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Abstract: Using local-to-unity detrending, the GLS-based Dickey-Fuller test
has been shown to possess higher power than other available unit root tests.
As a result, application of this easily implemented test has increased in recent
years. In the present study the finite-sample size and power of the GLS-based
Dickey-Fuller test is examined in the presence of breaks in innovation vari-
ance under the null. In contrast to the original Dickey-Fuller test which has
been shown to suffer severe distortion in such circumstances, the GLS-based
test latter exhibits robustness to all but the most extreme breaks in variance.
The results derived show the GLS-based test to be more robust to variance
breaks than other modified Dickey-Fuller tests previously considered in the
literature.

Zusammenfassung:Mittels Local-to-Unity Detrending wurde gezeigt, dass
der GLS-basierte Dickey-Fuller Test eine größere Macht hat als andere verfüg-
bare Unit-Root Tests. Deshalb kam es in den letzten Jahren zur vermehrten
Anwendung dieses leicht zu implementierenden Tests. In der vorliegenden
Studie wird unter der Nullhypothese für endliche Stichproben das Niveau
und die Macht des GLS-basierten Dickey-Fuller Tests bei Einbrüchen der
Innovationsvarianz untersucht. Im Gegensatz zum originalen Dickey-Fuller
Test, welcher in derartigen Situationen eine starke Verzerrung erleidet, weist
hierbei der GLS-basierte Test bis auf wenige Ausnahmen bei den stärksten
Einbrüchen ein robustes Verhalten auf. Die erzielten Ergebnisse zeigen, dass
der GLS-basierte Test auf Varianzbrüche robuster reagiert als andere modi-
fizierte Dickey-Fuller Tests, welche bisher in der Literatur betrachtet wurden.

Keywords: Unit Roots, Variance Breaks, Local-to-Unity Detrending, Gener-
alized Least Squares.

1 Introduction

It has long been recognised in the econometrics literature that the seminal Dickey-Fuller
(DF) unit root test (Dickey and Fuller, 1979) possesses low power when applied to near-
integrated, or near unit root, processes. Consequently, a number of modified DF tests with
higher power have been proposed for practitioners to employ. Monte Carlo analysis of
these tests has shown the modified DF test of Elliott et al. (1996) to possess the greatest
power of all available unit root tests. The easily applied test of Elliott et al. (1996)
employs local-to-unity detrending via generalised least squares estimation to produce a
test with a local power function close to the local Gaussian power envelope. As a result
of its high power and incorporation in software packages, application of this test, denoted
as DF-GLS, has increased in recent years. Given the increasing popularity of the DF-
GLS test amongst practitioners, investigation of its properties warrants close attention.
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In this paper, the behaviour of the DF-GLS is examined in the presence of changes in
innovation variance under the null. The recent research of Kim et al. (2002) has shown
the DF test of Dickey and Fuller (1979) to suffer severe size distortion when applied to
unit root processes experiencing a sudden decrease in innovation variance, with the unit
root hypothesis spuriously rejected. However, while Cook (2002) and Cook (2003) have
analysed the properties of a number of modified unit root tests in these circumstances,
the properties of the DF-GLS test have not been considered in the literature to date. The
objective of this paper is to therefore examine the finite-sample size and power of the
DF-GLS test in the presence of decreases in innovation variance under the null.1 It will
therefore be examined how the DF-GLS performs and how this compares to previously
derived results for the DF test and the variance break robust test of Kim et al. (2002).

2 Unit Root Testing in the Presence of Variance Breaks

2.1 Unit Root Tests

The behaviour of the DFτµ test when applied to unit root processes subject to a sudden
decrease in innovation variance is examined in Kim et al. (2002).2 The DFτµ test is given
as thet-ratio forφ in the following regression:

∆yt = µ + ρyt−1 + εt . (1)

To improve upon the known low power of the DF test, Elliott et al. (1996) proposes
local-to-unity detrending using generalized least squares. This increased power is exam-
ined in Burridge and Taylor (2000), with results presented which show it results from
the distribution of the DF-GLS test shifting further towards the origin under the null than
under the alternative, in comparison to the DF test. Following the notation of Ng and Per-
ron (2001), the DF-GLS equivalent of theτµ test is derived as follows. Given any series
{xt}T

t=0, we define(xα
0 , xα

t ) ≡ (x0, (1 − αL)xt), t = 1, . . . , T whereα = 1 + c/T . The
revised, GLS-detrended version ofyt, denoted as̃yt, is then

