A comparison of sequential design procedures for discriminating enzyme kinetic models

25thYSM

October 17, 2021

Elham Yousefi Institute of Applied Statistics (IFAS) Johannes Kepler University Linz, Austria

Overview

- Introduction
 - Why sequential designs?
- Methodologies for sequential designs
 - Hunter and Reiner
 - *Ds*
 - Linearized distance (δ)
- Application
 - Enzyme kinetic models
- Results
 - Sequential designs
 - Precision in estimation
 - Comparison of (normalized) criterion values

Discussion

- Many optimal design procedures for discrimination (including T) depend on true model and its parameters (locally optimum).
- Sequential procedure: one option to tackle this dependence.
- Use the information provided in the observations.
- Cost is an important factor.
- Investigated sequential design strategies based on:
 - Hunter and Reiner [6] (adapted T).
 - D_s; Atkinson and Cox [3].
 - Linearized distance (δ -)criterion; Harman and Müller [5].

Rival models

- $y_i = \eta_0(\boldsymbol{\theta}_0, \mathbf{x}_i) + \epsilon_i, \quad i = 1, \dots, N$
- $\blacktriangleright \quad y_i = \eta_1(\boldsymbol{\theta}_1, \mathbf{x}_i) + \epsilon_i, \qquad i = 1, \dots, N$
 - $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)^T$
 - $\boldsymbol{\theta} \in \boldsymbol{\Theta} \subseteq \mathbb{R}^m$
 - $\mathbf{x}_i = (x_{1i}, x_{2i})^T$
 - $\mathfrak{X} = [x_1] \times [x_2]$
 - $0 \le [x_1]_{\min} \le [x_1] \le [x_1]_{\max}$
 - $0 \le [x_2]_{\min} \le [x_2] \le [x_2]_{\max}$
 - $\eta(\boldsymbol{\theta}, \mathbf{x}_i)$, expected response
 - $\eta: \Theta \times \mathfrak{X} \to \mathbb{R}$
 - $\epsilon \sim \mathcal{N}(0,\sigma^2)$

Hunter and Reiner [6] (adapted T) sequential procedure:

() Let an initial design ξ_{N_0} with N_0 observations $y_i, i = 1, ..., N_0$ be given. Find the nonlinear least square parameter estimates of the models $(\hat{\theta}_{0N_0}, \hat{\theta}_{1N_0})$

$$\sum_{i=1}^{N_0} \left(y_i - \widehat{y_{ji}} \right)^2 = \inf_{\boldsymbol{\theta}_j \in \boldsymbol{\Theta}_j} \sum_{i=1}^{N_0} \left(y_i - \eta_j(\boldsymbol{\theta}_j, \mathbf{x}_i) \right)^2 \quad (\widehat{y_{ji}} = \eta_j(\hat{\boldsymbol{\theta}}_{jN_0}, \mathbf{x}_i), j = 0, 1).$$

- **2** The next point \mathbf{x}_{N_0+1} is chosen as $\mathbf{x}_{N_0+1} = \arg \max_{\mathbf{x} \in \mathfrak{X}} \left\{ \eta_0(\hat{\boldsymbol{\theta}}_{0N_0}, \mathbf{x}) - \eta_1(\hat{\boldsymbol{\theta}}_{1N_0}, \mathbf{x}) \right\}^2$.
- **3** The $(N_0 + 1)$ th observation is taken at \mathbf{x}_{N_0+1} .
- Steps 1 to 3 are repeated.
- ▶ This will lead to an asymptotically *T*-optimal design.

Methodology II

Ds [Atkinson and Cox [3]] sequential procedure:

- Redo step one for the more general model only, to get the $\hat{\theta}_{2N_0}$.
- Alter the second step as:

$$M(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) = \begin{pmatrix} M_{11}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) & M_{12}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) \\ M_{21}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) & M_{22}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) \end{pmatrix}$$

- $M_{11}(\xi_{N_0}, \hat{\theta}_{2N_0}) = \sum_{i=1}^{N_0} f_1(\xi_{N_0i}, \hat{\theta}_{2N_0}) f_1^T(\xi_{N_0i}, \hat{\theta}_{2N_0})$ (for nuisance pars).
- Nuisance part of $\hat{\theta}_{2N_0}$ contributes in f_1 and M_{11} .
- $M_{22}(\xi_{N_0}, \hat{\theta}_{2N_0})$ (for pars of interest)

