A comparison of sequential design procedures for discriminating
enzyme kinetic models
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Why sequential?

» Many optimal design procedures for discrimination (including T') depend on true
model and its parameters (locally optimum).

» Sequential procedure: one option to tackle this dependence.
» Use the information provided in the observations.

» Cost is an important factor.

» Investigated sequential design strategies based on:
® Hunter and Reiner [6] (adapted T').
® Dy; Atkinson and Cox [3] .
® Linearized distance (0-)criterion; Harman and Miller [5].



Rival models

> yi:nD(enyi)+6ia ’L’=1,‘..,N
> yi =n1(01,%;) + €, i=1,...,N

® 9=(01,...,0m)7T

® g c®CR™

® x;i = (z14,m2:)T

® X =[z1] x [z2]

® 0 < [z1]min < [21] < [21]max
® 0 < [z2]min < [22] < [T2]max
® 7(0,x;), expected response

® N:®OxX—>R

® ¢~ N(0,02)



Methodology |

Hunter and Reiner [6] (adapted T') sequential procedure:

@ Let an initial design £, with Ng observations y;,i = 1,..., Ng be given.
Find the nonlinear least square parameter estimates of the models (QONO, 911\70)
No No
—~\2 . 5 N .
E (vi —y5i) = inf (yi —=m;(05,%:))"  (yj0 = (05N, %i),4 =0,1).
— 0;€0; < 7
1= 1=

@ The next point xn,41 is chosen as

XNo+1 = arg MaXyecx {770(901\70, x) — nl(élNO,x)}Q
© The (Ng + 1)th observation is taken at Xy 41.
@ Steps 1 to 3 are repeated.

» This will lead to an asymptotically T-optimal design.



Methodology 11

Ds [Atkinson and Cox [3]] sequential procedure:

P> Redo step one for the more general model only, to get the 92/\/0.
» Alter the second step as:

M21(Eng,02n,)  Ma2(En,,02n,)

* Mi1(Eng,Ban,g) = Zivzol fl(ﬁNon92N0)f1T(€N0i792N0) (for nuisance pars).

® Nuisance part of 921\70 contributes in f1 and Mj;.

M(Eng, any) = (M11(5N0,Q2N0) M12(5N0,€)2N0)>

° M22(£N0,92N0) (for pars of interest)
_ -1
e Al = {]V[22 - M21M111M12}
. M )
o Du(Engs Bany) = |M (€, %No)\_
[M11(Eng 21, |

XNo+1 = arg mea';( {fT(x’ 92]\70)]\4_1(51\70 3 92N0)f(x: é?No)f
x

FL (%, 0280 ) M7 (Eng s B2 ) f1(x, é2N0)} .



Methodology Il

» Linearized distance (§) [Harman and Miiller [5]]

/ m=1
~

B (mcé,,m)
- M (B1,23),

(nﬂ(é:l)-xl)) —
No(8o. x2)

(’11(61« ﬂ))
(rEw)_ PRYRCS!
No(Bo, Xz

Definition of §(D). The line segments correspond to the sets {ag (D) + Fo(D)6¢} and
{a1(D) + F1(D)6,} for some flexible nominal sets.



The linearized distance (&) as a sequential procedure:

» The second step is altered as:

[ ]
(i) No! & Fy(D)0y + au(D) + e
au(D) = (1u(Bung, X)) — Fu(D)0yny,u=0,1.
® D= (x1,...,XNg+1) is an exact design of size Ng + 1.
® Fy(D) is the (Ng + 1) x m matrix of partial derivatives at 6, -
[ ]
6-(D) = (Tinf o (D | 69, 61). (1)

000, 6,c6"
6(D | 80,01) = [[ao(D) + Fo(D)8o — {a1(D) + F1(D)01} ||
® A design is called é-optimal if
D* e 0r(D). 2
arg max 6r(D) (2)

® Eq. (1) is computed for all designs of size Ng + 1 (design of size Ny so far plus 1
candidate point), then done for all points on the grid. Finally the best is chosen.



