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Abstract: Data fusion techniques typically aim to achieve a complete data
file from different sources which do not contain the same units. Tradition-
ally, data fusion, in the US also addressed by the term statistical matching,
is done on the basis of variables common to all files. It is well known that
those approaches establish conditional independence of the (specific) vari-
ables not jointly observed given the common variables, although they may
be conditionally dependent in reality. However, if the common variables are
(carefully) chosen in a way that already establishes conditional independence,
then inference about the actually unobserved association is valid. In terms of
regression analysis, this implies that the explanatory power of the common
variables is high concerning the specific variables. Unfortunately, this as-
sumption is not testable yet. Hence, we structure and discuss the objectives
of statistical matching in the light of their feasibility. Four levels of valid-
ity a matching technique may achieve are introduced. By means of suitable
multiple imputation (MI) techniques, the identification problem which is in-
herent in data fusion is reflected. In a simulation study it is also shown that
MI allows to efficiently and easily use auxiliary information.
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1 Introduction

Statistical matching techniques, as they are referred to in the U.S., typically aim to achieve
a complete data file from different sources that do not contain the same units. On the
contrary, if samples are exactly matched using identifiers such as social security numbers
or name and address, this is called record linkage. Traditionally, statistical matching
is done on the basis of variables common to all files. Statistical twins, i.e., donor and
recipient units that are similar according to their common variables, are usually found by
means of nearest neighbor or hot deck procedures. The specific variables of a donor unit
which are observed only in one file are added to the record of the recipient unit to finally
create the matched sample. We like to note that in our sense statistical matching is not
restricted to the case of merging different samples without overlap. Also one single file
may contain some records with observations on more variables than others, then, these
records can be matched with those containing less information based on the variables
common to all units. Basically, there are a couple of different situations when statistical

1Acknowledgment: The author wants to thank Friedrich Wendt, who was one of the first and most
engaged persons to develop data fusion techniques in Europe. He gave me generously insight to all is
procedures and material, unfortunately, he died at the 29th of June 2003 at the age of 82.
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matching can be applied. Figure 1 gives an overview of these occasions. The white boxes
represent the missing variables.

Figure 1: Different situations for statistical matching

In this paper we refer to the situation of picture no. 3 in Figure 1 which we call data
fusion. This Figure illustrates that only in the case of data fusion there are groups of
variables that arenever jointly observed, sayX andY . In all other cases we assume
that, at least, every pair of variables has been jointly observed in one or the other data
set. The fusion of data sets with the aim of analyzing the unobserved relationship ofX
andY and addressing quality of data fusion is done, e.g., by National Statistical Institutes
such as Statistics Canada or the Italian National Institute of Statistics, see, e.g., Liu and
Kovacevic (1997) or D’Orazio et al. (2003). The focus often is on analyzing consumer’s
expenditures and income which are in detail only available from different surveys. In the
U.S., e.g., data fusion is used for microsimulation modeling, where “what if” analyses
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of alternative policy options are carried out using matched data sets, see Moriarity and
Scheuren (2001, 2003). Especially in Europe and among marketing research companies,
data fusion has become a powerful tool for media planning, see, e.g., Wendt (1986). Often
surveys concerning the purchasing behavior of individuals or households are matched to
those containing valuable information about print, radio and television consumption.

2 Data Fusion - Its Identification Problem

Data fusion initially is connected to an identification problem concerning the association
of the variables not jointly observed. The conditional association (i.e., the association
of the variables never jointly observed,X andY , given the variables common to both
files, sayZ) cannot be estimated from the observed data; for a detailed proof see Rubin
(1974). However, depending on the explanatory power of the common variablesZ there
is a smaller or wider range of admissible values of the unconditional association ofX and
Y . By means of multiple imputation based on explicit models, imputations can be made
for different values describing the conditional association. From these imputed data sets
the unconditional association can then be estimated.

Consider, for example, a common variableZ determining another variableX only
observed in one file. For demonstration purpose, we discuss linear dependencies; i.e., let
the correlationρZX = 1, and thusX = a+ bZ for somea, b ∈ R2, b 6= 0. The correlation
between this common variableZ and a variableY in a second file may beρZY = 0.8.
It is easy to see that the unconditional correlation of the two variablesX andY which
are not jointly observed is determined byZ with ρXY = ρa+bZ Y = ρZY = 0.8. If the
correlation betweenX andZ is less than one, say 0.9, we can easily calculate the possible
range of the unconditional association betweenX andY by means of the determinant of
the covariance matrix which has to be positive semi-definite; i.e., the determinant of the
covariance matrix cov(Z,X, Y ) should be positive or at least zero, see, e.g., Cox and
Wermuth (1996).

