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Overview

I Introduction
• Why sequential designs?

I Methodologies for sequential designs
• Hunter and Reiner
• Ds
• Linearized distance (δ)

I Application
• Enzyme kinetic models

I Results
• Sequential designs
• Precision in estimation
• Comparison of (normalized) criterion values

I Discussion
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Why sequential?

I Many optimal design procedures for discrimination (including T ) depend on true
model and its parameters (locally optimum).

I Sequential procedure: one option to tackle this dependence.
I Use the information provided in the observations.
I Cost is an important factor.

I Investigated sequential design strategies based on:
• Hunter and Reiner [6] (adapted T ).
• Ds; Atkinson and Cox [3] .
• Linearized distance (δ-)criterion; Harman and Müller [5].
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Rival models

I yi = η0(θ0,xi) + εi, i = 1, . . . , N
I yi = η1(θ1,xi) + εi, i = 1, . . . , N

• θ = (θ1, . . . , θm)T
• θ ∈ Θ ⊆ Rm
• xi = (x1i, x2i)T
• X = [x1]× [x2]
• 0 ≤ [x1]min ≤ [x1] ≤ [x1]max
• 0 ≤ [x2]min ≤ [x2] ≤ [x2]max
• η(θ,xi), expected response
• η : Θ× X→ R
• ε ∼ N (0, σ2)
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Methodology I

Hunter and Reiner [6] (adapted T ) sequential procedure:

1 Let an initial design ξN0 with N0 observations yi, i = 1, . . . , N0 be given.
Find the nonlinear least square parameter estimates of the models (θ̂0N0 , θ̂1N0 )

N0∑
i=1

(
yi − ŷji

)2
= inf

θj∈Θj

N0∑
i=1

(yi − ηj(θj ,xi))2 (ŷji = ηj(θ̂jN0 ,xi), j = 0, 1).

2 The next point xN0+1 is chosen as
xN0+1 = arg maxx∈X

{
η0(θ̂0N0 ,x)− η1(θ̂1N0 ,x)

}2
.

3 The (N0 + 1)th observation is taken at xN0+1.
4 Steps 1 to 3 are repeated.

I This will lead to an asymptotically T -optimal design.

5



Methodology II

Ds [Atkinson and Cox [3]] sequential procedure:

I Redo step one for the more general model only, to get the θ̂2N0 .
I Alter the second step as:

•

M(ξN0 , θ̂2N0 ) =
(
M11(ξN0 , θ̂2N0 ) M12(ξN0 , θ̂2N0 )
M21(ξN0 , θ̂2N0 ) M22(ξN0 , θ̂2N0 )

)
• M11(ξN0 , θ̂2N0 ) =

∑N0
i=1 f1(ξN0i, θ̂2N0 )fT1 (ξN0i, θ̂2N0 ) (for nuisance pars).

• Nuisance part of θ̂2N0 contributes in f1 and M11.
• M22(ξN0 , θ̂2N0 ) (for pars of interest)
• A−1 =

{
M22 −M21M

−1
11 M12

}−1

• Φs(ξN0 , θ̂2N0 ) =
|M(ξN0 , θ̂2N0 )|
|M11(ξN0 , θ̂2N0 |

.

•
xN0+1 = arg max

x∈X

{
fT (x, θ̂2N0 )M−1(ξN0 , θ̂2N0 )f(x, θ̂2N0 )−

fT1 (x, θ̂2N0 )M−1
11 (ξN0 , θ̂2N0 )f1(x, θ̂2N0 )

}
.
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Methodology III

I Linearized distance (δ) [Harman and Müller [5]]

Definition of δ(D). The line segments correspond to the sets {a0(D) + F0(D)θ0} and
{a1(D) + F1(D)θ1} for some flexible nominal sets.
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The linearized distance (δ) as a sequential procedure:
I The second step is altered as:
•

(yi)N0+1
i=1 ≈ Fu(D)θu + au(D) + ε.

au(D) = (ηu(θ̂uN0 ,xi))
N0+1
i=1 − Fu(D)θ̂uN0 , u = 0, 1.

