− λ)2

(
1− 2

np
K2

(n,p,1)

)
+

2

np
K2

(n,p,1)

]
.

With (20) it follows that ˆ̂σ(1,1) is more efficient than̂σmms in terms of the RMSE, if

(1− λ)2
(
1− 2K2

(n,p,1)/np
)

+ 2K2
(n,p,1)/np ≤ 1, i.e., if 0 < λ ≤ 2, i.e., if

σ0

2
≤ σ < ∞ ,

which shows that the proposed estimatorˆ̂σ(1,1) is better than the MMSE estimatorσ̂mms

for a wider range ofσ, i.e. forσ ∈ (σ0/2,∞).

4 Estimators Based on Sample Information when the
Center of Impact is Unknown

In case the population mean is not equal to zero, the estimators discussed in Section 1 and
2 would give biased results. Therefore, deviations should be computed from the mean of
the sample so as to minimize the bias. Ifx1, . . . , xp follow a p-variate normal law with
unknown mean (or aim point)(µ1, . . . , µp) and unknown varianceσ2

1 = · · · = σ2
p = σ2,

the MLE ofσ is given by

σ̃mle =

√√√√ 1

np

n∑
i=1

r̈2
i .

wherer̈2
i =

∑p
j=1(xji − x̄j)

2. Sincenpσ̃2
mle/σ

2 ∼ χ2
p(n−1), the variable(np)1/2σ̃mle/σ ∼

χp(n−1).
Now, we define a class of estimators ofσ as

σ̃B = Bσ̃mle , (33)

whereB is a constant to be chosen such thatMSE(σ̃B) is at its minimum. It is to be
noted that forB = (np/2)1/2/K(m,p,1), (33) reduces to the UMVUE in a class of invariant

estimators̈σ = k (
∑n

i=1 r̈2
i )

1/2, k being a constant, as

σ̃unb =
1

K(m,p,1)

√√√√1

2

n∑
i=1

r̈2
i ,
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whereK(m,p,1) = Γ[(mp + 1)/2]/Γ(mp/2) with m = (n− 1). Since

MSE (σ̃B) = σ2

[
m

n
B2 − 2B

√
2

mn
K(m,p,1) + 1

]
,

the optimal choice ofB is

B =
n

m

√
2

mp
K(m,p,1) .

The MMSE estimator in the class (33) is therefore

σ̃mms =

√
2

mp
K(m,p,1)

√√√√ 1

mp

n∑
i=1

r̈2
i .

If we replacer2
i in (14) and (15) bÿr2

i , i = 1, . . . , n, p = 2 or 3, we get MLE’s of CEP
and SEP (see, Singh, 1970). Similarly, if we replacen by m andr2

i by r̈2
i in (21), (22),

(23), and (24) we get unbiased estimators (see, Chapman and Robbins, 1951, Moranda,
1959, or Singh, 1970) and MMSE estimators of CEP and SEP (see, Singh, 1992, and
Singh and Upadhyaya, 2003).

The RB’s, RV’s, and RMSE’s of the estimators discussed in this section can easily be
obtained by simply replacingn by m in the respective expressions obtained for the case
when the center of impact is known.

5 Estimators Based on Prior Information when the
Center of Impact is unknown

If the center of impact is unknown, we define the following class of estimators

σ̃(u,v) = σ0

[
u + H

(
σ̃unb

σ0

)v]
,

whereu andv are real numbers such that0 < u < ∞ andv 6= 0, H is a constant to be
determined such thatMSE

(
σ̃(u,v)

)
is at its minimum. Proceeding similar as in Section 3

yields the class of shrinkage estimators

˜̃σ(u,v) = uσ0

(
1−H(m,p,v)

)
+ σ̃unbH(m,p,v) ,

whereH(m,p,v) = Kv
(m,p,1)K(m,p,v)/K(m,p,2v) and with

ARB
(
˜̃σ(u,v)

)
=

∣∣(uλ− 1)
(
1−H(m,p,v)

)∣∣ (34)

RMSE
(
˜̃σ(u,v)

)
= (uλ− 1)2

(
1−H(m,p,v)

)2
+

(
mp

2K2
(m,p,1)