ỹt ≡ yt − ψ̂′zt ,

wherezt denotes the deterministic terms employed. In this case, with an intercept only
considered,zt = 1. The estimator̂ψ is given as the value minimisingS(α, ψ) = (yα −
ψ̂′zα)′(yα−ψ̂′zα). For the intercept only model, the valuec = −7 is selected to ensure the
limiting power function lies close to the local power envelope. With the locally detrended
seriesỹt calculated, the DF-GLS test is thet-ratio ofβ0 in the regression

∆ỹt = β0ỹt−1 + εt (2)

1To illustrate the empirical relevance of such breaks in variance, Aggarwal et al. (1999) employ the
Iterative Cumulative Sums of Squares (ICSS) algorithm of Inclan and Tiao (1994) to demonstrate that large
changes in the innovation variance have recently occured in emerging stock markets.

2In Kim et al. (2002) it is shown that the size of the DF test is distorted by adecreasein innovation
variance, but not anincrease. As this property is found to hold for the DF-GLS test also, only decreases in
innovation variance are considered.
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with the resulting test statistic can be denoted asτGLS
µ . The appeal of this easily applied

test to practitioners is obvious given its known increased power to reject the unit root hy-
pothesis in the standard case of i.i.d. errors (see Elliott et al., 1996 for a power comparison
of theτµ andτGLS

µ tests).
However, while theτGLS

µ test has not been examined in the presence of variance
breaks, the properties of other (lower powered) modified tests have been considered in
these circumstances. Although not considered explicitly in the present study, these modi-
fied tests are referred to later in terms of their properties in the presence variance breaks,
and so are described here. The three tests considered are the weighted symmetric DF test
of Park and Fuller (1995), the maximum DF test of Leybourne (1995) and the recursively
mean adjusted test of Shin and So (2001). The weighted symmetric DF test of Park and
Fuller (1995) results from the application of a double length regression, with the weighted
symmetric estimator of the autoregressive parameter, denoted asρ̂ws, given as the value
minimising

Qws(ρ) =
∑

wt(yt − ρyt−1)
2 +

∑
(1− wt)(yt − ρyt+1)

2 , (3)

wherewt = (t− 1)/T . The unit root hypothesis is then tested using via the statisticτws
µ

τws
µ = σ−1

ws (ρ̂ws − 1)

(
T−1∑

t=2

y2
t + T−1

T∑

t=1

y2
t

)1/2

, (4)

whereσ2
ws = (T − 2)−1Qws(ρ̂ws).

A further modified DF test proposed to increase power to reject the unit root hypoth-
esis is the maximum DF test of Leybourne (1995). This test requires joint application of
forward and reverse regressions. Given a series of interest{yt}T

t=0, the DF test of Ley-
bourne (1995) is applied to both{yt} and{y∗t }, wherezt = y∗T−t for t = 0, . . . , T . The
maximum DF test, denoted asτmax

µ , is then simply the maximum (less negative) of the
two test statistics obtained.

A final modified test previously considered is the recursively mean-adjusted DF test of
Shin and So (2001). As Shin and So (2001) note, the use of mean-adjusted observations
(yt− y) in the following regression results in correlation between the regressor(yt−1− y)
and the error(εt)

yt − y = γ(yt−1 − y) + εt . (5)

The resulting bias of the ordinary least squares estimatorγ̂ has been calculated by Shaman
and Stine (1988) and by Tanaka (1984) as

E(γ̂ − γ) = −T−1(1 + 3ρ) + o(T−1) . (6)

To overcome the problems associated with this correlation, Shin and So (2001) propose
the use of recursively mean-adjusted observations, with the recursive mean(yt) calculated
as

yt = t−1
t∑

i=1

yi . (7)

The recursively mean-adjusted DF test, denoted asτ rec
µ , is then given as thet-test ofγ = 1

in the following regression

yt − yt−1 = γ(yt−1 − yt−1) + εt . (8)
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2.2 Monte Carlo Design

To examine the properties ofτµ andτGLS
µ in the presence of breaks in innovation variance,

the following data generation process (DGP) is employed for the Monte Carlo simulation
analysis

yt = ρyt−1 + εt t = 1, . . . , T (9)

εt = σtηt (10)

ηt
iid∼ N(0, 1) (11)

σt =

{
σ1 for t ≤ TB

σ2 for t > TB
(12)

whereTB represents the breakpoint after which an abrupt change in the innovation vari-
ance occurs. The innovation series{ηt} is generated using pseudo iidN(0, 1) random
numbers from the RNDNS procedure in the GAUSS, with the initial value(y0) set equal
to zero. All experiments are performed over 10,000 replications using a sample size of
T = 100, with a further initial 100 observations created and discarded.