Given the above values and setting the variances to one without loss of generality, the
covariance matrix of(Z,X, Y ) is

cov(Z, X, Y ) =




1 0.9 0.8
0.9 1 cov(X,Y )
0.8 cov(X,Y ) 1


 with

det(cov(Z, X, Y )) = −cov(X,Y )2 + 2 · 0.72 cov(X,Y )− 0.45 .

Calculating the roots of det(cov(Z, X, Y )) we get the two solutions cov(X, Y ) = 0.72±√
0.0684. Hence we find the unconditional correlation bounded between [0.4585, 0.9815];

i.e., every value of the unknown covariance cov(X,Y ) greater than 0.4585 and less than
0.9815 leads to a valid and thus feasible covariance structure for(Z, X, Y ). By means of
the observed data we are not able to decide which covariance matrix could have generated
the data.

If the variablesX andY are conditionally independent or at least uncorrelated given
Z, a correlation ofX and Y of cov(X, Y ) = 0.72 is computed which is exactly the
middle of the interval [0.4585, 0.9815] yielding the maximum value for the determinant
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|cov(Z,X, Y )|. Finally we have found an upper (0.9815) and a lower (0.4585) bound
for cov(X, Y ). An estimation procedure of these bounds in the fusion context was first
published by Kadane in 1978. The strength of the conditional independence assumption is
also discussed in a similar example by Rodgers (1984). He shows that only an extremely
high correlation narrows the range of the unconditional association considerably. Only
few approaches, basically three different procedures, have been published to assess the
effect of alternative assumptions of this inestimable value. One approach is due to Kadane
(2001) (originally 1978, now reprinted), generalized by Moriarity and Scheuren (2001).
The next approach dates back to Rubin and Thayer (1978), it is used to address data
fusion explicitly by Rubin (1986), and generalizations are presented by Moriarity and
Scheuren (2003). Both approaches use regression based procedures to produce synthetic
data sets under various assumptions on this unknown association. Finally, a full Bayesian
regression approach using multiple imputations is first given by Rubin (1987), p. 188, and
then generalized by R̈assler (2002).

We propose to discuss the explanatory power of the common variables and, thus, of
the validity of the data fusion procedure based on these bounds. Since it is not possible to
judge the quality of the matched data concerning this unobserved association whenever
the variables are never jointly observed and no auxiliary data file is available, the range of
these bounds may be used to evaluate any data fusion procedure. The less the bounds dif-
fer, the better is the explanatory power of the common variables and the more valid results
traditional matching techniques will produce. However, if the data structure is complex
and high-dimensional we are not able to calculate these bounds directly. Therefore, we
propose multiple imputation to fix the conditional association using prior information.
It provides a helpful and flexible tool for fusion in general and for the derivation of the
bounds in particular. Moreover, we will illustrate by means of a simulation study how MI
can make efficient use of auxiliary data.

3 Validity Levels of Data Fusion

The general benefit of data fusion is the creation of one complete data source containing
information about all variables. Without loss of generality, let the(X, Z) sample be
the recipient sampleB of size nB and the(Y, Z) sample the donor sampleA of size
nA. The traditional matching procedures determine for every uniti, i = 1, 2, . . . , nB,
of the recipient sample with the observations(xi, zi) a valuey from the observations of
the donor sample. Thus, a composite data set(x1, ỹ1, z1), . . . , (xnB

, ỹnB
, znB

) with nB

elements of the recipient sample is constructed. The main idea is to search for a statistical
match, i.e., for a donor unitj with (yj, zj) ∈ {(y1, z1), (y2, z2), . . . , (ynA

, znA
)} whose

observed data values of the common variableszj are identical to thosezi of the recipient
unit i for i = 1, 2, . . . , nB. Notice thatỹi is not the truey-value of theith recipient unit
but they-value of the matched statistical twin. In the following, all density functions
(joint, marginal, or conditional) and their parameters produced by the fusion algorithm
are marked by the symbol˜. Notice thatỸ is called fusion or imputed variable herein.

There are very sophisticated fusion techniques in practice; for a recent overview see
Rässler (2002). Here we focus on the validity of the fusion process. Therefore, we suggest
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to distinguish four levels of validity a fusion procedure may achieve. We use the term va-
lidity rather than efficiency, because efficiency usually refers to a minimum mean squared
error criterion as it is common, for example, in survey sampling theory and not to different
levels of reproduction and preservation of the original associations and distributions.

3.1 First Level: Preserving Individual Values

The individual values are preserved when the true but unknown values of the (multivari-
ate)Y variable of the recipient units are reproduced; i.e.,ỹi = yi for i = 1, 2, . . . , nA.
We call this situation a “hit” for any unit in the recipient sample and may calculate a “hit
rate” therefrom. But some words of warning should be placed.