• D = (x1, . . . ,xN0+1) is an exact design of size N0 + 1.
• Fu(D) is the (N0 + 1)×m matrix of partial derivatives at θ̂uN0 .
•

δr(D) = inf
θ0∈Θ̂

(r)
0 ,θ1∈Θ̂

(r)
1

δ(D | θ0, θ1). (1)

δ(D | θ0, θ1) = ‖a0(D) + F0(D)θ0 − {a1(D) + F1(D)θ1} ‖

• A design is called δ-optimal if

D∗ ∈ arg max
D∈D

δr(D). (2)

• Eq. (1) is computed for all designs of size N0 + 1 (design of size N0 so far plus 1
candidate point), then done for all points on the grid. Finally the best is chosen.
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Application: definitions of models

I Competitive inhibition model:
y =

θ01x1

θ02
(
1 + x2

θ03

)
+ x1

+ ε

• x1 ≥ 0, substrate concentration
• x2 ≥ 0, inhibition concentration
• θ01, maximum velocity
• θ02, substrate constant
• θ03, inhibition constant
• ε ∼ N (0, σ2)

I Non-competitive inhibition model:
y =

θ11x1

(θ12 + x1)
(
1 + x2

θ13

) + ε

I Encompassing model (Atkinson [1]):
y =

θ21x1

θ22
(

1 + x2
θ23

)
+ x1

(
1 + (1−λ)x2

θ23

) + ε

• 0 ≤ λ ≤ 1
• λ = 1: competitive inhibition
• λ = 0: non-competitive inhibition
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Competitive model (σ̂ = 0.1553) Non-competitive model (σ̂ = 0.2272)
Estimate θ̂ SE σ̂ Estimate θ̂ SE σ̂

θ01 7.2976 0.1143 θ11 8.6957 0.2227
θ02 4.3860 0.2333 θ12 8.0664 0.4880
θ03 2.5821 0.1454 θ13 12.0566 0.6709

Standard case (σ̂ = 0.1526)
Estimate θ̂ SE σ̂

θ21 7.4253 0.1298
θ22 4.6808 0.2724
θ23 3.0581 0.2815
λ 0.9636 0.0191

I Initial estimates: N = 120 triple observations from Bogacka et al. [4]
I Design region: X = [0, 30]× [0, 60].
I Parameter space: θ ∈ (0,∞)
I Estimates of λ is in favor of the competitive model.
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Results
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(c)

T -sequential procedure, the competitive model is the data generator. (a): sequentially
constructed designs, (b) and (c): residual standard error estimates of the competitive
and noncompetitive models, respectively.

Compare to approximate designs in Atkinson [2], Yousefi and Müller [7].

11



0 5 10 15 20 25 30

0
1

0
2

0
3

0
4

0
5

0
6

0

x1

x
2

1

126

250

375

500

(a)

0 100 200 300 400 500

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

iter

σ
2

(b)

0 100 200 300 400 500

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

iter

λ

(c)

Ds-sequential procedure, the competitive model is used to generate the obs. (a):
sequentially constructed designs, (b): residual standard error estimates of the
encompassing model, (c): estimates of λ.

Compare to approximate designs in Atkinson [2], Yousefi and Müller [7].
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I Θ̂
(r)

= [θ̂u1 ± rσ̂u1]× [θ̂u2 ± rσ̂u2]× [θ̂u3 ± rσ̂u3]u=0,1.
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δ-sequential procedure, the competitive model is used to generate the obs. (a):
sequentially constructed designs, (b) and (c): residual standard error estimates of the
competitive and noncompetitive models, respectively.
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Parameter estimation standard error
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Parameter estimation standard error for all methods (a),(b): T and δ, (c): Ds
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Normalized criterion values
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Normalized criterion values for all three methods (a): T , (b): Ds, (c): δ
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Minimum number of required observations (Min obs.) to reach different
quantiles of the respective maximum for all three methods, left: under
competitive and right: under noncompetitive model.

Min obs. (competitive) Min obs. (noncompetitive)
50% 75% 90% 95% 50% 75% 90% 95%

T 6 16 73 105 5 16 77 97
Ds 6 28 45 61 1 16 65 110
δ 9 26 58 87 22 60 105 138
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Discussion and Conclusion

I All T , Ds and δ-sequential procedures behave reasonable.
I Ds-sequential procedure has a relatively higher rate of convergence, by comparing

the normalized criterion values.
I Simplicity of computations makes the Ds-sequential procedure even more

attractive.
I Ds-procedure: the encompassing (more general) model is not unique.
I Similar results (with slight changes) hold if the noncompetitive model is the data

generator.
I Results can help an experimenter with a fixed and limited budget decide on how to

proceed sequentially for enzyme kinetic models.
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Thanks for your attention!
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