•
$$A^{-1} = \left\{ M_{22} - M_{21} M_{11}^{-1} M_{12} \right\}^{-1}$$

•
$$\Phi_s(\xi_{N_0}, \hat{\theta}_{2N_0}) = \frac{|M(\xi_{N_0}, \hat{\theta}_{2N_0})|}{|M_{11}(\xi_{N_0}, \hat{\theta}_{2N_0})|}$$

$$\begin{aligned} \mathbf{x}_{N_0+1} &= \arg\max_{\mathbf{x}\in\mathfrak{X}} \left\{ f^T(\mathbf{x}, \hat{\boldsymbol{\theta}}_{2N_0}) M^{-1}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) f(\mathbf{x}, \hat{\boldsymbol{\theta}}_{2N_0}) - f_1^T(\mathbf{x}, \hat{\boldsymbol{\theta}}_{2N_0}) M_{11}^{-1}(\xi_{N_0}, \hat{\boldsymbol{\theta}}_{2N_0}) f_1(\mathbf{x}, \hat{\boldsymbol{\theta}}_{2N_0}) \right\}. \end{aligned}$$

Methodology III

• Linearized distance (δ) [Harman and Müller [5]]

Definition of $\delta(\mathcal{D})$. The line segments correspond to the sets $\{\mathbf{a}_0(\mathcal{D}) + \mathbf{F}_0(\mathcal{D})\boldsymbol{\theta}_0\}$ and $\{\mathbf{a}_1(\mathcal{D}) + \mathbf{F}_1(\mathcal{D})\boldsymbol{\theta}_1\}$ for some flexible nominal sets.

The linearized distance (δ) as a sequential procedure:

- The second step is altered as:
 - ٠

$$\begin{aligned} (y_i)_{i=1}^{N_0+1} &\approx \mathbf{F}_u(\mathcal{D})\boldsymbol{\theta}_u + \mathbf{a}_u(\mathcal{D}) + \epsilon. \\ \mathbf{a}_u(\mathcal{D}) &= (\eta_u(\hat{\boldsymbol{\theta}}_{uN_0}, \mathbf{x}_i))_{i=1}^{N_0+1} - \mathbf{F}_u(\mathcal{D})\hat{\boldsymbol{\theta}}_{uN_0}, u = 0, 1. \end{aligned}$$

• $\mathcal{D} = (\mathbf{x}_1, \dots, \mathbf{x}_{N_0+1})$ is an exact design of size $N_0 + 1$.

- $\mathbf{F}_u(\mathcal{D})$ is the $(N_0 + 1) \times m$ matrix of partial derivatives at $\hat{\boldsymbol{\theta}}_{uN_0}$.
- ٠

$$\delta_{r}(\mathcal{D}) = \inf_{\boldsymbol{\theta}_{0} \in \widehat{\boldsymbol{\Theta}}_{0}^{(r)}, \boldsymbol{\theta}_{1} \in \widehat{\boldsymbol{\Theta}}_{1}^{(r)}} \delta(\mathcal{D} \mid \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}).$$
(1)
$$\delta(\mathcal{D} \mid \boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{1}) = \|\mathbf{a}_{0}(\mathcal{D}) + \mathbf{F}_{0}(\mathcal{D})\boldsymbol{\theta}_{0} - \{\mathbf{a}_{1}(\mathcal{D}) + \mathbf{F}_{1}(\mathcal{D})\boldsymbol{\theta}_{1}\}\|$$

A design is called δ-optimal if

$$\mathcal{D}^* \in \arg\max_{\mathcal{D}\in\mathfrak{D}} \delta_r(\mathcal{D}).$$
(2)

Eq. (1) is computed for all designs of size N₀ + 1 (design of size N₀ so far plus 1 candidate point), then done for all points on the grid. Finally the best is chosen.

Application: definitions of models

• Competitive inhibition model: $y = \frac{\theta_{01}x_1}{\theta_{02}\left(1 + \frac{x_2}{\theta_{03}}\right) + x_1} + \epsilon$

- x₁ ≥ 0, substrate concentration
- x₂ ≥ 0, inhibition concentration
- θ₀₁, maximum velocity
- θ₀₂, substrate constant
- θ₀₃, inhibition constant
- $\epsilon \sim \mathcal{N}(0, \sigma^2)$

- ► Non-competitive inhibition model: $y = \frac{\theta_{11}x_1}{(\theta_{12} + x_1)\left(1 + \frac{x_2}{\theta_{13}}\right)} + \epsilon$
- ► Encompassing model (Atkinson [1]): $y = \frac{\theta_{21}x_1}{\theta_{22}\left(1 + \frac{x_2}{\theta_{22}}\right) + x_1\left(1 + \frac{(1-\lambda)x_2}{\theta_{22}}\right)} + \epsilon$
- $\bullet \ 0 \leq \lambda \leq 1$
- $\lambda = 1$: competitive inhibition
- $\lambda = 0$: non-competitive inhibition