Within continuous distributions the probability of drawing a certain valuey is zero;
counting the hits is meaningless then. In the case of discrete or classified variablesY a hit
rate may be calculated for the purpose of demonstration, counting a hit for the imputation
of ap-dimensional variableY when the whole imputed vector equates the original vector;
i.e.,

(ỹ1i, ỹ2i, . . . , ỹpi) = (y1i, y2i, . . . , ypi)

for i = 1, 2, . . . , nA. Notice that the calculation of a single hit rate for each variable may
mislead the interpretation because it does not ensure that the joint distributions are well
preserved. Moreover, any fusion technique that additionally assures the preservation of
the marginal distributions will automatically lead to “high” hit rates, especially when the
variables have only few categories, see Table 1. In this case, the “worst” fusion still yields
80% of hits. A simple random assignment produces(0.9 · 0.9 + 0.1 · 0.1)100% = 82% of
hits.

Before\ After Fusion 0 1 Total
0 800 100 900
1 100 0 100

Total 900 100 1000

Table 1: Hit rate for a constraint match

Finally, consider the following example which was mentioned by Rubin in a talk at
the DataClean2002 Conference in Finland:
Suppose we have 10,000 bernoulli trials withp = 0.6, and 9000 are missing completely
at random. The observed 1000 trials show (more or less) 600 heads and 400 tails, and we
are asked to impute the missing 9000 to draw inferences about the population probability
of a head. Let us decide to evaluate different imputation methods by the hit rate, i.e., the
number of agreements between the imputed values and the real data.

• Method 1: impute all heads, then we count in total 9600 heads and the inference for
p is thatp = 0.96.

• Method 2: draw imputes with probability of head of 0.6, then the inference forp
will give thatp = 0.6.
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Which method is better by the hit rate? Method 1 gives agreement 60% of the time,
whereas method 2 gives agreement0.4 ∗ 0.4 + 0.6 ∗ 0.6 = 52 % of the time. Thus the hit
rate says method 1 is the one to use. One should always remember that imputations are
not meant to reflect the real values and that their microdata interpretation is meaningless.

3.2 Second Level: Preserving Joint Distributions

The joint distribution is preserved after data fusion when the true joint distribution of all
variables is reflected in the fused file; i.e.,f̃X,Y,Z = fX,Y,Z .

We usually assume that the units of both samples are drawn independently within and
between the two samples and the fused file can be regarded as a random sample from
the underlying fusion distributioñfX,Y,Z . The most important objective of data fusion is
the generation of a complete sample that can be used as a single-source sample drawn
from the underlying distributionfX,Y,Z . It is less the reconstruction of individual values
but the possibility of making valid statistical inference based on the fused file. Sims
(1972), Rodgers (1984), and Rässler (2002) show that this is only possible if the specific
variablesY andX are conditionally independent given the common variablesZ = z; i.e.,
fX,Y |Z = fX|ZfY |Z = f̃X,Y |Z holds.

3.3 Third Level: Preserving Correlation Structures

The correlation structure and higher moments of the variables are preserved after data
fusion with c̃ov(X,Y, Z) = cov(X, Y, Z). Also the marginal distributions are reflected
correctly withf̃Y,Z = fY,Z andf̃X,Z = fX,Z .

Sometimes the analyst’s interests are more specific concerning, for instance, only
the association of variables measured by their correlation structure. Then the fused file
must be considered as randomly generated from an artificial population which has, at
least, the same moments and correlation structure as the actual population of interest.
Rässler and Fleischer (1998) show that the fusion covariance is given byc̃ov(X, Y ) =
cov(E(X|Z), E(Y |Z)). Because

cov(X,Y ) = E(cov(X,Y |Z)) + cov(E(X|Z), E(Y |Z))

holds, the fusion covariancẽcov(X, Y ) only equals the true cov(X, Y ), if X andY are
on the average conditionally uncorrelated givenZ = z; i.e., E(cov(X,Y |Z)) = 0. Notice
that variables which are conditionally independent are also conditionally uncorrelated
and, of course, on the average conditionally uncorrelated, but not vice versa in general.

3.4 Fourth Level: Preserving Marginal Distributions

After data fusion, at least, the marginal and joint distributions of the variables in the donor
sample are preserved in the fused file. Thenf̃Y = fY and f̃Y,Z = fY,Z are expected to
hold if Y is imputed in the(X,Z) sample.

In practice, the preservation of the distributions observed in the separate samples is
usually required. Analysis concerning the marginal distributions based on the fused file
should provide the same valid inference when based on the separate samples. Therefore,
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the empirical distributions of the common variablesZ as well as the imputed variables
Y in the resulting fused file are compared with their empirical distributions in the donor

sample to evaluate the similarity of both samples. The empirical distributionŝ̃
fY and

̂̃
fY,Z should not differ fromf̂Y andf̂Y,Z more than two random samples drawn from the
true underlying population. Notice that this implies the different samples being drawn
according to the same sampling design.