Application: definitions of models

® 11 > 0, substrate concentration

® 1o > 0, inhibition concentration

» Competitive inhibition model: * o1, maximum velocity
o1,

_ Oo171 iy
B o2 ( + ) + 1 ® (o2, substrate constant
® (o3, inhibition constant
.~ N(0,07)
» Non-competitive inhibition model:
01171
= o e
(912 +$1) (1 + m)
> Encompassing model (Atkinson [1]): *0<A<1
- f2121 ¢ ® \=1: competitive inhibition
o () ¢ (0 )
22 ! 023 ® )\ = 0: non-competitive inhibition



Competitive model (6 = 0.1553)

Non-competitive model (6 = 0.2272)

Estimate 6 SE & Estimate 6 SE &
601 7.2976 0.1143 611 8.6957 0.2227
6o2 4.3860 0.2333 612 8.0664 0.4880
6os 2.5821 0.1454 613 12.0566 0.6709

vVvyyy

Standard case (6 = 0.1526)

Estimate 0 SE &
621 7.4253 0.1298
622 4.6808 0.2724
623 3.0581 0.2815
A 0.9636 0.0191

Initial estimates: N = 120 triple observations from Bogacka et al. [4]

Design region: X = [0, 30] x [0, 60].
Parameter space: 6 € (0, c0)

Estimates of A is in favor of the competitive model.
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Results

X; ! n: DZ
2 . ;.‘ s
oﬁ_. ° H] H]

0 5 0 15 20 2 3 0 100 200 300 40 500 0 100 200 300 400 500
« iter iter

(a) (b) (c)

T-sequential procedure, the competitive model is the data generator. (a): sequentially
constructed designs, (b) and (c): residual standard error estimates of the competitive
and noncompetitive models, respectively.

@ Compare to approximate designs in Atkinson [2], Yousefi and Miiller [7].
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(a) (b) (c)

Dg-sequential procedure, the competitive model is used to generate the obs. (a):
sequentially constructed designs, (b): residual standard error estimates of the
encompassing model, (c): estimates of A.

@ Compare to approximate designs in Atkinson [2], Yousefi and Miiller [7].
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(r) ~ ~

> @ = [Gul + T‘é‘ul} X [9u2 + Tﬁ'uz] X [éug + Ta’uS]u:O,l-

] 5 10 15 2 2 B [ 100 200 300 400 500 0 100 200 300 400 500
x iter iter

(a) (b) (c)

d-sequential procedure, the competitive model is used to generate the obs. (a):
sequentially constructed designs, (b) and (c): residual standard error estimates of the
competitive and noncompetitive models, respectively.
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Parameter estimation standard error

Parameter estimation standard error for all methods (a),(b): 7" and 4, (c): Ds
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Normalized criterion values
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Normalized criterion values for all three methods (a):
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Minimum number of required observations (Min obs.) to reach different
quantiles of the respective maximum for all three methods, left: under
competitive and right: under noncompetitive model.

Min obs. (competitive) Min obs. (noncompetitive)

50% 5% 90% 95% 50% 5% 90% 95%

T 6 16 73 105 5 16 7 97
Dg 6 28 45 61 1 16 65 110
6 9 26 58 87 22 60 105 138
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Discussion and Conclusion

» All T, Ds and d-sequential procedures behave reasonable.

» Dg-sequential procedure has a relatively higher rate of convergence, by comparing
the normalized criterion values.

» Simplicity of computations makes the Ds-sequential procedure even more
attractive.

» Ds-procedure: the encompassing (more general) model is not unique.

» Similar results (with slight changes) hold if the noncompetitive model is the data
generator.

P Results can help an experimenter with a fixed and limited budget decide on how to
proceed sequentially for enzyme kinetic models.
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Thanks for your attention!
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