Competitive model ($\hat{\sigma}=0.1553$)			Non-	Non-competitive model ($\hat{\sigma} = 0.2272$)			
	Estimate $\hat{oldsymbol{ heta}}$	SE $\hat{\sigma}$		Estimate $\hat{oldsymbol{ heta}}$	SE $\hat{\sigma}$		
θ_{01}	7.2976	0.1143	θ_{11}	8.6957	0.2227		
θ_{02}	4.3860	0.2333	θ_{12}	8.0664	0.4880		
θ_{03}	2.5821	0.1454	θ_{13}	12.0566	0.6709		

Standard case ($\hat{\sigma} = 0.1526$)						
	Estimate $\hat{oldsymbol{ heta}}$	SE $\hat{\sigma}$				
θ_{21}	7.4253	0.1298				
θ_{22}	4.6808	0.2724				
θ_{23}	3.0581	0.2815				
λ	0.9636	0.0191				

- Initial estimates: N = 120 triple observations from Bogacka et al. [4]
- Design region: $\mathfrak{X} = [0, 30] \times [0, 60]$.
- Parameter space: $\theta \in (0,\infty)$
- Estimates of λ is in favor of the competitive model.

Results

T-sequential procedure, the competitive model is the data generator. (a): sequentially constructed designs, (b) and (c): residual standard error estimates of the competitive and noncompetitive models, respectively.

• Compare to approximate designs in Atkinson [2], Yousefi and Müller [7].

 D_s -sequential procedure, the competitive model is used to generate the obs. (a): sequentially constructed designs, (b): residual standard error estimates of the encompassing model, (c): estimates of λ .

• Compare to approximate designs in Atkinson [2], Yousefi and Müller [7].

$$\bullet \ \widehat{\boldsymbol{\Theta}}^{(r)} = [\hat{\theta}_{u1} \pm r\hat{\sigma}_{u1}] \times [\hat{\theta}_{u2} \pm r\hat{\sigma}_{u2}] \times [\hat{\theta}_{u3} \pm r\hat{\sigma}_{u3}]_{u=0,1}.$$

 δ -sequential procedure, the competitive model is used to generate the obs. (a): sequentially constructed designs, (b) and (c): residual standard error estimates of the competitive and noncompetitive models, respectively.

Parameter estimation standard error

Parameter estimation standard error for all methods (a),(b): T and δ , (c): D_s

Normalized criterion values

Normalized criterion values for all three methods (a): T, (b): D_s , (c): δ

Minimum number of required observations (Min obs.) to reach different quantiles of the respective maximum for all three methods, left: under competitive and right: under noncompetitive model.

	Min obs. (competitive)				Min obs. (noncompetitive)			
	50%	75%	90%	95%	50%	75%	90%	95%
T	6	16	73	105	 5	16	77	97
D_s	6	28	45	61	1	16	65	110
δ	9	26	58	87	22	60	105	138

- All T, D_s and δ -sequential procedures behave reasonable.
- D_s-sequential procedure has a relatively higher rate of convergence, by comparing the normalized criterion values.
- Simplicity of computations makes the D_s-sequential procedure even more attractive.
- D_s -procedure: the encompassing (more general) model is not unique.
- Similar results (with slight changes) hold if the noncompetitive model is the data generator.
- Results can help an experimenter with a fixed and limited budget decide on how to proceed sequentially for enzyme kinetic models.

References I

Anthony C Atkinson.

Some optimum designs for building enzyme inhibition kinetic models. Journal of Statistical Theory and Practice, 10:143–162, 2011.

Anthony C Atkinson.

Optimum experimental designs for choosing between competitive and non competitive models of enzyme inhibition. Communications in Statistics-Theory and Methods, 41(13-14):2283–2296, 2012.

Anthony C Atkinson and David R Cox.

Planning experiments for discriminating between models. Journal of the Royal Statistical Society: Series B (Methodological), 36(3):321–334, 1974.

Barbara Bogacka, Maciej Patan, Patrick J Johnson, Kuresh Youdim, and Anthony C Atkinson.

Optimum design of experiments for enzyme inhibition kinetic models. Journal of Biopharmaceutical Statistics, 21(3):555–572, 2011.

Radoslav Harman and Werner G Müller.

A design criterion for symmetric model discrimination based on flexible nominal sets. Biometrical Journal, 62(4):1090–1104, 2020.

William G Hunter and Albey M Reiner.

Designs for discriminating between two rival models. Technometrics, 7(3):307–323, 1965.

Elham Yousefi and Werner G Müller.

Impact of the error structure on the design and analysis of enzyme kinetic models. arXiv preprint arXiv:2103.09563, 2021. Thanks for your attention!