Following Kim et al. (2002), the break ratioδ = σ2/σ1 is assigned the valuesδ ∈
{0.25, 0.4, 0.6, 0.8}. However, in contrast to Kim et al. (2002), results are presented for
all possible breakpoints,TB ∈ {1, 2, . . . , 99}, rather than a limited number of points. To
analyse thesizeproperties ofτµ andτGLS

µ , ρ = 1 is imposed in the DGP given by (3)-
(6), while poweris examined by imposingρ = 0.9. Empirical rejection frequencies are
calculated at the 5% level of significance using the critical values of Ng and Perron (2001)
and Fuller (1996) forτµ andτGLS

µ respectively.

2.3 Monte Carlo Results

To ease interpretation, the results derived using the above experimental design are de-
picted graphically, withτµ andτGLS

µ denoted as DF and DF-GLS respectively, and the
size of the break considered reported in parentheses. In Figure 1 the empirical sizes of the
tests are reported for the larger variance breaks(δ = 0.25, 0.4). The known severe size
distortion ofτµ is apparent for both break sizes, particularly for breaks occurring in the
early part of the sample. For the larger break(δ = 0.25) the empirical size ofτµ reaches
a maximum value of 41.35% when the break occurs atTB = 13, while for δ = 0.4 a
maximum rejection frequency of 23.88% is recorded forTB = 14. While distortion is
maximized at these particular breakpoints, it is also apparent for breaks occurring at all
other points, apart from the final few observations. In contrast,τGLS

µ exhibits far less size
distortion, with the maximum empirical sizes of 10.32% and 7.46% obtained forδ = 0.25
and0.4. Note that this distortion for early breaks disappears when the break is imposed
later in the sample. In Figure 2, the empirical sizes of the tests are presented for the two
smaller breaks(δ = 0.6, 0.8). It can be seen thatτµ still exhibits size distortion for early
breaks, although this is now much reduced, the maximum rejection frequencies being
12.23% and 7.42% forδ = 0.6 and 0.8 respectively. For these smaller breaks there is
little evidence of size distortion forτGLS

µ , wherever the break is imposed, the maximum
rejection frequencies being 5.76% and 5.18% forδ = 0.6 and 0.8 respectively.
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Figure 1: Size ofτµ andτGLS
µ tests (δ = 0.25, 0.4).

Figure 2: Size ofτµ andτGLS
µ tests (δ = 0.6, 0.8).
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Figure 3: Power ofτµ andτGLS
µ tests (δ = 0.25, 0.4).

Figure 4: Power ofτµ andτGLS
µ tests (δ = 0.6, 0.8).
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Power calculations for the two tests are presented in Figures 3 and 4. The results
for the larger breaks in Figure 3 show the power ofτµ to be inflated by the previously
noted size distortion for breaks early in the sample, while the known high power ofτGLS

µ

is reduced in the presence of early variance breaks. As expected, these characteristics
are less noticeable forδ = 0.4 thanδ = 0.25. However, as the timing of the break is
delayed, the powers of the tests approach the levels noted previously in the literature for
the no-break case, withτGLS

µ substantially more powerful thanτµ. For the larger breaks
of δ = 0.6 and 0.8 depicted in Figure 4, it is clear that variance breaks have little impact
upon the tests, apart perhaps forτGLS

µ when a break ofδ = 0.6 is imposed early in the
sample.

Considering the results for size and power jointly,τGLS
µ is far more robust to breaks in

innovation variance thanτµ. In contrast toτµ, there is little evidence ofτGLS
µ experiencing

size distortion, except for very large breaks occurring early in the sample period. It should
be noted that the valueδ = 0.25 which results in size distortion forτGLS

µ over a range of
breakpoints is particularly extreme, corresponding to the innovation variance decreasing
by a factor of 16. Similarly, the impact of innovation variance breaks upon the power of
τGLS
µ is apparent for only a subset of the experiments considered, these again being where

a very large break occurs early in the sample period.