In the typical fusion situation only the fourth level can be controlled. Therefore, often
data fusion is said to be successful if the marginal and joint empirical distributions ofZ
andY , as they are observed in the donor sample, are “nearly” the same in the fused file.

In common approaches, first of all, averages for all common variablesZ between the
donor and the recipient sample are compared. Then the average values between the im-
puted variables̃Y and the corresponding variablesY in the donor sample are compared.
Often the preservation of the relation between variables is measured by means of correla-
tions. Therefore, for each common variableZ, the correlation with every original variable
Y and imputed variablẽY is computed, both for the fused data set and the donor sample.
The mean difference between common-fusion correlations in the donor versus the fused
data set are calculated and empirically evaluated, see, e.g., van der Putten et al. (2002).

The German association for media analysis2, for example, still postulates the follow-
ing data controls after a match has been performed.

• First the empirical distributions of the common variablesZ in the recipient and the
donor sample are compared to evaluate whether their marginal distributions are the
same in both samples.

• Next the empirical distributions of the imputed variablesỸ in the recipient andY
in the donor sample are compared.

• Finally the joint distributionfZ,Y as observed in the donor sample is compared to
the joint distributionf̃Z,Y as observed in the fused file.

All these comparisons are done using different tests such asχ2-tests ort-tests to com-
pare empirical distributions or their moments. A successful match should lead to similar
relationships between common and specific variables in the donor and the fused file; dis-
crepancies should not be larger than expected between two independent random samples
from the same underlying population. In particular, often each pair of variablesY andZ
in the donor sample is tested at a significance levelα for positive or negative association
by, for example, aχ2-test or at-test (depending on the scale of the variables). Then the
same test of association betweenỸ andZ is performed for each pair in the fused file.
If the results of the tests only differ in aboutα percent of the possible(Y, Z) combina-
tions, then the fusion procedure is regarded as successful, although this means accepting
the Null hypotheses rather than discarding them. Among others, nonparametric tests and

2“Media Analysis Association” called in German Arbeitsgemeinschaft Media Analyse, for short,
AG.MA. The AG.MA is a media association, i.e., publishing houses, radio and TV stations, and many
advertising agencies, as well as a certain number of advertisers.
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multiple regression models may be used in the same manner.3

Any discussion of validity of a data fusion technique can now be based on these four
levels. Besides so-called split half or simulations studies, all tests actually applied in
practice only indicate the fourth-level validity. Therefore, we like to go further to evaluate
the predictive power of the common variables.

4 A Multiple Imputation Algorithm

In the cases pictured in Figure 1 (at least in nos. 2 to 4), it is assumed that the data are
missing completely at random or, at least, missing at random because the missingness is
induced by design. Thus, the fusion task can be viewed as a typical imputation problem.
Because the amount of information to be imputed is large, we use the term mass imputa-
tion. In missing data problems the multiple imputation theory, initially introduced by Ru-
bin (1977) and extensively described in Rubin (1987), provides very flexible procedures
for imputation with good statistical properties from a Bayesian as well as a frequentist
view. We follow this approach and suggest a non-iterative Bayesian multiple imputation
procedure, called NIBAS, especially suited for data fusion.

Let us assume a multivariate normal data model for(X,Y |Z = z) = (X1, X2, . . . , Xq,
Y1, Y2, . . . , Yp|Z = z) with expectationµXY |Z and covariance matrixΣXY |Z is denoted
by

ΣXY |Z =

(
ΣXX|Z ΣXY |Z
ΣY X|Z ΣY Y |Z

)
.

Moreover, the general linear model for both data sets is applied with

(file A) Y = ZAβY Z + UA , UA ∼ NpnA
(0, ΣY Y |Z ⊗ InA

) ,

(file B) X = ZBβXZ + UB , UB ∼ NqnB
(0, ΣXX|Z ⊗ InB

) ,

with ZA andZB denoting the corresponding parts of the common derivative matrixZ.
This data model assumes that the units can be observed independently fori = 1, 2, . . . , n.
The correlation structure refers to the variablesX1i, X2i, . . . , Xqi, Y1i, Y2i, . . . , Ypi for
each uniti = 1, 2, . . . , n. For abbreviation we use the Kronecker product⊗ denoting
that the variablesXi andYi of each uniti, i = 1, 2, . . . , n, are correlated but no correla-
tion of the variables is assumed between the units.

As a suitable noninformative prior we assume prior independence betweenβ andΣ
choosing

fβY Z ,βXZ ,ΣXX|Z ,ΣY Y |Z ,RXY |Z ∝ Σ
−(q+1)/2
XX|Z Σ

−(p+1)/2
Y Y |Z fRXY |Z .

