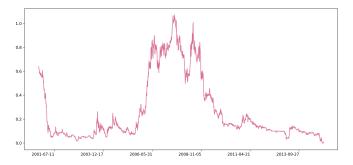
Modeling interest rates	Negative rates	Model extensions	Conclusion

Modeling Negative Rates YSM, Vorau 2021


Dalma Tóth-Lakits

Eötvös Lóránd University Department of Probability Theory and Statistics

2021. október 14.

Modeling interest rates ●00000	Negative rates 000	$Model\ extensions$ 00000	Conclusion
Interest rates			

Japan Govt Bond 2Yr Compound Yield

Japan government bond 2 year compound yield from 2000.10.02 to 2014.12.17

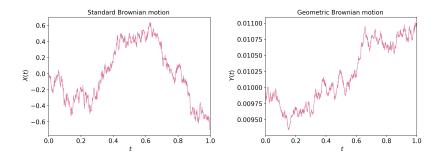
・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Modeling interest rates 0●0000	$Negative \ rates$ 000	$Model \ extensions$ 00000	Conclusion
Purpose			

- goal: modeling yield curves
- trajectories similar to what we have seen in the past
- trajectories that contain future information (implied statistical features which can be observed in current prices)

うつん 山 ふかく ホット ふしゃ ふしゃ

• purpose: pricing, risk managament


Modeling interest rates 00●000	$Negative \ rates$ 000	$Model\ extensions$ 00000	Conclusion 000
Steps of the an	alysis		

- 4 main steps in the analysis
 - Inding the right trajectories, model class
 - O calibration
 - opricing financial assets
 - Isk management (hedging)
- the focus is on the first point \rightarrow finding statistically appropriate trajectories

うつん 山 ふかく ホット ふしゃ ふしゃ

Modeling interest rates	$Negative \ rates$	$Model \ extensions$	Conclusion
000000			

Brownian motion

- Brownian motion \rightarrow normal distribution
- geometric Brownian motion \rightarrow lognormal distribution

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

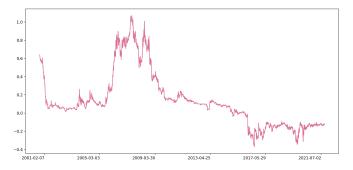
• drive processes in the models

Modeling interest rates 0000€0	Negative rates 000	$Model \ extensions$ 00000	Conclusion 000
SABR model			

- standard practice in the financial world
- stochastic volatility model [Hagan (2002)]
- captures the volatility smile

$$df(t) = f^{\beta}(t)\nu(t)dW(t)$$
$$d\nu(t) = \alpha\nu(t)dZ(t)$$

- where $\nu(0), \alpha \in \mathbb{R}^+$ and $0 \le \beta \le 1$
- W(t) and Z(t) are one dimensional Wiener processes and $d[W, Z](t) = \rho dt$, where $\rho \in [-1, 1]$.


Modeling interest rates 000000	Negative rates	$Model \ extensions$	Conclusion 000
SABR model			

- four parameter set: $(\alpha, \nu, \beta, \rho)$
- $\alpha = \nu(0)$: initial volatility
- $\nu(s)$: the volatility of the volatility
- ρ : correlation between the two Wiener process \rightarrow also the correlation between the rate and the volatility, the so-called skew
- β : CEV (Constant Elasticity Variance) parameter (the power of the forward rates)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Modeling interest rates	Negative rates $\bullet \circ \circ$	$Model\ extensions$ 00000	Conclusion 000
Negative rates			

Japan Govt Bond 2Yr Compound Yield

Japan government bond 2 year compound yield from 2000.10.02 to 2021.10.01

イロト イポト イヨト イヨト

э

Modeling interest rates 000000	Negative rates $0 \bullet 0$	$Model \ extensions$ 00000	Conclusion 000
Phenomean of	negative rate	25	

