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Original Image

• Inject living tissue with radioactive substance (tracer)

• Decaying tracer produces pairs of annihilation photons traveling in
opposite directions

• detector elements (crystals) placed around the object detect lines -
coincidence events

• The scanner can be

3D: a tube joining two detector elements is a volume of response
(VOR)
2D: the line connecting the detector elements is a line of response
(LOR)

• Data are recorded as event histograms (sinograms or projected data)
or as a list of recorded photon-pair events (list-mode data)
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Sinogram (2D)

• Events along lines of response

• Integrate object activity distribution f(x, y) along all parallel LORs at
angle φ for 0 ≤ φ < 2π

• f(x, y) 7→ p(s, φ) where s is the distance from the center of the field
of view

• A fixed point traces a sinusoidal path in the projection space

• Sinogram = the superposition of all sine waves for each point of
activity
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Sinogram Illustrated

A. Alessio, P. Kinahan, “PET Image Reconstruction,” Nuclear medicine, vol. 1, pp. 1–22, 2006.
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Image Reconstruction

Filtered backprojection

• Based on the Fourier-slice (projection-slice) theorem

• Projection data are filtered (pre-corrected for the oversampling of the
Fourier transform), then backprojected, and then inverse Fourier
transformed

• Analytic and fast, but sensitive to noise and errors

Iterative algorithms

• Image is discretized into distinct pixels (voxels) which are then
modeled

• Expectation-maximization algorithms: MLEM, OSEM

• More precise, computationally complex, also require some denoising
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Simulated measurement

• N = 1000 events and K = 3 components: original (unknown) points,
measurements, sinogram, FBP (simplified)
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Gaussian Mixture Models (GMMs)

Used in a wide variety of image classification and reconstruction problems.

• Each component density is an d-variate Gaussian function:

g(x|µk,Σk) = 1√
(2π)d|Σk|

exp

(
− 1

2(x− µk)TΣ−1k (x− µk)

)
(1)

• Observation x is a realization from exactly one of the K Gaussian
mixture components

p(x|τk,µk,Σk) =

K∑
k=1

τk g(x|µk,Σk), (2)

• {τk} = mixture weights, i.e. the probabilities that x belongs to
corresponding Gaussian components;

∑K
k=1 τk = 1.
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Estimating Mixture Parameters

• Existing algorithms (MLEM, OSEM) do not consider spatial
dependence of pixels/voxels, or introduce it later (e.g. by using
Markov random fields)

• ”Holistic” approach to modelling the source of emissions - intensity is
proportional to normal distribution density (or their mixtures)

• Main issues:

• emission sources are unknown (latent), and the observations (lines) are
lower-dimensional than the source

• simplifying and accelerating estimation algorithms - faster scanning,
less time in the scanner and less exposure to radiation
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K = 1, Mean Vector Estimate

µ̂ = the point ”nearest” to all events

• We define distance using a weight matrix W :

d2(v1,v2) = (v1 − v2)TW (v1 − v2).

W = I gives Euclidian, W = Σ−1 gives Mahalanobis distance.

• For a given µ, denote by xµi the point on ith line nearest to it

• µ̂ is the solution of

min
µ

N∑
i=1

(xµi − µ)TW (xµi − µ).

Note: d vs. d2 and I vs. Σ−1 yield very similar (good) results!
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K = 1, Covariance Matrix Estimate

Suppose d = 2.

Σ =

[
Σ11 Σ12

Σ12 Σ22

]
⇒ estimate Σ11,Σ12,Σ22.

• A Gaussian distribution retains properties when rotated

• Marginal distributions of a Gaussian are again Gaussian

• If an event is at angle ψ, rotating the coordinate system by
ϕ = π

2 − ψ makes it parallel to the y-axis

• Integral along line = 1D projection onto the new x-axis

(µ,Σ) 7→ (Rµ, RΣRT ) 7→ ((Rµ)1, (RΣRT )11)
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K = 1, Covariance Matrix Estimate

• Lines are given by aTi x+ li = 0 , ai = [tanψi −1]T , i = 1, . . . , N .

• New x-coordinate of each line is −li sinϕi.

One-dimensional mean and variance are

(Rµ)1 = cosϕµx − sinϕµy,

(RΣRT )11 = cos2 ϕΣ11 − 2 cosϕ sinϕΣ12 + sin2 ϕΣ22.