The joint posterior distribution for the fusion case can be factored into the prior and
likelihood derived by fileA and fileB, respectively, see R̈assler (2002). Then the joint

3If the samples have different structures, e.g., due to oversampling in one survey or differing sampling
designs, weights can be applied accounting for differing selection probabilities of the units in the separate
samples. Also, samples drawn according to different sampling designs could be made “equal” by using
propensity scores according to an idea by Rubin (2002) before performing the final match. However, this is
beyond the scope of this article.
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posterior distribution can be written with

f
βXZ ,βY Z ,ΣXX|Z ,ΣY Y |Z ,RXY |Z|X,Y

= c−1
X L(βXZ , ΣXX|Z ; x)fΣXX|Z |RXY |Z

c−1
Y L(βY Z , ΣY Y |Z ; y)fΣY Y |Z |RXY |ZfRXY |Z .

Thus, our problem of specifying the posterior distributions reduces to standard deriva-
tion tasks described, for example, by Box and Tiao (1992), p. 439.ΣXX|Z andΣY Y |Z
given the observed data each are following an inverted-Wishart distribution. The condi-
tional posterior distribution ofβXZ (βY Z) given ΣXX|Z (ΣY Y |Z) and the observed data
is a multivariate normal distribution. The posterior distribution ofRXY |Z equals its prior
distribution. Having thus obtained the observed-data posteriors and the conditional pre-
dictive distributions a multiple imputation procedure for multivariate variablesX andY
can be proposed with the following algorithm:

Algorithm NIBAS

• Compute the ordinary least squares estimatesβ̂Y Z = (Z ′
AZA)−1Z ′

AY and β̂XZ =

(Z ′
BZB)−1Z ′

BX from the regression of each data set. Note thatβ̂Y Z is ak×p matrix
andβ̂XZ is ak × q matrix of the OLS or ML estimates of the general linear model.

• Calculate the following matrices proportional to the sample covariances for each
regression with

SY = (Y − ZAβ̂Y Z)′(Y − ZAβ̂Y Z) ,

SX = (X − ZBβ̂XZ)′(X − ZBβ̂XZ) .

• Choose a value for the correlation matrixRXY |Z or eachρXiYj |Z for i = 1, 2, . . . , q,
j = 1, 2, . . . , p

(a) from its prior according to some distributional assumptions, i.e., uniform over
thep + q-dimensional ]-1,1[-space, or

(b) several arbitrary levels, or

(c) estimate a value from a small but completely observed data set.

The latter should be the most realistic case in many practical situations.

• Perform random draws for the parameters from their observed data posterior distri-
bution according to the following scheme.

Step 1:ΣY Y |Z |y ∼ W−1
p (vA, S−1

Y ) vA = nA − (k + p) + 1
ΣXX|Z |x ∼ W−1

q (vB, S−1
X ) vB = nB − (k + q) + 1

Step 2:βY Z |ΣY Y |Z , y ∼ Npk(β̂Y Z , ΣY Y |Z ⊗ (Z ′
AZA)−1),

βXZ |ΣXX|Z , y ∼ Nqk(β̂XZ , ΣXX|Z ⊗ (Z ′
BZB)−1),

Step 3: SetΣXY |Z = {σXiYj |Z} with σXiYj |Z
= ρXiYj |Z

√
σ2

Xi|Zσ2
Yj |Z

with σ2
Xi|Z , σ2

Yj |Z derived by Step 1
for i = 1, 2, . . . , q, j = 1, 2, . . . , p .
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Step 4: X|y, β, Σ ∼ NqnA

(
ZAβXZ + (Y − ZAβY Z)Σ−1

Y Y |ZΣY X|Z ;

(ΣXX|Z − ΣXY |ZΣ−1
Y Y |ZΣY X|Z)⊗ InA

)

Y |x, β, Σ ∼ NpnB

(
ZBβY Z + (X − ZBβXZ)Σ−1

XX|ZΣXY |Z ;

(ΣY Y |Z − ΣY X|ZΣ−1
XX|ZΣXY |Z)⊗ InB

)
.

The predictive power of the common variablesZ especially affects the last step. Choosing
the correlation matrixRXY |Z uniform over thepq-dimensional ]-1,1[-space may lead to
invalid conditional variances in Step 4. To achieve imputations reflecting the bounds we
propose to setRXY |Z = 0q×p and add some±ε iteratively until the variance matrices in
Step 4 are no longer positive definite. A similar procedure to get admissible values of
the covariance matrix is proposed by Moriarity and Scheuren (2001) for the multivariate
case. For univariateX andY variablesρXY |Z can be chosen from] − 1, 1[. The bounds
can be calculated directly then; see also Moriarity and Scheuren (2001).