2.4 A Comparison with the Variance Robust Test

The above results show theτGLS
µ test to be relatively robust in the presence of breaks in

innovation variance. To consider how the test compares to the variance robust test(tF ) of
Kim et al. (2002), Tables 1 and 2 present the size and power calculations for theτGLS

µ ,
τµ andtF tests across a range of breakpoints and breaks sizes. Following the tabulated
results of Kim et al. (2002), break sizes ofδ = {0.25, 0.4, 0.6, 0.8} are considered at the
breakpointsTB = {20, 40, 60, 80}. As might be expected, the results in Table 1 show
that thetF test has the best size properties in the presence of the largest break in variance
considered. However, for more moderate breaks, theτGLS

µ test actually outperforms the
asymptotically justifiedtF test. Considering the power results presented in Table 2, it
can be seen that the power of theτGLS

µ test exceeds that of thetF test in virtually all
cases considered. It can therefore be argued that in many circumstances theτGLS

µ may
be preferred to thetF test in the presence of breaks in variance, unless the breaks are
extremely large(δ = 0.25).

3 Conclusion

In this letter the properties of the GLS-based Dickey-Fuller test of have been examined
in the presence of breaks in innovation variance. In contrast to the Dickey-Fuller test
which can exhibit severe size distortion when applied to a unit root process experiencing
a sudden decrease in innovation variance, the size of the DF-GLS test is found to be
substantially more robust. Additionally, the results of power calculations show the DF-
GLS test to only experience reduced power when very large breaks in variance occur early
in the sample period. For more moderate and realistic break sizes, the properties of the
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Table 1: Empirical sizes of theτGLS
µ , τµ andtF tests(T = 100).

δ

TB 0.80 0.60 0.40 0.25

20 τµ 7.3 11.9 23.4 39.7
τGLS
µ 4.9 5.1 6.7 10.3

τF 6.1 6.8 6.3 6.3

40 τµ 6.7 10.2 16.7 23.9
τGLS
µ 5.0 5.6 7.3 9.4

τF 5.4 5.2 5.5 5.4

60 τµ 6.1 8.0 11.0 13.3
τGLS
µ 5.0 5.7 6.5 7.4

τF 4.7 4.7 5.5 5.6

80 τµ 5.4 6.0 6.8 7.4
τGLS
µ 4.9 5.2 5.7 5.7

τF 4.5 4.3 5.0 5.3
Entries in bold indicate the test statistic with an empirical
size closest to the nominal level of 5% for the combination
of break size and breakpoint considered.

Table 2: Empirical power of theτGLS
µ , τµ andtF tests(T = 100).

δ

TB 0.80 0.60 0.40 0.25

20 τµ 35.0 38.6 44.9 50.4
τGLS
µ 45.0 39.9 34.6 31.8

τF 26.7 27.9 34.0 46.5

40 τµ 35.1 38.1 42.4 45.0
τGLS
µ 46.6 43.5 41.2 40.0

τF 24.3 24.9 28.0 38.7

60 τµ 34.9 37.0 39.6 41.3
τGLS
µ 48.3 47.0 46.2 45.7

τF 24.4 22.4 25.8 35.0

80 τµ 34.8 36.0 37.6 38.6
τGLS
µ 49.9 50.0 50.2 50.4

τF 25.3 24.2 26.4 30.8

DF-GLS test are even superior to those of the variance robust test of Kim et al. (2002).
Given the extreme nature of the larger breaks considered here and by Kim et al. (2002),
perhaps more importance should be attached to these results for the more moderate breaks
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where the DF-GLS performs well. The observed robustness of the GLS test in these
circumstances, allied to its known high power in the absence of breaks, further emphasizes
its value to practitioners. A comparison with the findings of Cook (2003) shows the easily
applied GLS test to have similar properties to the recursively mean-adjusted test of Shin
and So (2001), but outperform the weighted symmetric test of Park and Fuller (1995). A
further comparison with the results of Cook (2002), shows the DF-GLS test to outperform
the maximum DF test of Leybourne (1995) in the presence of various breaks. The appeal
of the GLS test is further emphasised as unlike the recursively mean-adjusted test, its
specification can be extended to include a deterministic trend.
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