Each line gives a 1D projection whose squared (Euclidian) distance from
the mean, (cosϕµx − sinϕµy + l sinϕ)2 is used to estimate the variance.
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K = 1, Covariance Matrix Estimate

Solve As = b, where s = [Σ11, Σ12,Σ22]
T .

A =

 cos2 ϕ1 −2 sinϕ1 cosϕ1 sin2 ϕ1
...

...
...

cos2 ϕN −2 sinϕ1 cosϕN sin2 ϕN

 ,

and b =

 (cosϕ1µx − sinϕ1µy + l1 sinϕ1)
2

...
(cosϕNµx − sinϕNµy + lN sinϕN )2

 .
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Covariance Matrix Estimate, K = 1

• Overdetermined system: solve min
s
‖As− b‖.

• L1 minimization preferred to L2 minimization (more robust and
resistant to gross and systematic errors)1

• One-dimensional variance estimates are from single (or at most
several) points for each ϕ - a corrective factor is needed.

min
s
‖As− λb‖1,

where λ = (Φ(0.75))2 ≈ 1.48262.

1L1 minimization algorithm proposed by A. Sović Kržić and D.S. (2018).
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Expectation - Maximization Algorithm

• E step:

Given the current estimate of parameters, create a function for the
expectation of the log-likelihood function
GMM: assign each data point its membership probabilities

• M step:

Compute parameters that maximize the function from the E step
GMM: estimate parameters of each component using points
”belonging” to that component.

• Start from initial parameters (E step) or initial weights (M step)
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Iterative Algorithms for Mixtures from PET Data

Observations are lines, there are no (proper) max-likelihood estimators!

• STEP 1 (expectation - like)

Probabilistic approach: weights are calculated using Gaussian densities
from previous iterations.
Geometric approach: weights are calculated using only geometric
properties of lines (inversely proportional to distance from previously
estimated mean).

• STEP 2 (maximization - like)

Soft classification: all lines participate in estimation of all components,
proportional to weight.
Hard classification: lines assigned to the most likely component and
participate only there.
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Simulated Measurements

• K = 2 N = 4000 (n1 = 2500, n2 = 1500), 1000 iterations.

µ1 =

[
−0.05
−0.05

]
, Σ1 =

[
0.01 0.02
0.02 0.05

]
,

µ2 =

[
0.05

0

]
, Σ2 =

[
0.02 −0.01
−0.01 0.05

]
.

• Distributions are presented as images (color intensity corresponds to
density)

• Images are compared using the Structural Similarity Index
(http://www.cns.nyu.edu/˜lcv/ssim/)

A. Tafro YSM2021 October 16th, 2021 19 / 25



SSIM Results

min. average max.

GS 99.03% 99.33% 99.59%

GH 99.01% 99.46% 99.74%

PS (inc.) 93.15% 95.27% 96.44%

PH (inc.) 94.65% 95.87% 98.82%

FBP 95.81% 95.82% 95.82%

• Algorithm iterated k = 10 times, with distance d varying from
Euclidian to Mahalanobis.

• Probabilistic algorithms appeared unstable (near null covariance
matrices), most likely due to poor initial values.
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GH Algorithm, Additional Experiments

• Geometric form of the algorithm is robust regardless of initial parameters.

• Accuracy stabilizes after approximately 10 iterations.
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Figure: Top: Original points (left) and FBP reconstruction (right). Bottom:
Reconstruction from geometric soft (left) and geometric hard (right) algorithms.
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Alternative models

Observe a sample of specific related measurements:

• line intersections, or

• points (on the lines) nearest to the center(s)

Progress:

• Both sets of points provide (using corrective factors) unbiased
estimators for the single component covariance

• Line intersections present a computationally complex problem - N
sources induce

(
N
2

)
intersections

• Nearest points give less precise estimates, i.e. more measurements are
needed

• Classification problems in multiple components scenarios (as of now)
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Conclusion

Work in progress:

• Extension to 3D

• Optimal initial values

• Application to real data - detection of K, attenuation, random events
etc.

• Other distributions with suitable properties

Advantages:

• Parametric model (sparse representation)

• Resistance to noise (no need for post-processing)

• Reconstruction from fewer measurements (less exposure)
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