5 Simulation Study

5.1 Data Model

Let (Z1, Z2, X, Y1, Y2) each be univariate standard normally distributed variables with
their joint distribution

(Z1, Z2, X, Y1, Y2) ∼ N5(0, Σ) (1)

and

Σ =




1.0 0.2 0.5 0.8 0.5
0.2 1.0 0.5 0.6 0.6
0.5 0.5 1.0 σXY1 σXY2

0.8 0.6 σXY1 1.0 0.4
0.5 0.6 σXY2 0.4 1.0




=




ΣZZ ΣZX ΣZY

ΣXZ ΣXX ΣXY

ΣY Z ΣY X ΣY Y


 .

Assume that fileA contains(Z1, Z2, Y1, Y2) and fileB (Z1, Z2, X), thusX andY =
(Y1, Y2)

′ are never jointly observed. Thus, the partial correlations ofX andY1 andX
andY2, respectively, can not be estimated from the observed data. Also the unconditional
covariance matrixΣXY does not have an unique estimate, however, there is information
in the data about their admissible values. As it is shown in Rässler (2002), the traditional
nearest neighbor match leads to conditional independence ofX, Y |Z = z with the un-
conditional covariance after the fusioñΣXY = ΣXZΣ−1

ZZΣZY = (0.5833 0.4583) in this
setting.

5.2 Calculation of the Range

Now let

Σ?
XY =




1.0 σXY1 σXY2

σXY1 1.0 0.4
σXY2 0.4 1.0


 = Σ?

XY |Z +

[
ΣXZ

ΣY Z

]
Σ−1

ZZ [ΣZX ΣZY ] (2)
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with

Σ?
XY |Z =




σXX|Z σXY1|Z σXY2|Z
σXY1|Z σY1Y1|Z σY1Y2|Z
σXY2|Z σY1Y2|Z σY2Y2|Z


 =

(
ΣXX|Z ΣXY |Z
ΣY X|Z ΣY Y |Z

)
,

and

ΣXX|Z = ΣXX − ΣXZΣ−1
ZZΣZX , and ΣY Y |Z = ΣY Y − ΣY ZΣ−1

ZZΣZY .

Finally, we can set

σXY1|Z = ρXY1|Z
√

σXX|ZσY1Y1|Z and σXY2|Z = ρXY2|Z
√

σXX|ZσY2Y2|Z ,

to getΣXY |Z = Σ′
Y X|Z therefrom.

(2) illustrates that the partial correlations betweenX andY1 or X andY2 depend on
the partial correlations betweenX andY1 or Y2, respectively, but not on the partial cor-
relations between any other pair of variables, see also Little and Rubin (2002), p. 159.
Furthermore, they do not depend on the inestimable unconditional correlation of the re-
spective alternative variable. Moreover, the relationship between partial and uncondi-
tional correlation is linear like Figure 2 shows.

Partial via unconditional correlation

Partial correlation
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Figure 2: Linear relationship between conditional (partial) and unconditional correlations

However, these ranges of the partial correlations cannot be applied in a multivariate
setting because of the restriction that the covariance matricesΣXY |Z andΣ have to be
positive definite.

In a slight abuse of notation, we write for the general case

ΣXY |Z = RXY |Z
(√

diag(ΣXX|Z)
√

diag(ΣY Y |Z)′
)

which may depend on all possible values ofRXY |Z ∈ {−1, 1} as long asΣXY |Z andΣ
are positive definite.
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For the above example, we can calculate the admissible values via searching the grid,
i.e., we setρXY1|Z ∈]− 1, 1[ andρXY2|Z ∈]− 1, 1[ and store all combinations that yield a
positive definite matrixΣ. We find the solutions shown in Figure 3.
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Figure 3: Admissible combinations of conditional/unconditional correlations

5.3 Simulation setup

From the data model of (1) we simulatek = 200 complete data sets of sizenA + nB =
5000 and part them into two separate filesA with nA = 3000 andnB = 2000 observations.
Then theY values of fileA are matched or imputed in fileB according to the following
algorithms

• NN; i.e., a nearest neighbor match (always assuming conditional independence),

• RI; i.e., a regression imputation under different conditional correlations,

• RIEPS; i.e., a regression imputation with stochastic residual under different condi-
tional correlations, and

• NIBAS; i.e., the proposed MI algorithm assuming different prior conditional corre-
lations.