− 1

)
H2

(m,p,v) . (35)

Similarly, estimators of CEP and SEP are

˜̃C(u,v) = 1.1774uσ0

(
1−H(m,2,v)

)
+ C̃unbH(m,2,v)

˜̃S(u,v) = 1.5382uσ0

(
1−H(m,3,v)

)
+ S̃unbH(m,3,v) .
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Table 1: Simulated sample from N(0, 4) (left), and from N(2, 9) (right).

x1 x2 x3 x1 x2 x3

-0.12132 0.07292 -0.88389-2.11850 4.60404 -2.44222
-2.59037 0.70944 0.13006-2.07938 5.09405 6.68754
0.98285 -1.96912 -3.27462 2.50136 1.08946 -0.77591

-0.66351 -1.59366 0.11381 3.01007 2.32918 -2.70473
2.15499 -1.62687 -2.42294-3.39691 -0.32858 4.31897
3.63641 3.24631 -2.02326 5.79597 -0.00442 -0.08140

-1.39969 1.87469 -2.29120-2.25021 3.61843 0.01476
1.97335 -3.08520 -1.57044 0.91700 -0.88697 3.87766

-3.00996 1.09687 -1.03358 1.71327 0.26837 1.73793
-1.94124 0.05899 0.22130 2.22638 0.90818 3.63013
-2.47672 -0.91997 1.64590 7.40968 1.07960 4.22995
-4.03386 2.95965 -0.62516 2.57249 -3.02871 -5.04124
-1.75506 1.53138 4.00505 1.29061 2.91704 1.90670
2.18448 -2.16321 2.18615 3.52185 -1.14687 2.54703

-0.14279 -0.05761 2.31286 1.53862 1.43802 -0.90783

Table 2: Estimates of the SEP with true value 3.0764 and their characteristics when center
of impact is known (left), and with true value 4.6146 when center is unknown (right).

Estimate ARB RMSE Estimate ARB RMSE
Ŝmle 3.123414 0.005740 0.0114794.669214 0.005734 0.011469
Ŝunb 3.141445 0.000000 0.0115794.696169 0.000000 0.011568
Ŝmms 3.105486 0.011446 0.0114464.642413 0.011435 0.011436
Ŝ(1,−2) 3.130325 0.001958 0.0098404.721853 0.007064 0.009740
Ŝ(1,−1) 3.138219 0.000568 0.0110594.703558 0.002033 0.011015
Ŝ(1,1) 3.139820 0.000286 0.0113164.699633 0.000953 0.011306
Ŝ(1,2) 3.133849 0.001338 0.0103754.713248 0.004698 0.010323

Their RB and RMSE is obtained from (34) and (35).
Various estimators can be generated from˜̃σ(u,v) by considering different values for

(u, v). A discussion of results oñ̃σ(u,v) follows from Section 3.

6 An Example

There is no other better choice than a simulated sample to test the performance of the
proposed estimators, as real target analysis data are not available owing to confidentiality
norms. In this section a particular case ofp = 3 has been considered and thereby esti-
mation of SEP has been performed. Some of the estimators of the proposed classes, viz.,
Ŝ(α,β) andS̃(u,v) have been generated and it is found that these estimators have emerged
as an improvement over both, the MLE and the MMSE estimators.

Considering the case when center of impact is known, a set of three random samples of
15 observations each is generated from a normal population with mean 0 and variance 4.
Assuming that the prior point estimate of the dispersion parameter is given asσ0 = 1.95,
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the findings are summarized in the left part of Table 2. We further considered the case
when center of impact is nonzero and unknown. A set of three random samples of 15
observations each is generated from a normal population with mean 2 and variance 9.
Assuming that the prior point estimate of the dispersion parameter is given asσ0 = 3.25,
the findings are in the right part of Table 2.

It is evident from the results displayed in Table 2 that the proposed MMSE estima-
tors are better than the previously presented estimators of Chapman and Robbins (1951),
Cohen Jr. (1955), Moranda (1959), Singh (1992), and Singh and Upadhyaya (2003). If
reliable prior information is available, the proposed shrinkage type estimators are less
biased and more efficient than the conventional estimators near the guessed value and
possibly worse farther away.
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