- due to economical conditions central banks were forced to lower interest rates
- negative interest rates appeared
- $\bullet\,$ new phenomean in the markets $\rightarrow\,$ uncertainty
- models for pricing financial assets haven't worked anymore

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• mathematical models have to be extended

Modeling interest rates 000000	Negative rates $00 \bullet$	$Model \ extensions$	Conclusion 000
Desirable featur	res		

- heavy-tailed distribution: the probability of extreme values is higher than in the case of normal distribution
- left oblique-right extending distribution: lower interest rates are more common than high ones

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• appearance of **negative values**

- taking the absolute value of the forward rate
- natural extension of the SABR model

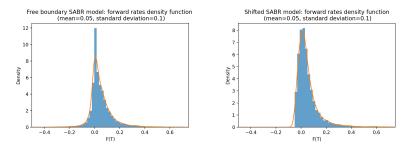
 $df(t) = |f(t)|^{\beta} \nu(t) dW(t)$ $d\nu(t) = h(t)\nu(t) dZ(t)$

• W(t) and Z(t) are correlating Wiener-processes, where $d[W, Z](t) = \rho dt$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• the power $0 \leq \beta < 0, 5$.

Modeling interest rates	Negative rates	$Model \ extensions$	Conclusion 000
000000	000	00000	
Shifted SABR r	nodel		


- add a displacement parameter to the SABR model
- s > 0: the shift size chosen apriori

$$df(t) = (f(t) + s)^{\beta} \nu(t) dW(t)$$
$$d\nu(t) = h(t)\nu(t) dZ(t)$$

- $\bullet \ 0 \leq \beta \leq 1$
- W(t) and Z(t) are two correlating one-dimensional Wiener processes, $d[W, Z](t) = \rho dt$

Modeling interest rates	$Negative \ rates$ 000	$\begin{array}{c} Model \ extensions \\ \circ \circ \bullet \circ \circ \end{array}$	Conclusion
~· · · ·			

Simulations

Histograms of the free boundary SABR model and of the shifted SABR-LMM when the expected value is 5% and the standard deviation is 10%.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○

Modeling interest rates 000000	$Negative \ rates$ 000	Model extensions 000●0	Conclusion 000		
Other extensions					

- Mixed model: mix between the Gaussian affine model and the Black model
- Heath-Jarrow-Morton framework: captures the dynamics of the yield curve

 Modeling interest rates
 Negative rates
 Model extensions
 Conclusion

 000000
 000
 0000
 000
 000

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Important features in the practice

- how fast the model runs
- how flexible and accurate the model is
- how easy to interpret the parameters
- how well it can be calibrated

Modeling interest rates 000000	$Negative \ rates$ 000	$Model \ extensions$	Conclusion
Conclusion			

- both models have advantages and disadvantages
- the models meet the expectations of the statistical features
- the next step would be the calibration of the parameters
- after that they can be used to price financial assets

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Modeling interest rates	$Negative \ rates$ 000	$Model\ extensions$ 00000	$Conclusion \\ \circ \bullet \circ$
References			

- A. Antonov M. Konikov M. Spector [2015]: The Free Boundary SABR: Natural Extension to Negative Rates (Numerix, January)
- P. S. Hagan A. S. Lesniewski [2006]: LIBOR Market Model with SABR style stochastic volatility (Wilmott Magazine, May)
- S. E. Shreve [2004]: Term Structure Models. Appeared: S. E. Shreve (Eds): Stochastic Calculus for Finance II.: Continuous-Time Models. New York: Springer Science + Business Media 403-459. p.
- Y. Ueno [2017]: Term Structure Models with Negative Interest Rates (*IMES Discussion Paper Series*, 17-E-01)
- J. Xiong G. Deng X. Wang [2020]: Extension of SABR Libor Market Model to handle negative interest rates (Quantitative Finance and Economics, March)

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Modeling interest rates	Negative rates	Model extensions	Conclusion
			000

Thank you for your attention! Any questions?