For details of the formulae used in RI and RIEPS see Rässler (2002). Notice that NN and
RI are single imputation procedures whereas RIEPS and NIBAS create more than one im-
puted data set. However, imputations produced by RIEPS are expected to underestimate
variability because they lack from additional random draws of the parameters. Finally,
small 1% and 5% complete auxiliary files are created according to the data model and
used with the multiple imputation algorithm NORM (standalone software NORM 2.03)
that is provided by Schafer (1997). With NORM it is not possible to use a real informa-
tive prior for the unknown correlations, therefore, NORM is applied herein for the data
fusion situation when some auxiliary data are available containing information about all
variablesX, Y , andZ.
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This procedure of creating the data, dividing and matching them is carried out 200
times. Relevant point and interval estimates are stored and tabulated. For the MI proce-
duresm = 5 imputations are used. The MI estimates are calculated according toθ̂MI =
m−1

∑m
t=1 θ̂(t), as well as the within-imputation varianceW = m−1

∑m
t=1 v̂ar(θ̂(t)), and

the between-imputation varianceB = (m− 1)−1
∑m

t=1(θ̂
(t) − θ̂MI)

2. The 95% MI inter-
val estimates are calculated witĥθMI ±

√
T t0.975,ν , T = W + (1 + m−1)B, and degrees

of freedomv = (m − 1) (1 + W/((1 + m−1)B))
2. According to the MI principle we

assume that based on the complete data the point estimatesθ̂ are approximately normal
with meanθ and variancêvar(θ̂).4 Therefore, some estimates should be transformed to
a scale for which the normal approximation works well. For example, the sampling dis-
tribution of Pearson’s correlation coefficientρ̂ is known to be skewed, especially if the
corresponding correlation coefficient of the population is large. Thus, usually the multi-
ple imputation point and interval estimates of a correlationρ are calculated by means of
the Fisherz-transformationz(ρ̂) = 0.5 ln((1 + ρ̂)/(1 − ρ̂)), which makesz(ρ̂) approx-
imately normally distributed with meanz(ρ) and constant variance1/(n − 3), see, e.g.,
Schafer (1997), p. 216. By back transforming the corresponding MI point and interval
estimates ofz(ρ) via the inverse Fisher transformation the final estimates and confidence
intervals forρ are achieved.

5.4 Results

The following Tables show the estimated expectations of some point estimates. In addi-
tion, the Tables give the simulated actual coverage, i.e., the number of times out of 200
that cover the true parameter value. To ease the reading we display the percentage. Also
the average length of the confidence intervals is reported (ALCI). The following Tables 2,
3, and 4 concentrate on the most important results.

Table 2 shows the preservation of the prior values of the conditional correlation be-
tweenX andY1 or Y2, respectively. As it was to be expected, the nearest neighbor match
always establishes conditional independence. Thus, this matching procedure only works,
when the conditional independence assumption is satisfied. Even with slight derivations
from it, see block 4 in Table 2, the simulated actual coverage is far beyond its true nominal
value. Also the single regression imputation does not reflect the correct coverage and typ-
ically leads to a strong overestimation of the true population correlation. The regression
imputation with random residual performs quite well as long as the true unconditional
correlation is not too high. Best in all cases is the new procedure NIBAS. In every setting
it preserves the prior correlation with a higher nominal coverage than expected.5

Moreover, its average confidence intervals are only a little bit larger than those pro-
duced by RIEPS. Also Table 2 demonstrates that the multiple imputation procedure NORM
very efficiently allows to use auxiliary data. With an additional file of size 5%, i.e., a file
of only 250 observations completely observed inX,Y , andZ, the simulated actual cov-
erage in most of the cases is higher than its nominal value. For NIBAS and RIEPS we

4Notice that Barnard and Rubin (1999) relax this assumption of a normal reference distribution to allow
a t-distribution for the complete-data interval estimates and tests.

5Notice that according to classical and current formal definition of confidence intervals such conserva-
tive intervals are valid.
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could also use auxiliary information to estimate the potential prior correlations therefrom,
but other simulations have shown that NORM is more powerful here, see Rässler (2002).
With NORM the confidence intervals are typically much larger than with NIBAS. Thus,
when prior information has to be used, NIBAS is the best choice at hand. The preser-
vation of the distributions of the matched or imputed variablesY1 andY2 is displayed in
Tables 3 and 4. Again the nearest neighbor match leads to similar results regardless of
the true correlations betweenX andY1 or Y2. Always the coverage is too low and the
variances are underestimated as it is typical for single imputation approaches. Regression
imputation also typically underestimates the variances even more, the coverage often is 0.
As before, adding a random residual improves the regression imputation considerably but
not in all cases. The best preservation again provides NIBAS, throughout the coverage is
higher than its nominal value. Using auxiliary data works fine for NORM also if only 1%
(i.e., 50 observations) are completely observed.

6 Summary and Outlook

In this paper we structure the validity a data fusion procedure may achieve by four levels.
It is shown that the first level is meaningless and only the last, fourth, level typically is
controlled when traditional techniques of data fusion are applied. The preservation of the
joint distribution and the correlation structure of the variables not jointly observed can be
evaluated by using the non-iterative multiple imputation procedure NIBAS. Data fusion
can be viewed as a problem of mass imputation and MI procedures are applicable in gen-
eral. In a simulation study, we find the multiple imputation approaches superior to the
traditional matching techniques. Auxiliary data can be easily and efficiently used by stan-
dard MI procedures such as NORM. To avoid the identification problem inherent in data
fusion, we suggest to use split questionnaire surveys (SQS) as proposed by Raghunathan
and Grizzle (1995). This situation is pictured in Figure 1 no. 4. For the SQS design iden-
tification problems are avoided by creating special patterns of missingness. The missing
data can then be quite successfully multiply imputed, for an application in media planning
see R̈assler et al. (2002).

In general, a multiple imputation procedure seems to be the best alternative at hand
even in the case of data fusion. It accounts for the missingness and exploits all valuable
available information.
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Ê(ρ̂XY1) ALCI Cvg. Ê(ρ̂XY2) ALCI Cvg.
Procedure ρXY1|Z = −0.6032, ρXY1 = 0.4 ρXY2|Z = 0.6393, ρXY2 = 0.8
NN 0.5810 0.0581 0.000 0.4566 0.0694 0.000
RI 0.4204 0.0722 0.805 0.9480 0.0089 0.000
RIEPS 0.4054 0.0771 0.960 0.8496 0.0328 0.000
NIBAS 0.3984 0.0819 0.985 0.7989 0.0467 1.000
NORM 1% 0.4201 0.1256 0.890 0.7824 0.1330 0.785
NORM 5% 0.3948 0.0985 0.960 0.8010 0.1372 1.000

Procedure ρXY1|Z = −0.2742, ρXY1 = 0.5 ρXY2|Z = 0.2651, ρXY2 = 0.6
NN 0.5828 0.0579 0.000 0.4584 0.0692 0.000
RI 0.5415 0.0620 0.265 0.8125 0.0298 0.000
RIEPS 0.5029 0.0730 0.960 0.6108 0.0764 0.980
NIBAS 0.5003 0.0753 0.995 0.6000 0.0815 1.000
NORM 1% 0.5331 0.1626 0.865 0.5604 0.2704 0.820
NORM 5% 0.4931 0.1084 0.960 0.6102 0.1963 0.970

Procedure ρXY1|Z = 0, ρXY1 = 0.5833 ρXY2|Z = 0, ρXY2 = 0.4583
NN 0.5817 0.0580 0.970 0.4579 0.0693 0.940
RI 0.6354 0.0523 0.025 0.6410 0.0517 0.000
RIEPS 0.5828 0.0664 0.995 0.4589 0.0941 1.000
NIBAS 0.5830 0.0664 0.995 0.4581 0.0993 1.000
NORM 1% 0.6018 0.1741 0.920 0.4310 0.3184 0.920
NORM 5% 0.5732 0.1033 0.955 0.4702 0.2033 0.950

Procedure ρXY1|Z = 0.0548, ρXY1 = 0.6 ρXY2|Z = 0.078, ρXY2 = 0.5
NN 0.5818 0.0580 0.765 0.4590 0.0692 0.345
RI 0.6540 0.0502 0.015 0.6981 0.0450 0.000
RIEPS 0.5999 0.0646 0.975 0.5014 0.0914 1.000
NIBAS 0.5998 0.0648 0.960 0.5006 0.0934 1.000
NORM 1% 0.6286 0.1891 0.940 0.4536 0.3275 0.905
NORM 5% 0.5921 0.0984 0.905 0.5063 0.1831 0.945

Procedure ρXY1|Z = 0.7129, ρXY1 = 0.8 ρXY2|Z = −0.6705, ρXY2 = 0.1
NN 0.5821 0.0580 0.000 0.4578 0.0693 0.000
RI 0.8331 0.0268 0.030 0.1168 0.0864 0.850
RIEPS 0.8156 0.0316 0.535 0.1055 0.0965 0.975
NIBAS 0.7999 0.0385 0.965 0.1008 0.1202 0.995
NORM 1% 0.7993 0.0888 0.945 0.1012 0.1986 0.970
NORM 5% 0.7972 0.0559 0.990 0.1063 0.1339 0.980

Table 2: Results for preserving the correlation structure
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Ê
(µ̂

Y
2 )

C
vg.

Ê
(σ̂

2Y
1 )

C
vg.

Ê
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Ê
(σ̂

2 Y
1
)

C
vg

.
Ê
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Rässler, S., Fleischer, K. (1998). Aspects Concerning Data Fusion Techniques,ZUMA
Nachrichten Spezial, 4, 317-333.
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